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S2
Background: The prevalence of diabetic nephropathy
varies according to ethnicity. Environmental as well as
genetic factors contribute to the heterogeneity in the
presentation of diabetic nephropathy. Our objective was to
evaluate this heterogeneity within the Caucasian
population.

Methods: The geo-ethnic origin of the 3409 genotyped
Caucasian type 2 diabetes (T2D) patients of Action in
Diabetes and Vascular Disease: Preterax and Diamicron MR
Controlled Evaluation was determined using principal
component analysis. Genome-wide association studies
analyses of age of onset of T2D were performed for geo-
ethnic groups separately and combined.

Results: The first principal component separated the
Caucasian study participants into Slavic and Celtic ethnic
origins. Age of onset of diabetes was significantly lower in
Slavic patients (P¼7.3�10�20), whereas the prevalence of
hypertension (P¼4.9�10�31) and albuminuria
(5.1�10�9) were significantly higher. Age of onset of T2D
and albuminuria appear to have an important genetic
component as the values of these traits were also different
between Slavic and Celtic individuals living in the same
countries. Common and geo-ethnic-specific loci were
found to be associated to age of onset of diabetes.
Among the latter, the PROX1/PROX1-AS1 genes
(rs340841) had the highest impact. Single-nucleotide
polymorphism rs340841 CC genotype was associated with
a 4.4 year earlier onset of T2D in Slavic patients living or
not in countries with predominant Slavic populations.

Conclusion: These results reveal the presence of distinct
genetic architectures between Caucasian ethnic groups
that likely have clinical relevance, among them PROX1
gene is a strong candidate of early onset of diabetes with
variations depending on ethnicity.

Keywords: albuminuria, diabetic kidney disease,
environment, ethnic groups, genetics
4 www.jhypertension.com
Abbreviations: ADVANCE, Action in Diabetes and
Vascular Disease Preterax and Diamicron MR Controlled
Evaluation; CKD, chronic kidney disease; CKD-EPI, Chronic
Kidney Disease Epidemiology Collaboration; eGFR,
estimated glomerular filtration rate; GWAS, genome-wide
association studies; MAF, minor allele frequency; PCA,
principal component analysis; SNP, single-nucleotide
polymorphism; T2D, type 2 diabetes; UACR, urinary
albumin–creatinine ratio
INTRODUCTION
T
he incidence of type 2 diabetes (T2D) is increasing
even in younger study participants in both industri-
alized and economic transition countries totaling

415 million study participants worldwide in 2015 [1]. The
major increased risk of mortality associated with both type 1
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PROX1 and type 2 diabetes
diabetes and T2D arises from diabetic nephropathy [2–4],
which is estimated to affect about one-third of individuals
with diabetes.

Different genetic architectures, such as variations in allele
frequencies and linkage disequilibrium structure have long
been noted between populations of different racial origins
and the ability of this hidden population structure to con-
found genome-wide association studies (GWAS) findings
has been well documented [5–8]. Moreover, it is known that
GWAS using populations of differing racial backgrounds
may help identify different sets of associated genes for
complex diseases and drug responses [9–11]. Differences
in genetic risks have been shown among Caucasians, Afri-
cans, and Asians for T2D [12–16] and for chronic kidney
disease (CKD) [17–19]. Evidence exists for population sub-
structure within Caucasian samples as well [20,21].

It is also well established that both environmental and
genetic factors contribute to the occurrence of hypertension,
diabetes, and CKD [22–25]. To distinguish the effects of
environmental and lifestyle factors from genetic effects in
explaining phenotypic differences in the development of
renal complications of T2D, we studied T2D study partici-
pants of Caucasian origin and European descent from the
Action in Diabetes and Vascular Disease: Preterax and Dia-
micron MR Controlled Evaluation trial (ADVANCE) [26].
Study participants were recruited from a range of European
countries as well as from countries of European settlements
such as Canada, Australia, and New Zealand. Using principal
component analysis (PCA), we identified two main ethnic
genetic profiles (Celtic and Slavic) within the ADVANCE
Caucasian study participants. To assess the relative effects
of genetic and environmental factors, we compared study
participants with a Slavic genetic profile living in countries
with predominantly Celtic populations with individuals with
a Slavic genetic profile living in predominantly Slavic
countries of Europe. Significant differences between Slavs
living in Slavic and Celtic countries would suggest an
environmental/lifestyle effect, whereas no differences
between Slavs living in Celtic or Slavic countries would
support an impact of genetic influence.

As age of onset of T2D appears to be more dependent on
genetic than environmental factors, we performed GWAS
for ‘age of onset of T2D’ within the two ethnic groups
separately and for the combined sample.

METHODS

Sample
In total, 11 140 participants recruited from 215 centers in 20
countries who were 55 years or older and had T2D since the
age of 30 years or older were enrolled in ADVANCE, a
factorial randomized controlled clinical trial of blood pres-
sure (BP) lowering and intensive glucose control. All
participants were ascertained for high outcome risk
according to one of the following criteria: a history of
major macrovascular or microvascular disease or diagnosis
of T2D 10 years prior to entry in study or presence of
another major risk factor for vascular disease, including
smoking, dyslipidemia or microalbuminuria, or being 65
years or older. Detailed study methods have been pub-
lished elsewhere [26].
Journal of Hypertension
Approval to conduct the trial was obtained from the
ethics committee of each study center, and all participants
provided written informed consent for the study conduct
and a specific, separate consent for genetic substudy.
Genotyping was performed only in patients who consented
to the genetic substudy.

Complication phenotypes
Several phenotypes associated with diabetes and its com-
plications were determined at baseline in each study partici-
pants by the ADVANCE study team. These included age at
baseline, age at diagnosis of T2D, duration of diabetes at
baseline, BMI, blood glucose, glycated hemoglobin, treat-
ment for hypertension, heart rate, and SBP and DBP. Renal
phenotypes included estimated glomerular filtration rate
(eGFR), in ml/min per 1.73 m2, estimated from serum
creatinine levels using the CKD-Epidemiology Collabor-
ation formula [27] and albuminuria, expressed as a ratio
of urinary albumin and creatinine in mg/mg [urinary albu-
min–creatinine ratio (UACR)].

Genotyping
In this study, we have genotyped 3629 Caucasian study
participants using the Affymetrix Genome-Wide Human
SNP Arrays 5.0 or 6.0 (Affymetrix, Santa Clara, California,
USA) following standard protocols recommended by the
manufacturer. A quality control filtering step was applied to
the genotype calls. The microarray data was analyzed using
the Affymetrix power tools and individuals with a quality
control call rate lower than 86% were filtered out.
Additional quality control steps included coarse-grain strat-
ification to ensure a Caucasian population ratio more than
0.8 (STRUCTURE software [28]), a genetic relatedness check
to ensure independent samples (PLINK) and a sex check to
ensure genetic accuracy and database integrity [29]. Quality
control was also performed on the final genotypes to
remove any single-nucleotide polymorphism (SNPs) with
more than 4% of missing values across the entire cohort and
any sample with more than 2% of missing SNP genotypes. A
more stringent threshold was used for any SNPs with
between 1 and 5% minor allele frequencies (MAF). Any
of these low MAF SNPs with more than 1% of missing values
was removed prior to the imputation; nonetheless, only
SNPs with MAF higher than 5% were retained after impu-
tation for use in the GWAS. After completion of the quality
control process, a total of 3409 genotyped individuals
remained available for analysis.

Principal component analysis
A subset of 139 186 independent SNPs was selected from
the set of common genotyped SNPs from 5.0 and 6.0 arrays
using the linkage disequilibrium pruning application sub-
routine from PLINK. This set of SNPs was used to perform a
PCA for the ADVANCE study participants of Caucasian
origin using the EIGENSOFT 3.0 package [7]. The first
principal component (PC1) was used to characterize the
ethnic profiles of individuals form this Caucasian popu-
lation that was sampled in European countries ranging east
to west from Russia to Ireland and also from countries
with populations of European descent, including Canada,
Australia, and New Zealand.
www.jhypertension.com S25
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FIGURE 1 Distribution of genotyped ADVANCE study participants (n¼3409) according to principal components of genotype structure using EIGENSOFT 3.0 package. (a)
ADVANCE individuals are plotted against the first two principal components PC1 (west–east gradient) and PC2 (north–south gradient), (b) frequency distribution of study
participants by value of PC1. (c) Distribution of principal component values by countries of recruitment of patients in ADVANCE. (d) ADVANCE recruitment centers ordered
by mean value of PC1.

TABLE 1. Demographic and clinical characteristics at baseline of Caucasian ADVANCE genotyped study participants stratified by ethnic
origin

Trait All (n¼3409)
Mean (SD) or %

Celtic (n¼2307)
Mean (SD) or %

Slavic (n¼1102)
Mean (SD) or % P Value

Age (years) 67.3 (6.6) 68.0 (6.6) 65.9 (6.6) 1.9�10–16

Men (sex) 64.7 69.8 54.0 5.8�10–19

Age at diagnosis of diabetes (years) 60.1 (8.5) 61.0 (6.1) 58.2 (6.1) 7.3�10–20

Diabetes duration (years) 6.7 (6.1) 6.4 (6.1) 7.4 (6.1) 2.9�10–6

BMI 30.1 (5.1) 30.1 (5.0) 30.0 (5.0) 7.6�10–1

Blood glucose assessment
HbA1c (%) 13.4 (2.7) 13.4 (2.8) 13.4 (2.8) 7.5�10–1

Glucose (mmol/l) 18.8 (4.6) 18.8 (4.6) 18.8 (4.7) 7.2�10–1

Blood pressure assessment
SBP (mmHg) 185.5 (30.3) 182.0 (30.0) 192.8 (30.2) 4.5�10–22

DBP (mmHg) 103.6 (16.7) 101.4 (16.5) 108.3 (16.7) 5.3�10–29

Heart rate (beats/min) 94 (16) 92 (16) 98 (16) 3.0�10–21

Currently treated hypertensionc 60.0 53.0 74.6 4.9�10–31

Renal function assessment
eGFRCKD-EPI (ml/min per 1.73 m2) 69.6 (17.9) 70.9 (15.8) 66.8 (15.9) 1.2�10–11

UACR (mg/mg) 78.1 (155) 63.5 (152) 96.7 (153) 5.1�10–9

Microalbuminuriaa 25.4 23.7 28.9 1.7�10–3

Macroalbuminuriab 5.4 4.0 7.6 3.6�10–5

Age and age at diagnosis of diabetes are adjusted for sex; diabetes duration, BMI, currently treated hypertension and micro and macroalbuminuria are adjusted for age and sex; all
others traits are adjusted for age, sex, and respective treatments.
eGFRCKD-EPI, estimated glomerular filtration rate calculated using Chronic Kidney Disease Epidemiology Collaboration equation; HbA1c, serum glycated hemoglobin; UACR, urinary
albumin–creatinine ratio.
aUrinary albumin–creatinine ratio between 30 and 300 mg/mg.
bUrinary albumin–creatinine ratio >300 mg/mg.
cBlood pressure >140/90 mmHg or receiving antihypertensive treatment
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PROX1 and type 2 diabetes
Imputation
Two sets of imputation were performed separately for the
individuals genotyped on Affymetrix arrays 5.0 and 6.0 using
SHAPEIT [30] and IMPUTE2 software [31] and the 1000
genome project [32] phased 3 data set as reference. Only
those SNPs with a MAF greater than or equal to 5% and with
an imputationquality score greater thanor equal to 0.80were
kept as has been proposed in previous studies [33].

Statistical analysis
Analyses of the differences in phenotype values (mean
values for quantitative traits and numbers of individuals
affected for qualitative traits) between groups (between
individuals with Celtic and Slavic genetic profiles; between
individuals with Slavic profiles living in predominantly
Germano–Celtic European or European descent countries
(Celtic region) and individuals with Slavic profiles living in
predominantly Slavic European countries (Slavic region);
and between individuals with Slavic genetic profiles living
in predominantly Germano–Celtic European countries and
individuals with Celtic profiles living in those countries
were performed using general linear models included in
the R statistical package [34].

Differences in age of onset of diabetes and duration of
diabetes were tested using sex as a covariate. All other
phenotype differences were tested using age and sex as
covariates so that the significance of these differences are
age and sex adjusted. Mean phenotype values were also
adjusted for sex and age where appropriate using the
Journal of Hypertension
epicalc library [35] of the R statistical package [34]. When
appropriate, adjustment for treatment for such traits as SBP,
UACR, and eGFR were done using nonparametric adjust-
ment as described [36].

Genome-wide association studies
GWAS were performed for age of onset of T2D separately for
individuals with a Celtic or Slavic genetic profile as deter-
mined by their value for PC1 and for the combined Celtic and
Slavic sample using linear regressionwith an additive genetic
model and sex as well as the two respective first principal
components of population stratification as covariates.

Association analyses were performed separately on the
two imputed datasets for individuals that were genotyped
on the different arrays (5 986 672 SNPs for 1015 individuals
genotyped on chip 5.0 and 6 442 695 SNPs for 2394 indi-
viduals genotyped on chip 6.0) and results were merged
using a fixed effects meta-analysis routine in the PLINK
software [29] to avoid the possibility of any bias that might
have arisen from uneven phenotype distributions across
different genotyping chip technologies. The combined
meta-analysis data set contained a total of 5 045 527 SNPs
that passed all previous quality control steps in both data
sets and also passed a combined test for Hardy–Weinberg
equilibrium using a critical P value of 1� 10�3 (P< 10�3).

Effect size
The relative effect sizes (gj) for each SNP, weighted by the
size of the b coefficient of regression (bj), the standard error
www.jhypertension.com S27
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PROX1 and type 2 diabetes
of bj (Sebj), and the MAF of the SNP (MAFj) were estimated
by the following equation [37]:

g j ¼ SQRT½2MAFj � ð1-MAFjÞ�ðbj=SebjÞ

RESULTS
PCA of 3409 genotyped ADVANCE study participants using
EIGENSOFT 3.0 package identified two major principal
components. The first PC1 divided the individuals of
Europe along an east–west region, whereas principal
component 2 separated individuals of Europe into a
north–south gradient (Fig. 1a). PC1 clearly separated
countries with populations of predominantly Germano–
Celtic ethnic background (‘Celtic’, PC1< 0) from those
with a Balto-Slavic ethnicity (‘Slavic’, PC1� 0) with
Germany aligned in the center of the distribution
(Fig. 1b and c). When recruitment centers of the ADVANCE
trial were ordered by values of PC1, we noted a pivot point
between PC1 threshold values of 0.0 and 0.01 that separ-
ated Germany into Celtic (Munich) and Slavic (Dresden)
origins (Fig. 1d).

Table 1 shows the main demographic and clinical
characteristics of the two geo-ethnic groups at the entry
of ADVANCE trial. The most striking difference between the
two ethnic groups was the mean age of onset of diabetes.
Individuals with Slavic profiles had T2D at a younger age
(P¼ 7.3� 10�20), had higher SBP and DBP (P¼ 4.5� 10�22

and P¼ 5.3� 10�29, respectively) despite the fact that a
larger number of them were treated for hypertension and
that they had a higher UACR at baseline (P¼ 5.1� 10�9)
even after adjusting for age, sex, and medication.

We then determined the effect of ethnic origin (Celtic vs.
Slavic) and environment (Celtic region vs. Slavic region) on
the most divergent phenotypes between Slavic and Celtic
patients namely age of onset of T2D, BP, and renal function.

To assess the relative effects of genetic and environmen-
tal factors on the differences between individuals with
Celtic and Slavic profiles, we compared study participants
with a Slavic genetic profile living in countries with pre-
dominantly Germano–Celtic populations with individuals
with a Slavic genetic profile living in predominantly Slavic
countries of Europe. Significant differences between Slavs
living in Slavic and Celtic countries would suggest an
environmental/lifestyle effect, whereas no differences
between Slavs living in Celtic or Slavic countries would
support an impact of genetic influence. As shown in Fig. 2a,
the highly significant earlier age of onset of T2D observed in
individuals of Slavic origin was also present among the 175
Slavic study participants living in countries of predomi-
nantly Celtic populations, suggesting a genetic drive for this
trait. Similarly, UACR was higher in Slavic individuals living
in either Slavic or Celtic regions (Fig. 2c). This contrasted
with eGFR that was higher in Celtic than Slavic individuals
after adjustment of age, sex, and medication but was not
different between Celtic and Slavic individuals living in the
same environment (Fig. 2d). SBP is another good example
of environmental effect as SBP was higher in Slavic than
Celtic individuals but not different between Slavic and
Celtic individuals living in Celtic countries (Fig. 2b).
Journal of Hypertension
As age of onset of T2D showed strong genetic differ-
ences between Slavic and Celtic geo-ethnic groups, we
performed GWAS of this phenotype in Slavic, Celtic, and
the two combined populations. All SNPs with association
of nominal significance of P values below 10�5 from
GWAS analysis are presented in Table 2. Associations
that are nominally significant in each of the two inde-
pendent Celtic and Slavic GWAS and that increase in
significance in the combined Celtic and Slavic GWAS are
considered to be replicated in two independent subco-
horts, that is, Celtic and Slavic genetic profile popu-
lations. These SNPs are indicated in boldtype for
combined sample in Table 2. Seven independent SNPs
(not in linkage disequilibrium with each other) were
found to be associated with age of onset of diabetes at
P< 10�5 having the most significant P value for the
combined Celtic and Slavic cohorts, and thus considered
replicated by the above criteria. Other SNPs were associ-
ated specifically to one or the other ethnic group. Nine
independent SNPs were significant only for the Celtic
group and a different set of nine independent SNPs
were significant only for the Slavic group. Two SNPs
within the same locus were associated with age of onset
of diabetes in the two different groups. SNP, rs35372009,
near the CLEC14A gene was the most significantly associ-
ated for the combined Celtic and Slavic cohort
(P¼ 3.3� 10�6; Fig. 3a) and SNP, rs1754680, was the
most significantly associated for the Slavic only group
(P¼ 8.3� 10�6). The SNPs are 65 662 bp apart on
chromosome 14q21.1 and are in high linkage disequili-
brium. These two SNPs, which lie within a region that is
5’ of the CLEC14A gene, are representing the same
association (Fig. 3a and b).

The most interesting association is within the PROX1/
PROX1-AS1 gene locus (rs340841) that is characterized by
one of the highest effect sizes for age of onset of T2D. The
homozygous CC genotype for rs340841 is associated with
4.4 years earlier onset of T2D in Slavic patients living either
in Slavic countries or in Celtic countries (Fig. 4). Further-
more, the C allele is the major allele in Slavic individuals
(Table 2). This locus is also associated with eGFR decline in
Slavics, with macroalbuminuria and hypertension in all
ADVANCE study participants of Caucasian origin and
with IL-6 levels at baseline (data not shown). A literature
search indicated that the PROX1 gene has been associated
with abnormalities of glucose metabolism and risk of dia-
betes with ethnically specific individual polymorphisms
[38–41].

DISCUSSION
The global burden of cardio-metabolic risk factors adjusted
for age and sex has been shown to be greater in Eastern
than in Western European countries [42]. We have recently
reviewed the importance of lifestyle behavior in gene–
environment interactions analysis [24]. The current study
is adding the notion that analysis of migration of a popu-
lation within a distinct population even before its admixture
may help dissect environmental from genetic contributions.

There is some debate as to the original homeland of the
Balto-Slavs. One hypothesis holds that modern Baltic and
www.jhypertension.com S29
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Slavic populations descend from a proto-Slavonic parental
group most likely located in a homeland roughly corre-
sponding to the modern western Ukraine and then
expanded by the sixth and seventh centuries A.D. as the
Prague–Penkov–Kolochin complex of cultures to an area
defined by the Baltic Sea in the north, approximately the
Volga river in the east, the area defined by the modern day
Czech Republic and the Elbe River in modern Germany in
the west and the Danube basin in the south [43].

The area of north eastern Germany between the Oder
and Elbe rivers was occupied by the Polabian Slavic ethnic
group by the sixth century. By the ninth century conflicts
between Christian Germanic people and these western
pagan Slavs began. The conflicts eventually resulted in
the incorporation of the area into the Holy Roman Empire
by the thirteenth century and the linguistic germanification
of the populations [44]. Therefore, it is reasonable to
hypothesize the surviving presence of genetic evidence
for an ethnic divide between a Germano–Celtic group
(here referred to as simply ‘Celtic’) and a Balto-Slavic group
(here referred to simply as ‘Slavic’) centered roughly along
S30 www.jhypertension.com
the Elbe river and the border of Czech republic in northern
Europe. We have demonstrated that evidence of this ances-
tral Celtic–Slavic genetic divide still exists in the modern
European population and that it is reflected in differences in
genetic–phenotype correlations.

Noticeably, the Caucasian populations of the non-Euro-
pean countries involved in ADVANCE have founding popu-
lations that are principally of Germano–Celtic origin as a
result of British Empire expansion. Slavic migration is more
recent in these countries and therefore represents a minor
ethnic component.

The principal difference between the Celtic and Slavic
ethnic groups is age of onset of T2D, which is also correlated
with other phenotypes such as albuminuria. We have pre-
viously introduced the concept of accelerated aging as being
a primary cause of many complex genetic diseases [45]. It is a
strong possibility that individuals with a Slavic genetic pro-
file, despite their environment, are genetically more suscept-
ible to accelerated aging resulting in earlier onset of T2D and
associated albuminuria. In addition, our results from
ADVANCE demonstrated that in contrast to macrovascular
complications of diabetes that are strongly age dependent
with an added risk conferred by duration of diabetes, the
adverse effects of duration of diabetes on microvascular
events were observed in the youngest age group [46], which
is also compatible with observations of the Treatment
Options for type 2 Diabetes in Adolescents and Youth trial
[47]. Although the ADVANCE trial amply demonstrated, the
decrease of renal events and total mortality by intensification
of BP as well as of blood glucose control [48], a finding that is
confirmed for glycemic control in the Veteran’s Affairs Dia-
betes Trial and Action to Control Cardiovascular Risk in
Diabetes trials [49], the current study suggests that further
specific functional benefits on eGFR and UACR should be
analyzed with respect to geo-ethnicity.

PROX1 encodes the prospero homeobox 1 protein, a
human homologue of the Drosophila prospero gene. This
protein is a homeobox transcription factor involved in
developmental processes such as cell fate determination,
gene transcriptional regulation, and progenitor cell regu-
lation in a number of organs. It plays a critical role in
embryonic development. PROX1 has been shown to be
associated with diabetes and its complications in a number
of studies [38–41,50–52]. Here, we present evidence that
the genetic influence of PROX1 on age of onset of diabetes
is different within Caucasian ethnic groups. It is of interest
that several polymorphisms at this locus are associated with
insulin levels and its control in adolescence, selected for a
lesser impact of environmental determinants at this age by
Lecompte et al. [40]. As we have mentioned, the ADVANCE
trial demonstrated that earlier onset of diabetes has more
impact on micro than macrovascular complications [46]. We
propose that earlier onset of T2D in context of genet-
ic� environmental influences and ethnicity deserves fur-
ther attention as a potential new target for early detection
and intervention in T2D.

In conclusion, genetic analyses have to consider geo-
ethnic characteristics even within Caucasians, demon-
strated here for cardinal features of T2D. Our data suggest
that understanding of distinct genomic architectures is
important to ascertain clinical utility.
Volume 35 � Suppl 1 � May 2017
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FIGURE 4 Distribution of the CC genotype frequencies for rs340841 located at the PROX1 locus in Celtic (a) and Slavic (b) study participants separately. Histograms of
means of age of onset of T2D vs. genotype of rs340841 (inserts). Regional association plots (1Mb window) of the PROX1 locus (chromosome 1) identified by GWAS of
age of onset of T2D in Celtic (c) and Slavic (d) study participants, respectively. �log10 (P values) are plotted against genomic position (build 37, hg19). The lead SNP
(rs340841) is indicated in purple diamond. The SNPs surrounding rs340841 are color coded based on their linkage disequilibrium with the lead SNP (taken from pairwise r2

values from the 1000 Genome EUR Database): red (r2 with lead SNP 0.8–1.0), orange (0.6–0.8), green (0.4–0.6), light blue (0.2–0.4), and dark blue (<0.2). The
recombination rates (cM/Mb) are plotted in blue to reflect local linkage disequilibrium structure. Genes, exons, and direction of transcription from UCSC genome browser
(genome.ucsc.edu) are noted. Plots are generated using LocusZoom (http://csg.sph.umich.edu/locuszoom). GWAS, genome-wide association studies; SNP, single-nucleotide
polymorphism; T2D, type 2 diabetes.
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