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Abstract: In pharmaceutical research, compounds with multitarget activity receive increasing
attention. Such promiscuous chemical entities are prime candidates for polypharmacology, but
also prone to causing undesired side effects. In addition, understanding the molecular basis and
magnitude of multitarget activity is a stimulating topic for exploratory research. Computationally,
compound promiscuity can be estimated through large-scale analysis of activity data. To these
ends, it is critically important to take data confidence criteria and data consistency across different
sources into consideration. Especially the consistency aspect has thus far only been little investigated.
Therefore, we have systematically determined activity annotations and profiles of known multitarget
ligands (MTLs) on the basis of activity data from different sources. All MTLs used were confirmed by
X-ray crystallography of complexes with multiple targets. One of the key questions underlying our
analysis has been how MTLs act in biological screens. The results of our analysis revealed significant
variations of MTL activity profiles originating from different data sources. Such variations must be
carefully considered in promiscuity analysis. Our study raises awareness of these issues and provides
guidance for large-scale activity data analysis.

Keywords: complex X-ray structures; multitarget ligands; promiscuity; compound databases;
biological screening; medicinal chemistry; activity data; ligand activity profiles; data consistency

1. Introduction

Multitarget activity of small molecules continues to be a much debated topic in drug discovery [1,2].
Current views are that many pharmaceutically relevant compounds elicit therapeutic effects in vivo
through interactions with multiple targets, a phenomenon referred to as polypharmacology [1-3].
On the other hand, multitarget activity, also termed promiscuity [4], is responsible for undesired
side effects. Importantly, a general promiscuity assumption is difficult to prove and generalise
beyond individual case studies. However, systematic analysis of in vitro compound activity data
can be carried out to estimate promiscuity on a large scale [3-5]. Activity data analysis is inevitably
affected by data incompleteness, since available small molecules will hardly ever be tested against
all potential pharmaceutical targets [5]. Furthermore, activity data analysis is influenced by assay
and data confidence criteria [6] as well as potential experimental artifacts [7]. However, given the
very large volumes of compound activity data that have accumulated in the public domain [8,9],
such analyses yield data-driven assessments of molecular promiscuity that go far beyond subjective
views and intuitive expectation values. For example, on the basis of currently available activity data,
bioactive compounds are generally less promiscuous than often assumed [5,10]. On the other hand,
large numbers of compounds with confirmed activity against proteins from different families or classes
have also been identified on the basis of assay data [11] and publicly available X-ray structures of
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ligand-target complexes [12,13]. Hence, small molecules are often capable of interacting with distantly
or unrelated proteins; a facet of promiscuity that is of particular interest for further investigation, both
from a practical and basic research perspective.

Another important factor affecting compound promiscuity analysis is activity data consistency
across different sources. For example, varying experimental settings are expected to modulate activity
readouts. In addition, alternative data curation and confidence criteria are likely to yield different
compound activity annotations, depending on the source from which they are retrieved. So far, however,
such issues have only been little investigated in the context of promiscuity analysis. Currently, there is
no comprehensive assessment of data consistency in promiscuity exploration available. Therefore,
we have carried out a systematic analysis to determine and compare activity profiles of known
promiscuous compounds on the basis of high-throughput screening data and activity annotations
from medicinal chemistry sources. Since our analysis critically depended on small molecules with
confirmed multitarget activity, we initially identified compounds that were available in X-ray structures
of complexes with different targets. For these structurally confirmed multitarget ligands (MTLs), assay
data and activity annotations were collected, and their current activity profiles determined. Our study
and the results are presented in the following. Taken together, the findings revealed that MTLs have in
part strongly varying profiles and that activity data from different sources often have limited overlap
and consistency. The latter observation is not necessarily a consequence of experimental variance but
often due to different data curation schemes. Hence, from several points of view, care must be taken to
consider activity data consistency in estimating compound promiscuity.

2. Results and Discussion

2.1. Analysis Concept

The analysis aimed to determine activity profiles of MTLs and investigate their consistency on
the basis of different activity data sources. Activity profiles were defined as the union of all available
positive and negative target annotations from a given data source. For the analysis, the availability
of confirmed MTLs was essential as a starting point. We reasoned that promiscuous compounds
can be most confidently identified on the basis of X-ray data that confirm the presence of different
ligand-target interactions directly. Therefore, we initially searched X-ray structures of complexes for
ligands with defined chemical characteristics bound to different targets. Although the identification
was laborious, it provided MTLs at a high level of confidence. Subsequent activity data analysis
was centered on these compounds and emphasis was put on the question of how MTLs from X-ray
structures might act across biological screens. Focusing on screening data initially made it also
possible to take target test frequencies into account, which provide important information for activity
assessment. For comparison, activity data from medicinal chemistry sources were used to evaluate
activity profiles. Hence, the analysis scheme was focused on the evaluation of activity data consistency
from different viewpoints. We note that specific structural features that may be generally responsible
for ligand promiscuity are currently unknown (if they exist).

2.2. Confirmed Multitarget Ligands

Figure 1 summarises the identification of MTLs from X-ray structures (further details are provided
in Materials and Methods). X-ray ligands representing pharmaceutically relevant synthetic compounds
were selected and structures with human proteins containing them. The pre-selected 4648 ligands
found in 6318 complex structures were then searched for compounds in complexes with different
targets. The search identified 357 MTLs occurring in 1636 X-ray structures. These MTLs included
176 compounds found in complexes with proteins from different families. MTLs interacted with
2-19 targets, with a median of 2 targets per compound.
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Figure 1. Ligands from X-ray structures. From Protein Data Bank (PDB) entries, unique ligands were
extracted and filtered for molecular weight, potency annotations, and (bio-)chemical characteristics
(see Materials and Methods for details). Only human proteins complexed with single non-covalent
ligands were further considered. Qualifying X-ray ligands in complexes with different targets were
identified, yielding 357 MTLs.

2.3. Multitarget Ligands in Biological Screens

The 357 MTLs were mapped to 2686 qualifying high-throughput screens with human targets
available in PubChem (see Materials and Methods), the major public repository of biological screening
data. These screens included 2576 single-target and 110 target panel assays. All targets were clearly
defined. In these PubChem assays, 126 of our MTLs from X-ray structures were detected, which
provided the basis for our subsequent analysis.

Figure 2 reports the test frequency of these MTLs in PubChem assays and their activity. The boxplot
on the very right shows that MTLs were in part extensively assayed including 39 MTLs tested in 100 to
more than 300 assays, with a median test frequency of 22 assays per compound. However, the other
boxplot reveals that their activity was generally limited, with a median of 2 active targets per MTL.
There were only 3 compounds with excessive activity against nearly 100, more than 100, and more than
150 targets, respectively. Although these compounds formed well-defined crystallographic interaction
with different targets, their excessive activity might at least partly be attributed to undesired reactivities
under assay conditions and ensuing artificial activity readouts. However, the scatter plot in Figure 2
shows that MTLs with excessive activity in screening assays were notable exceptions. In fact, the
majority of confirmed MTLs were only active against fewer than 10% of the targets they were tested
against. These also included 5 MTLs that were evaluated in 100 or more assays and were consistently
inactive. By contrast, only a few MTLs were active against more than half of the targets they were
tested against.

Taken together, these observations revealed an important point. Confirmed MTLs from X-ray
structures were generally far from being highly promiscuous, although they were often tested against
many targets. These findings were consistent with the ability of most MTLs to engage in well-defined
-rather than “unspecific’- interactions with a confined number of targets. For such compounds,
meaningful activity analysis can be carried out across different data sources.
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Figure 2. Activity annotations of MTLs in PubChem. The scatter-plot on the left compares the number
of targets against which MTLs were tested (tested targets) and active (active targets). Each data point
represents an MTL. Dashed lines mark similar ratios of active over tested targets. The boxplots on the
right report the distributions of the number of tested targets (corresponding to test frequency) and
active targets per MTL. The reported median is represented by an orange vertical line. The lower
and upper boundaries of the boxes indicate the lower and upper quartile, respectively. The length of
the whiskers corresponds to 1.5-fold of the interquartile range. Circles above or below the whiskers
represent statistical outliers.

2.4. Target Annotations from Medicinal Chemistry

The 126 MTLs detected in PubChem assays were also searched in ChEMBL, the major source of
compounds and activity data from medicinal chemistry literature and patent sources. If available,
activity data from ChEMBL were extracted at two different confidence levels, medium and high
confidence, as specified in the Materials and Methods section. Fortunately, most of the 126 MTLs
were detected in ChEMBL. Medium confidence data were obtained for 122 MTLs, covering a total of
979 targets, and high confidence data for 120 MTLs and 626 targets.

Figure 3 compares the activity of MTLs from PubChEM with ChEMBL at both data confidence
levels. For high confidence activity data from ChEMBL, the distribution was also narrow, similar to the
one observed for PubChem assays. However, the median value on the basis of ChREMBL data increased
from 2 targets per MTL (PubChem) to 6 targets, which represented a notable increase in promiscuity.
In sharp contrast to the other distributions, for ChEMBL medium confidence data, a wide distribution
was observed, resulting in a large increase of the median value from 6 to 121 targets per MTL. Medium
confidence data, as defined herein, require firm evidence for direct ligand-target interactions (resulting
from direct binding or inhibition assays as opposed to, for example, reporter gene assays), but do not
impose further constraint or confidence criteria on activity annotations. In contrast to screening data,
ChEMBL data primarily originates from medicinal chemistry literature and patent sources and thus
does not contain test frequency information. However, the results obtained for medium confidence
activity data substantially departed from those for both PubChem assays and high confidence ChEMBL
data, indicating that the majority of MTLs would be activity against more than 100 targets, which is
questionable at best, if not unrealistic, as further investigated below.
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Figure 3. Comparison of multitarget ligand (MTL) target annotations. Boxplots report the distributions
of active targets of MTLs on the basis of PubChem or ChEMBL medium confidence (mc) and high
confidence (hc) activity data (see Materials and Methods for details). The number of MTLs in PubChem
and ChEMBL slightly varied and is reported below each plot.

2.5. Confidence Analysis

For each MTL, the number of targets it was tested against in screening assays was compared to
the number of targets reported in ChEMBL and the overlap between tested and targets with reported
activity was determined. Figure 4 shows the results for medium and high confidence ChEMBL activity
data. There was limited overlap between targets from PubChEM assays and annotated ChEMBL
targets. For about half of the MTLs, no overlap was detected. However, for 89 MTLs (medium
confidence data) and 46 MTLs (high confidence data) common targets were available. For a subset of
these MTLs, there were large numbers of shared targets, shown in Figure 2.

For MTLs with target overlap, it was possible to examine the consistency of screening results with
target annotations from medicinal chemistry by determining the number of targets with (ChEMBL
active, PubChem inactive) annotations. The results are reported in Table 1. On the basis of medium
and high confidence activity data, 23 and 20 MTLs, respectively, were active in screening assays against
all targets shared with ChEMBL, thus having consistent target annotations. However, on the basis of
medium confidence data, 66 MTLs were inactive against 1 or more targets in screening assays they
were reported to be active against in ChEMBL, including 48 MTLs with more than 2 inconsistent target
annotations. For high confidence activity data, 26 of 46 MTLs had inconsistent target annotations,
including 13 compounds with more than 2 inconsistencies. Hence, for MTLs with shared targets,
inconsistent target annotations were frequently observed.
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Figure 4. PubChem and ChEMBL targets of MTLs. For each MTL, the number of assayed PubChem
targets (green) is compared to the number of reported ChEMBL targets (blue) on the basis of medium

confidence (mc, top) and high confidence (hc, bottom) activity data. The number of targets shared by
Pubchem and ChEMBL is highlighted (yellow and red, respectively).

Table 1. Consistency of target annotations. For MTLs, target annotations in ChEMBL and PubChem
were examined for consistency. For each MTL, inconsistent annotations (ChEMBL active; PubChem
inactive) on the basis of ChREMBL medium confidence (mc) and high confidence (hc) activity data were
determined. MTLs with different numbers of inconsistent annotations are reported.

Number of MTLs
Number of Inactive Annotations in Overlap
ChEMBL_mc ChEMBL _hc

0 23 20

1 10 8

2 8 5

>2 48 13

Number of MTLs with target overlap 89 46

Only few crystallographic MTL targets were overlapping with PubChEM, i.e., structurally
characteried targets were essentially not used in available screening assays. Biological screens are
typically expected to be prone to false positives but MTLs were frequently inactive in screening assays
for targets they reported to be active against in ChEMBL. However, apparent data inconsistency could
also be resolved in a number of instances by carefully considering data sources. An example is provided
in Figure 5 that shows a highly promiscuous MTL with reported activity against 141 ChEMBL targets
on the basis of high confidence data. This compound was also tested against 140 PubChem targets.
The overlap between PubChem and ChEMBL targets was 132 targets, which included 31 targets against
which the compound was reported to be inactive in PubChem. All ChEMBL potency annotations were
dissociation constant (K4) values and covered a range of 3.1 pM < Ky < 9.2 uM. Inconsistent target
annotations exclusively resulted from a single PubChem profiling assay where compounds with a
Kq4 > 3 uM were classified as inactive, hence explaining the apparent discrepancy. Although there
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was experimental agreement in this case for the most part, varying analysis and classification criteria
led to apparent inconsistency. When activity data are explored on a large scale, e.g., in systematic
compound promiscuity analysis, it is often not feasible to trace individual data sources, which likely
gives rise to complications, as illustrated here. This aspect must be taken into consideration when
judging promiscuity estimates.

o #Targets
N _@—‘Sl'NHz PubChem 140
(o]
F l;l¢<N ChEMBLhigh confidence 141
N \/( Overlap 132
F O NH

ChEMBL active, PubChem inactive 31

Figure 5. Highly promiscuous MTL. Shown is a compound (PubChem_CID 5330790, CHEMBL191003)
with activity against 141 ChEMBL targets (high confidence data) that was tested against 132 of these
targets in screening assays and reported to be active against 101 targets.

2.6. Exploring Analog Space

Structural analogs of active compounds have a high probability to display similar activities.
Accordingly, activity analysis can be further extended and refined by taking analogs of MTLs into
consideration. Therefore, a systematic search for MTL analogs was carried out in PubChem by
applying the matched molecular pair (MMP) formalism. For a subset of 46 MTLs, a total of 263 MMP
relationships were detected with other PubChem compounds tested against human targets, identifying
233 structural analogs. Table 2 reports the number of targets these MTL analogs were active against.
Interestingly, 111 of 233 MTL analogs were consistently inactive in all screening assays they were
tested in. In addition, 72 were active against a single target, 15 against 2, and only 35 against more
than 2 targets. Hence, the majority of MTL analogs were non-promiscuous on the basis of screening
data, providing evidence for predominantly low promiscuity of MTL-like compounds, consistent with
observations made for many MTLs, as discussed above. However, there were notable exceptions.
Figure 6 below shows exemplary MTLs and analogs with different activity profiles.

Shared PubChem Targets

o T8 SEZIJE\

Thioridazine Mesoridazine

HO 20 HO
H04¢V/\°H -C] H0~¢(\OH
lo] | (o)
N\ N N\ N
X —~E— X

NH; (7 ~NH, — TR — NHz (7 ~NH,
Figure 6. Exemplary MTL analogs. For two MTLs (left), exemplary structural analogs are shown (right).
In the center, the number of shared PubChem targets is reported against which both compounds were

active (green) and inactive (red) or against which only one or the other compound was active (orange,
with green/red arrows).
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Table 2. Target count for MTL analogs. For MTLs, a systematic search for structural analogs was
carried out in PubChem. The search identified 233 MTL analogs, for which the number of targets they
were active against is reported.

Number of Targets Number of Analogs
0 111
1 72
2 15
>2 35

At the top in Figure 6, two drugs are shown, thioridazine, a structurally confirmed MTL used as an
anti-psychotic agent, with related activity against dopamine, serotonin, and histamine receptors, and
its close structural analog mesoridazine, with similar activity and therapeutic use. These compounds
were tested against 227 shared targets and were inactive against 210 of them. Notably, there was
no target both compounds were active against. Rather, thioridazine was active against 15 targets
mesoridazine was inactive against and activity of mesoridazine was detected for two targets against
which thioridazine was inactive. Hence, although there was consistent inactivity of both compounds
against many targets, the activity profiles of these analogs differed significantly, with no shared activity,
not even against a single target.

At the bottom in Figure 6, a guanosine-based MTL (left) is shown together with a close structural
analog (right). These two compounds were tested against 196 shared targets. They were consistently
inactive against 172 and active against 20 shared targets. There was 1 target against which the MTL was
active but not its analog and 3 other targets against which only the analog was active. Thus, the activity
profiles of these compounds over nearly 200 investigated targets were very similar, also lending
credence to the screening data. Nucleoside derivatives are likely to be promiscuous, given the many
functions of nucleosides in biological systems, in accord with the observations made. The comparisons
in Figure 6 also show how analogs can be used to assess the consistency of activity annotations of
compounds of interest.

2.7. Conclusions

Identifying MTLs on the basis of X-ray structures of ligand-target complexes ensured the availability
of high-quality starting points for a comparative assessment of activity profiles of promiscuous chemical
entities on the basis of different data sources and confidence criteria. Initially, we concentrated on the
question how confirmed MTLs act across biological screens. A considerable number of 126 confirmed
MTLs was detected in biological screening assays and further analysed. The promiscuity of these MTLs
in screens was generally limited including large numbers of assays in which these compounds were
inactive, with only few exceptions. This was an important finding because it clearly indicated ‘specificity’
of multitarget engagement and the absence of widely distributed unspecific effects. In addition, the
results indicated that screens provided a meaningful source for activity data when large (statistically
relevant) ensembles of target-based screening assays were considered. For activity data from the
medicinal chemistry literature, test frequency information is typically unavailable. On the basis of high
confidence data from ChEMBL, an increase in MTL promiscuity was observed compared to screening
data; another interesting and unexpected finding. However, overall similar conclusions were drawn
about MTL activity distributions for these data sources. By contrast when medium confidence activity
data from ChEMBL were used an inflation of putative target annotations of MTLs was observed,
suggesting that most MTLs would be active against more than 100 targets, which was unrealistic.
Hence, this comparison strongly reinforced the need to base promiscuity exploration on activity data
of highest possible confidence. In general, there was limited target overlap between activity data from
currently available screening assay and medicinal chemistry, suggesting complementary use of these
data sources for all practical purposes. A major source of data and activity profile inconsistency was
that MTLs were frequently inactive in screening assays against targets for which activity was reported
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in the ChEMBL. In some instances, these discrepancies were found to be a consequence of applying
different criteria for data curation and activity assignments. Thus, both experimental variance and
applied data selection criteria are expected to contribute to inconsistencies detected herein. Finally,
extending the analysis to structural analogs of MTL provided corroborating insights. The finding that
close analogs of MTLs were also inactive in large numbers of assays —just as observed for MTLs— was
reassuring. On the other hand, analogs displayed not only similar activity profiles but also frequent
inconsistencies in target annotations compared to their MTL counterparts. Hence, the identification of
structural analogs of compounds on interest provides meaningful controls for activity profile analysis.

3. Materials and Methods

3.1. X-Ray Structures

Structures of ligand-target complexes with human proteins and single non-covalently bound
compounds were extracted from the RCSB Protein Data Bank (PDB) (accessed Nov. 2019) [13]. To each
qualifying PDB entry, UniProt IDs [14] and protein family annotations were added using BioServices
(accessed on November 2019) [15].

3.2. Crystallographic Ligands

Information for ligands from X-ray structures was extracted from ‘macromolecular crystallographic
information files” (mmcif) available in PDBe (accessed on November 2019) [16]. Ligands denoted as
‘obsolete’ were discarded. In addition, peptides, saccharides, and polymers were omitted. Furthermore,
ChEBI [17] was used to eliminate solvent and buffer molecules as well as metabolites. Moreover, ligands
were required to have a molecular weight (MW) of 300 < MW < 900 Da and at least 1 numerically
defined potency annotations of at least 10 uM (pKj, pKy4, pICsp > 5) reported in ChEMBL (version
25) [9] or PDBbind (version 2018) [18]. SMILES representations [19] of ligands were standardised with
the aid of the OEChem toolkit [20] and MW was calculated from SMILES using RDKit [21]. From X-ray
ligands meeting these criteria, MTLs were extracted.

3.3. Biological Screening Data

From PubChem BioAssay [8] (accessed on June 2017), assays with human target annotations
designated as ‘chemical screen” with ‘no hold” were collected. Assays with missing compound-target
interactions, missing or inconsistent gene identifiers (Gls), and non-panel screens associated with
multiple GIs were discarded. Furthermore, activity data imported from ChEMBL into PubChem were
omitted. Each GI number was mapped to a single UniProt ID. If multiple IDs were available, preference
was given to a ‘reviewed” entry. MTLs were then mapped to accepted assays. Experimental outcomes
(‘active’, “inactive’) were recorded as unique compound-target interactions, provided all measurements
for a given pairing were consistently active or inactive. Otherwise, no interaction was recorded.

3.4. Medicinal Chemistry Data

MTLs present in PubChem were also mapped to ChEMBL. Here, two activity data confidence levels
were distinguished [6]. ChREMBL medium confidence data contained human target annotations reported
as direct compound-target interactions (target relationship type ‘D’) with a ChEMBL confidence score
of 9. For high confidence data, additional criteria were applied. The target type was required to be a
‘single protein’ and only numerically specified measurements (‘=") were accepted including equilibrium
constant (K;), half maximal inhibitory concentration (ICs), or dissociation constant (Kq) values with
nanomolar units [6].

3.5. Analog Search

For MTLs, a search for structural analogs was carried out in PubChem compounds assayed against
human targets. Therefore, MMPs formed by an MTL and PubChem compounds were systematically
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identified [22]. An MMP is defined as a pair of compounds that only differ by a chemical modification
at a single site [22]. For systematic generation of pairs of structural analogs, the algorithm by Hussain
and Rea [22] was applied. This algorithm fragments compounds through iterative deletion of exocyclic
single bonds and stores core structure (key) and substituent (value) fragments in an index table.
Our in-house implementation requires keys to be at least twice the size of values and enumerates
MMPs having identical keys and value fragments that are permitted to differ in size by at most eight
non-hydrogen atoms. Candidate analogs with assay interference potential [23,24] or other possible
chemical liabilities [25] were detected and not further considered.
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