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Abstract

Background

Airway microbiota dynamics during lower respiratory infection (LRI) are still poorly under-

stood due, in part, to insufficient longitudinal studies and lack of uncontaminated lower air-

ways samples. Furthermore, the similarity between upper and lower airway microbiomes is

still under debate. Here we compare the diversity and temporal dynamics of microbiotas

directly sampled from the trachea via tracheostomy in patients with (YLRI) and without

(NLRI) lower respiratory infections.

Methods

We prospectively collected 127 tracheal aspirates across four consecutive meteorological

seasons (quarters) from 40 patients, of whom 20 developed LRIs and 20 remained healthy.

All aspirates were collected when patients had no LRI. We generated 16S rRNA-based

microbial profiles (~250 bp) in a MiSeq platform and analyzed them using Mothur and the

SILVAv123 database. Differences in microbial diversity and taxon normalized (via negative

binomial distribution) abundances were assessed using linear mixed effects models and

multivariate analysis of variance.

Results and discussion

Alpha-diversity (ACE, Fisher and phylogenetic diversity) and beta-diversity (Bray-Curtis,

Jaccard and Unifrac distances) indices varied significantly (P<0.05) between NLRI and

YLRI microbiotas from tracheostomised patients. Additionally, Haemophilus was

significantly (P = 0.009) more abundant in YLRI patients than in NLRI patients, while
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Acinetobacter, Corynebacterium and Pseudomonas (P<0.05) showed the inverse relation-

ship. We did not detect significant differences in diversity and bacterial abundance among

seasons. This result disagrees with previous evidence suggesting seasonal variation in air-

way microbiotas. Further study is needed to address the interaction between microbes and

LRI during times of health and disease.

Introduction

The population of children with a tracheostomy is increasing [1] and these children are at high

risk of developing lower respiratory infections (LRI) [2] that require intensive care [3]. A retro-

spective analysis of 917 children aged 0–18 years from 36 children’s hospitals who received a

tracheostomy in 2002 demonstrated that in the 5-year follow-up period, the mean number of

hospitalizations experienced per child was 3.8 (SD: 4.4; range: 0–34) and 46% of the hospitali-

zations were for “respiratory” diagnoses [2].

Despite this risk of LRI, there is no consensus about how providers should treat common

acute respiratory infections in tracheostomised children [3, 4]. While common respiratory

viruses and bacteria in the airway tract are identifiable utilizing standard laboratory techniques

and have provided interesting avenues for research (e.g., [5]), these common organisms may

only represent a small fraction of the commensal and pathogenic microbes living in the air-

ways of an individual [6]. Indeed, the traditional conceptual model of these potentially life-

threatening LRIs (i.e., pathogen causing disease in a sterile lung) may be too simplistic [7].

More current conceptual models of LRIs account for the highly functional bacterial communi-

ties (i.e., microbiota) that are present in the upper and lower airways (nose to lung) [8–13] and

influence both immune [14–18] and inflammatory responses [18, 19].

However, the role that the airway microbiota plays during LRI is still poorly understood

since: i) airway microbiome research focuses mainly on the nasopharynx and oral cavity and

far less on the lower airways due to easier access and ethical considerations [20], and ii) most

microbiome studies during both health and disease are cross-sectional [21–26] and neglect

the temporal dynamics of the microbial communities [11]. Furthermore, upper airway sam-

ples are frequently used as a proxy for the lower airway, but the similarity of lower and upper

airway microbiotas during disease is still under debate [27, 28]. Hence, since studying the

dynamics of lower respiratory microbiotas during both health and disease (e.g., infection)

is a challenging endeavor, new approaches or models [29] are needed to continue their

investigation.

We have addressed these knowledge gaps by directly examining the dynamics of tracheal

microbiotas (i.e., bypassing the nose and mouth) in a longitudinal study of 40 tracheostomised

children and young adults with and without LRIs. We aimed to determine the differences in

the microbiotas of these patients and their variation over one calendar year. We hypothesized

that tracheal microbiotas differ in composition and structure according to whether or not indi-

viduals developed LRIs.

Materials and methods

Ethics

This study was approved by the Boston Children’s Hospital Institutional Review Board (IRB),

which requires that consent is obtained and documented prior to conducting study procedures
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and collection of samples for research. Written consent was obtained from all independent

participants or their legal guardians using the Boston Children’s Hospital IRB approved

informed consent documents (IRB No P00007853).

Cohort

The Critical Care, Anesthesia, Perioperative Extension (CAPE) and Home Ventilation

Program began in June 2007 for children and young adults with respiratory technology depen-

dence in an effort to enhance outpatient and transitional-care services [30–32]. The partici-

pants’ diagnoses include, but are not limited to, spinal muscular atrophy, spastic quadriplegia

with respiratory insufficiency, muscular dystrophy, mitochondrial disorders, spinal cord inju-

ries, idiopathic hypotonia, and a range of complex chronic lung disease. All participants in this

study resided in New England (USA) at the time of sampling.

Sample collection and storage

Samples were collected every meteorological season or quarter (Q) over the course of one cal-

endar year starting in the fall of 2013 and ending in the summer of 2014: Q1 (fall) = 10/2013 to

11/2013, Q2 (winter) = 12/2013 to 02/2014, Q3 (spring) = 03/2014 to 05/2014 and Q4 (sum-

mer) = 06/2014 to 08/2014. All samples were collected when patients were healthy (i.e., no

symptoms of LRI for previous four weeks), since our goal was to determine whether microbio-

tas from individuals who develop a LRI are different from those who do not develop a LRI. A

LRI was defined as any illness causing increased mucus production and requiring increased

oxygen delivery or higher ventilator settings over baseline. In order to ensure standardized

sample collection, we observed parents or visiting nurses collecting the first sample in person

during a home or clinic visit. The aspirate was stored at 0˚C within 15 minutes of being col-

lected. The samples were picked up by the study team, transported on ice to Boston Children’s

Hospital, and stored at -80˚C.

High-throughput sequencing

We aimed to sequence one tracheal aspirate sample per quarter (four quarters total) from both

participants who acquired a LRI (yes LRI = YLRI) during the study and those who remained

healthy (no LRI = NLRI), hence rendering four samples per participant. Q1 to Q4 samples in

both YLRI and NLRI patients are isochronous. Total DNA was extracted using the QIAGEN

QIAamp DNA Kit (Catalog # 51304). All samples were incubated in 200 μL of lysozyme-TE

buffer pH = 8.0 for 30 minutes at 37˚C. All extractions yielded >5 ng/μL of total DNA (as indi-

cated by NanoDrop 2000 UV-Vis Spectrophotometer measuring). DNA extractions were

prepared for sequencing using the Schloss’ MiSeq_WetLab_SOP protocol [33]. Each DNA

sample was amplified for the V4 region (~250 bp) of the 16S rRNA gene and all libraries were

sequenced together in a single run of the Illumina MiSeq sequencing platform at University of

Michigan Medical School. Negative controls processed as above showed no PCR band on an

agarose gel.

Sequence and statistical analyses

Raw FASTQ files were processed in mothur v1.35.1 [34] and indicated in the MiSeq SOP

(www.mothur.org/wiki/MiSeq_SOP). Default settings were used to minimize sequencing

errors [35]. Clean sequences were aligned to the SILVA123-based bacterial reference align-

ment at www.mothur.org. Chimeras were removed using uchime [36] and non-chimeric

sequences were classified using a naïve Bayesian classifier [37]. Sequences were clustered into
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Operational Taxonomic Units (OTUs) at the 0.03 similarity threshold (species level). A con-

sensus taxonomy was generated based on the classification of sequences clustered within an

OTU. OTU sequence representatives and taxonomy were then converted to a BIOM file for

subsequent analyses and all OTU singletons (n = 1) were eliminated. We normalized our sam-

ples using the negative binomial distribution as recommended by McMurdie and Holmes [38]

and implemented in the Bioconductor package DESeq2 [39]. This approach simultaneously

accounts for library size differences and biological variability. Microbial normalized counts

generated this way are referred to as taxon abundances throughout the text. Trees for phyloge-

netic diversity calculations were constructed using FastTree and midpoint rooting [40].

Taxonomic alpha-diversity was estimated using Shannon, Fisher and ACE indices, while

phylogenetic alpha-diversity was calculated by the Faith’s phylogenetic diversity index [41].

Beta-diversity was estimated using phylogenetic Unifrac (unweighted and weighted), Bray-

Curtis and Jaccard distances. Dissimilarity between samples was explored using principal

coordinates analysis (PCoA). Linear mixed-effects (LME) models analysis, as implemented in

the lmer4 R package [42], was applied to both alpha-diversity indices and taxa (genera and

phyla) abundances (response) while accounting for non-independence of subjects (random

effect) and LRI (predictor). Time was modeled as “number of days since the collection of the

first sample” (days). Additionally, we were also interested in looking at microbial variation

across meteorological seasons (quarters) because microbial epidemics and patients usually

change their behavior through seasons and because previous studies (e.g., [11, 43, 44]) showed

significant associations between microbial variation and season. Hence, we also included

meteorological seasons or quarters in our models as either a numerical or a categorical vari-

able. We performed multiple rounds of analysis including all of these factors and the co-vari-

ables in Table 1 and S1 Table (age, gender, feeding route, ventilator use, oxygen requirement,

tracheostomy change frequency, prophylactic antibiotics and daily inhaled steroids). We also

tested the interaction between LRI and Time and between LRI and Quarters. We also com-

pared models with random intercepts and random slopes and the order of our factors. Initial

Table 1. Clinical characteristics of the studied cohort. NLRI = patients with no lower respiratory infec-

tions. YLRI = patients with lower respiratory infections.

Variables NLRI (N = 20) YLRI (N = 20) P-value

Years of Age, median (range) 8.5 (<1–30) 12.5 (<1–34) 0.342

Daily Inhaled Steroids 6 12 0.068

Feeding Route 0.210

G-tube 12 7

GJ-tube 4 2

Oral 2 2

Oral & G-tube 2 9

Gender Male 15 14 0.999

Oxygen Requirement 3 8 0.090

Prophylactic Antibiotics 5 2 0.408

Multiple Tracheostomy Changes 9 6 0.514

Ventilator Use 0.113

Continuous 14 7

Night/Nap 4 11

No 2 2

Clinical characteristics were compared between NLRI and YLRI patients using Fisher’s exact, or Mann-

Whitney tests, as appropriate.

https://doi.org/10.1371/journal.pone.0182520.t001
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LME models were compared using the function lmerTest, which performs automatic back-

ward elimination of factors. ANOVA type II and III (if interactions were included in the

model) tests were also carried out for hypothesis testing. Model assumptions in final LME

models were validated using residual vs fit plots and a normal probability plots. Beta-diversity

Unifrac indices were compared using permutational multivariate analysis of variance (adonis)

as implemented in the vegan R package [45]. Adonis models were compared using the Akaike

Index Criterion [46]. We treated our random factors as fixed factors and put them first in the

model. Significance was determined through 10,000 permutations. Our preliminary analyses

showed that random slopes, Time (alone or interacting with LRI), Quarters (alone or interact-

ing with LRI) and all co-variables in Table 1, except daily inhaled steroids, did not have a sig-

nificant impact on any representation of microbial diversity or taxon abundance. Hence, our

final (most parsimonious) LME and adonis models and analyses included one predictor (LRI)

and one co-variable (daily inhaled steroids). Bonferroni or Benjamini-Hochberg FDR multiple

test correction methods were applied. All analyses were performed in mothur, QIIME [47], R

[48] and RStudio [49].

Results

Forty patients were enrolled in this study of whom 20 had at least one clinically-evident LRI

(YLRI) and 20 had no LRI (NLRI). Clinical characteristics for the study cohort are presented

in Table 1 and S1 Table. When “healthy” or at their clinical baseline, we collected 62 tracheal

samples from YLRI participants and 65 tracheal samples from NLRI participants. There were

33 (20.6%) tracheal samples missing because families missed sample collection times and

because two participants died from their LRIs during the study. All 127 tracheal aspirates were

analyzed via MiSeq sequencing of 16S rRNA V4 amplicons. A total of 2,743,049 sequences

ranging from 1,514 to 75,719 sequences per sample (mean = 21,598.8; median = 20,727) were

obtained after quality control analyses and OTU filtering. From these data, we identified a

total of 950 OTUs and 10–154 OTUs (mean = 66.2) per sample (S2 Table; OTU taxa).

The taxonomic composition of the tracheal microbiome

The tracheal microbiome across all 40 patients (127 samples) included sequences that corre-

sponded to the following 18 genera: Streptococcus (16.5%), Neisseria (11%), Haemophilus
(8.7%), Moraxella (8.1%), Pseudomonas (7.8%), Corynebacterium (6.6%), Staphylococcus
(4.4%), Acinetobacter (3.3%), Prevotella (3%) and Stenotrophomonas (3%). All the other

detected genera accounted for <3% of the total sequences. Each of the 127 tracheal micro-

biomes contained 6 to 18 (mean = 14.8 genera) of these bacterial genera. This assortment of

genera reflects membership from both the oral cavity (e.g., Prevotella, Streptococcus and Neis-
seria) [27, 28, 50] and upper airways (e.g., Streptococcus, Moraxella, Haemophilus, Corynebacte-
rium, and Staphylococcus) [28, 50, 51]. This is not surprising given the anatomic location of the

trachea (i.e., between the upper airway and the lung).

Tracheal microbiomes in YLRI patients differ from those in NLRI patients

Microbiotas from YLRI patients showed greater alpha-diversity than microbiotas from NLRI

patients (Fig 1A and S1 Fig). These differences resulted significant (0.017�P�0.003) for three

of the four indices compared in our LME analyses when accounting for steroid use (Table 2).

Alpha-diversity indices also varied between YLRI and NLRI patients across quarters, particu-

larly in Q1 (fall) and Q2 (winter) (Fig 1B); however, these differences did not result significant

(P>0.05) in our LRI�Quarter LME model and analyses.
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PCoA did not reveal clear dissimilarities in beta-diversity between YLRI and NLRI or

any other variables in Table 1, since samples were not clearly depicted in discrete groups

(see S2 Fig for an example). However, our adonis analyses detected significant differences

(0.023�P�0.006) in beta-diversity between YLRI and NLRI for all of the four distances when

accounting for steroid use. No significant differences (P>0.05) were observed across quarters

(LRI�Quarter) in our adonis model.

Phyla abundances varied little between microbiotas from YLRI and NLRI patients (Fig 2A),

but genera abundances varied more (Fig 2B). Our LME analyses showed significant associa-

tions (0.034�P�0.009; Table 2) with LRI for the following four bacterial genera: Haemophilus,
Pseudomonas, Corynebacterium and Acinetobacter. Haemophilus was more abundant in YLRI

patients than in NLRI patients, while the other three genera showed the inverse relationship.

As before, our LME analyses did not detect significant (P>0.05) differences in taxon abun-

dances between YLRI and NLRI samples across meteorological seasons (quarters).

Discussion

In this study we investigated the composition and temporal dynamics of microbial communi-

ties inhabiting the trachea of tracheostomised children and young adults. Our direct tracheal

sampling avoids contamination during sampling with microbes from the upper respiratory

Fig 1. Box plots of phylogenetic alpha-diversity of microbiotas from patients with (YLRI) and without (NLRI) lower respiratory infections (LRI) (A)

and of microbiotas from YLRI and NLRI patients across meteorological seasons (B).

https://doi.org/10.1371/journal.pone.0182520.g001
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airways that might be picked up when trying to access the lower airways. We detected changes

in the composition and structure of the tracheal microbiotas according to whether or not indi-

viduals developed LRI. To our knowledge this is the first study to examine the tracheal micro-

biome in patients with a tracheostomy. Our results provide a direct assessment of the tracheal

microbiome diversity and its temporal dynamics in tracheostomised patients with and without

LRIs.

Our diversity analyses show that microbiotas collected at times of health from YLRI

patients had significantly higher intra-sample (alpha-diversity) diversity than the microbiotas

of patients who did not develop a LRI (NLRI). All YLRI patients acquired their LRIs in the first

three quarters (Q1 to Q3), while no LRI occurred during Q4 (summer). If “healthy” micro-

biomes were fully restored after LRI, one would expect that microbial communities in YLRI

and NLRI patients would have similar levels of diversity; our results, however, seem to suggest

otherwise. We suspect YLRI healthy samples are comprised of mixed-microbiotas including

OTUs prevalent during “infective and healthy times”, while NLRI samples are comprised of

OTUs only prevalent during health. In other words, we postulate that LRIs leave a detectable

microbial signature.

Table 2. Mean alpha-diversity indices and mean relative proportions of dominant phyla and genera (>3%) in decreasing order of abundance for

ALL samples (NLRI+YLRI), patients with no lower respiratory infections (NLRI) and patients with lower respiratory infections (YLRI). Linear mixed-

effects (LME) models results are shown for alpha-diversity indices and taxa proportions, while permutational multivariate analysis of variance (adonis) results

are shown for beta-diversity indices. Significance of LME models analyses was estimated using ANOVA type II or III with Satterthwaite approximation. For

each test we report the relevant F statistic (F), degrees of freedom (DF) and significance (P(>F)). Significant associations are indicated in bold.

Taxon ALL NLRI YLRI F DF P(>F)

Alpha-diversity

ACE 75.1 64.1 87.1 6.61 39 0.017

Fisher 8.7 7.1 10.4 6.22 40 0.014

PD 6.7 5.9 7.5 9.74 40 0.003

Shannon 2.1 2.0 2.1 0.20 40 0.655

Beta-diversity

Unifrac-unw 2.75 2 0.023

Unifrac-w 7.85 2 0.006

Bray-Curtis 3.40 2 0.011

Jaccard 2.46 2 0.018

Phyla

Proteobacteria 48.8 47.1 50.5 1.28 41 0.265

Firmicutes 26.5 28.7 24.1 1.22 41 0.277

Bacteroidetes 12.5 10.6 14.5 1.11 38 0.298

Actinobacteria 8.3 9.1 7.5 2.02 42 0.163

Fusobacteria 3.2 3.5 2.9 0.65 45 0.424

Genus

Streptococcus 16.5 16.7 16.2 0.69 36 0.411

Neisseria 11.0 9.1 13.6 2.13 37 0.153

Haemophilus 8.7 5.9 11.5 4.13 37 0.009

Moraxella 8.1 9.1 7.0 1.85 36 0.171

Pseudomonas 7.8 9.0 6.5 3.70 40 0.025

Corynebacterium 6.6 7.4 5.6 3.46 41 0.034

Staphylococcus 4.4 6.0 2.7 1.72 34 0.199

Acinetobacter 3.3 4.9 1.5 3.21 37 0.030

Prevotella 3.0 2.6 3.3 0.11 35 0.746

Stenotrophomonas 3.0 2.6 3.5 0.07 37 0.797

https://doi.org/10.1371/journal.pone.0182520.t002
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The mean relative proportions of Haemophilus, Pseudomonas, Corynebacterium, and Acine-
tobacter varied significantly between microbiotas from YLRI and NLRI patients (Table 2).

There are conflicting data about the association between Haemophilus and the frequency and

severity of respiratory infections. Indeed, Haemophilus was found by Kloepfer et al. [52] to nei-

ther be associated with increased severity of rhinovirus respiratory infections, nor by Carlsson

et al. [53] to be associated with the duration of wheezing in young children. By contrast, Teo

et al. [43] found that infants with a Haemophilus-dominant nasopharyngeal microbiota had

both a higher incidence and higher severity of respiratory infections. Similarly, our group

found that infants hospitalized with bronchiolitis who had a Haemophilus-dominant nasopha-

ryngeal microbiota at the time of hospitalization had higher rates of intensive care use and lon-

ger length of stay compared with infants who had Moraxella-dominant microbiota [7]. Hence,

although there are discrepant findings about Haemophilus’ association with LRI, the weight of

Fig 2. Alluvial plots of mean relative proportions of most abundant (�3%) phyla and genera in microbiomes from patients with (YLRI) and without

(NLRI) lower respiratory infections (LRI) across meteorological seasons.

https://doi.org/10.1371/journal.pone.0182520.g002
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the current evidence suggests that the higher abundance of Haemophilus found in the trachea

of YLRI patients is indicative of a LRI risk-microbiota [54].

The genus Pseudomonas is of particular importance because it includes several opportunis-

tic human pathogens of clinical relevance. Our metataxonomic (from [55]) analyses detected

1–5 Pseudomonas OTUs (mean relative proportion <8%) of which OTU00005 (S2 Table)

accounted for 96.7% of the 156,932 reads and was present in 90% of the patients (in 50% of

them at a�5% mean relative proportion). BLAST searches identified this OTU as P. aerugi-
nosa and gave it the highest E value (1e-127) in the top 1,000 references. All other Pseudomo-
nas species had marginally lower E values (>1e-127). Although this result suggests that P.

aeruginosa is the predominant Pseudomonas species, it must be interpreted with caution since

16S rRNA data cannot distinguish between different strains of P. aeruginosa. Moreover, the

presence of P. aeruginosa should be validated by metagenomic approaches such as shotgun

sequencing. Culture-based and microbiome analyses of bacterial communities suggest that P.

aeruginosa is a common colonizer of the lower and upper respiratory airways in intubated

patients [28, 56, 57]. Although P. aeruginosa may also be a devastating pathogen, especially

given its frequent multidrug resistance [58]. In our study, a higher abundance of Pseudomonas
was associated with a lower risk of developing LRI; in fact, none of the patients showed symp-

toms of nosocomial infections. Future work is needed to understand how P. aeruginosa transi-

tions from a presumed asymptomatic colonizer of the lower airways to a harmful pathogen

and how microbe interactions relate to disease outcomes.

Corynebacterium may be part of a LRI resistance-microbiota [54]. In the present study,

individuals with NLRI had significantly higher abundance of Corynebacterium than those with

YLRI. This observation is consistent with findings from Biesbroek et al. [26] who found that

infants colonized with Corynebacterium (in addition to Moraxella) had a more stable micro-

biota over the first two years of life and fewer parent-reported respiratory infections. Teo et al.

[43] also found that Corynebacterium dominant microbiota in the infant nasopharynx was

associated with fewer respiratory infections. Furthermore, Corynebacterium dominance in the

nasopharynx has also been associated with a reduced incidence of otitis media [59].

The genus Acinetobacter includes some opportunistic pathogenic species (e.g., A. bauman-
nii) that are becoming increasingly recognized as important in nosocomial infections [60].

Moreover, Acinetobacter species are of increasing concern in association with ventilator associ-

ated pneumonia (VAP) [61]. In fact, a previous microbiome study by our group found repre-

sentatives of this genus in the lung microbiome from mechanically ventilated patients with

suspected pneumonia [56]. In our study, however, a higher abundance of Acinetobacter was

associated with a lower risk of developing LRI; concordantly, none of the patients showed

symptoms of nosocomial infections. Future work is needed to understand what and how Aci-
netobacter species become pathogenic and their interactions with other microbes during

disease.

All these results combined suggest associations between community membership of specific

microbial genera and health outcomes, but cause and/or effect has not been established. How-

ever, similar findings from multiple studies have helped identify a starting point for functional

and/or interventional investigation that will begin unraveling the possible contributions of

these bacteria to microbial network dynamics and health outcomes.

The composition (alpha-diversity) and structure (beta-diversity) of the tracheal microbiotas

in tracheostomised patients with and without LRI did not change significantly over the course

of one year (four meteorological seasons). Similarly, we did not find significant variation in

taxon abundance between NLRI and YLRI patients across seasons. Previous studies of the

nasopharyngeal microbiomes of healthy [44] and asthmatic [43] infants have revealed seasonal

changes in diversity and mean relative proportions of two of the aforementioned genera
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(Haemophilus and Corynebacterium). A previous study by our group of the dynamics of naso-

pharyngeal microbiotas in asthmatic children [11] did not find differences in diversity among

seasons, but found significant differences in Haemophilus mean relative proportions. Bogaert

et al. [44] grouped fall and winter microbial samples and compared them against spring sam-

ples (no summer samples were collected), while Teo et al. [43] compared winter-fall to sum-

mer-spring samples, although no statistical justification for these groupings was provided. For

the sake of comparison, we created two new variables in our study to match the seasonal

groupings in those two published studies, while maintaining all the other factors in the model

the same. Our LME and adonis analyses detected significant differences (0.04<P<0.01) in

alpha- and beta-diversity, respectively, between NLRI and YLRI samples across seasonal

groups (LRI�Seasonal Group), but not between Seasonal Groups alone (e.g., winter-fall and

summer-spring). We find this outcome interesting and worth exploring, but since at this

point, we do not have statistical support to group individual meteorological seasons, we advise

the reader to interpret this result with caution.

Our study of the composition and temporal dynamics of microbial communities inhabiting

the trachea of tracheostomised children and young adults has one main limitation. We col-

lected samples when patients were healthy since our goal was to determine whether microbio-

tas from individuals who develop a LRI are different from those who do not develop a LRI. It

would be also interesting to compare how the microbiomes change during heath and infection

in the same individuals.

Conclusions

We directly characterized the diversity and temporal dynamics of the tracheal microbiota in

patients with and without LRIs by bypassing the nose and mouth via a tracheostomy. We dem-

onstrated that the composition and structure of tracheal microbiotas and normalized abun-

dances of Haemophilus, Pseudomonas, Corynebacterium and Acinetobacter differ significantly

according to whether individuals developed LRIs. We also showed that tracheal microbiotas’

diversity does not change significantly over meteorological seasons. This result disagrees with

previous evidence suggesting seasonal variation in airway microbiotas. Further study is needed

to address the interaction between microbes and LRI during times of health and disease.
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12. Pérez-Losada M, Crandall KA, Freishtat RJ. Comparison of two commercial DNA extraction kits for the

analysis of nasopharyngeal bacterial communities. AIMS Microbiology. 2016; 2(2):108–19.
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