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Hepatocellular carcinoma (HCC) has the third-highest incidence in cancers and has
become one of the leading threats to cancer death. With the research on the etiological
reasons for cirrhosis and HCC, early diagnosis has been placed great hope to form a
favorable prognosis. Non-invasive medical imaging, including the associated contrast
media (CM)-based enhancement scan, is taking charge of early diagnosis as mainstream.
Meanwhile, it is notable that various CMwith different advantages are playing an important
role in the different imaging modalities, or even combined modalities. For both physicians
and radiologists, it is necessary to know more about the proper imaging approach, along
with the characteristic CM, for HCC diagnosis and treatment. Therefore, a summarized
navigating map of CM commonly used in the clinic, along with ongoing work of agent
research and potential seeded agents in the future, could be a needed practicable aid for
HCC diagnosis and prognosis.
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INTRODUCTION

Hepatocellular carcinoma (HCC) has the third-highest incidence in cancers, along with the fourth
leading cause of cancer death in 2020 globally. Moreover, cirrhosis, a major source of HCC,
composed 2.4% of death with all causes in 2019 according to theWHO.Meanwhile, hepatitis B virus
(HBV) and hepatitis C virus (HCV) infection, alcohol abuse, and non-alcoholic steatohepatitis
(NASH) are dominating etiological reasons for cirrhosis and HCC. Modern medicine believes the
small HCC is preventable and curable through early diagnosis and timely etiological treatment if
screening and surveillance could be well conducted for cirrhosis (1). Therefore, non-invasive
medical imaging techniques, such as MRI, ultrasound (US), and CT, have contributed to HCC
patients’ management (2–6).

For early diagnosis, treatment assessment, and follow-up, multiple medical imaging modalities
were improved and adapted in every corner of HCC prevention and supervision. In the past decades,
the diagnostic efficacy of medical imaging has been elevated through the improvement of imaging
resolution and associated intravenous contrast agents. US elastography and MR elastography are
recommended to supervise and assess hepatic fibrosis, which may gradually progress to cirrhosis
without medical intervention (7). On the other hand, taking characteristic advantage of the dual blood
supply of the liver, transvenous contrast agents depict the liver lesion by illustrating the tumorous
June 2022 | Volume 12 | Article 9216671

https://www.frontiersin.org/articles/10.3389/fonc.2022.921667/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.921667/full
https://www.frontiersin.org/articles/10.3389/fonc.2022.921667/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:kz_numa@yokohama-cu.ac.jp
https://doi.org/10.3389/fonc.2022.921667
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2022.921667
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2022.921667&domain=pdf&date_stamp=2022-06-02


Zhang et al. Contrast Media for HCC Imaging
blood supply with characteristics of arterial enhancement (wash-
in) and portal hypodensity or hyposignal (wash-out). The classical
imaging findings of wash-in and wash-out were believed to have a
sensitivity of approximately 60% and a specificity of 96%–100%
for small HCCs with a size of 10–20 mm. Still, a biopsy is needed
in 40% of these lesions. Along with a deeper investigation of
clinical research, an experienced radiologist can achieve a much
more satisfying diagnostic efficacy through guidelines like the
American College of Radiology Liver Imaging Reporting and Data
System (ACR LIRADS) (8, 9). As a result, contrast enhancement
imaging, like dynamic MRI and contrast-enhanced CT (CECT), is
recommended in mainstream guidelines for preoperative HCC
diagnosis with certainty. Screening using the non-enhanced US is
also recommended for patients at a higher risk of HCC every 6
months. When it comes to contrast-enhanced US (CEUS), though
it is not recommended by the World Federation for Ultrasound in
Medicine and Biology (WFUMB) guidelines for liver lesion
detection due to the narrow window for arterial phase
observation (10), some meta-analyses indicated it to be a
promising diagnostic approach for HCC with a sensitivity of
93% (95% CI: 91%–95%) and a specificity of 90% (95% CI:
88%–92%) (11), as well as the diagnostic efficacy of 93% in
small HCCs (≦2 cm) (12).

Contrast-enhanced imaging for the tumor is a tracer
technique of contrast media (CM) in essence. The distribution
and dynamic phases of the agent are analyzed for lesion detection
and characterization for early diagnosis and possible prognosis
prediction. Therefore, a summarized navigating map of CM
commonly used in the clinic, along with ongoing work of
agent research and potential seeded agents in the future, could
be a needed reference work for both physicians and radiologists.
BLOOD POOL CONTRAST AGENTS

Ultrasound Contrast Agents
As early as the late 1960s, people found that the microbubbles
(MBs) that provide many reflecting interfaces for echo are a good
intravascular flow tracer for US imaging (13), and the hydrogen
peroxide solution was launched for echocardiography thereafter.
According to the inner gas of the MB, US contrast agent (UCA)
could be classified into two generations. Air core with the
polymeric coat is the so-called first-generation UCA, such as
Levovist (Schering, Berlin-Wedding, Germany). The first-
generation UCA is a milestone in the history of medical US
imaging development, though it comes with defects like
unstableness and unsafety (13). Thereafter, inert gas that is
enveloped with a lipid shell at a diameter of approximately
several micrometers is developed as the second-generation
UCA, which is slightly smaller than that of the red blood cell.
Taking advantage of materials science and technology
development, the second-generation UCA with greater stability
and biosafety can achieve a promising diagnostic efficacy for
HCC (11, 12), along with the negligible report of anaphylaxis
compared with CT and MRI, which means that UCA can be
employed for the patients having iodine allergy, chronic kidney
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disease, hepatic function failure, asthma, and so on. Moreover,
the bedside operation with a portable US machine could be
performed in the emergency department (ED) and intensive care
unit (ICU) as needed. However, concerning clinical practice,
CEUS is not good at imaging the hepatic lesion located near the
lung and behind the costal bone, due to the so-called shadow
zone caused by the costal bone and lung. The other weakness is
US attenuation in far-field of a fatty liver can lead to the
indefinable hepatic situation.

Currently, sulfur hexafluoride (i.e., SonoVue, Bracco Imaging,
Milan, Italy) is the most consumed in the global UCA market,
followed by perfluorinated butane (i.e., Sonazoid, GE Healthcare,
Oslo, Norway). The former is a pure blood pool agent, while the
latter behaves similarly at the beginning but permeates into
extravascular space soon after administration, which will be
discussed in Section 3.

Iodinated Agents for Contrast-Enhanced CT
Many iodinated agents are pure blood pool agents, which are the
widest and longest used CM for X-ray-based enhancement scans
(i.e., CECT) (Figure 1). To date, the effort of optimizing small-
molecule iodinated agents for contrast enhancement could be
mainly classified into three eras, including four categories of
compounds, from ionic to non-ionic, from monomers to
dimers, from high-osmolality to iso-/low-osmolality, associating
with decreasing toxicity and increasing bio-tolerability.
Commercially available agents are abundant in the clinic, such
as iohexol (Omnipaque, GE Healthcare), iopromide (Ultravist,
Bayer Healthcare, Leverkusen, Germany), iodixanol (Visipaque,
GE Healthcare), iopamidol (Isovue, Bracco Imaging, Milan, Italy),
and iothalamate (Cysto-Conray II, Mallinckrodt Imaging, St.
Louis, MO, USA). Moreover, novel agents, like iosimenol and
GE-145, are on the way to commercialization with the
improvements made on an existing basis. The diagnostic efficacy
of CECT for HCC in terms of area under the receiver operating
characteristic (ROC) curve (AUC), sensitivity, and specificity were
reported to be 0.93, 93%, and 82%, respectively (14). For HCC
patients, the most distinctive role that CT perfusion imaging has
played is the transarterial chemoembolization (TACE) assessment
(15). However, despite great improvements that have been made
in the bone and cartilage tissue, iodinated contrast agents
employed in parenchymal organs, like the liver, have not yet
been largely renovated (16, 17).

The blood pool agent applied to MRI is mainly established for
MR angiography rather than the liver tumor, which is beyond
the scope of the present review article and will not be
discussed herein.
EXTRACELLULAR CONTRAST AGENTS

Non-Specific Agents
For MRI, gadolinium-based micromolecule agents that have five
or seven unpaired electrons could be stimulated to be
paramagnetic under an external magnetic field. Those so-called
paramagnetic contrast agents for dynamic MRI are developed
June 2022 | Volume 12 | Article 921667
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and enriched (18). Gadolinium chelates (Gd-chelates) are
clinically available mainstream for dynamic MRI on T1-
weighted images, including Gd-DTPA (gadopentetic acid,
Magnevist, Berlex, Berlin, Germany), Gd-DTPA-BMA
(gadodiamide, Omniscan, Nycomed Amersham, Amersham,
UK), Gd-HP-DO3A (gadoteridol, ProHance, Bracco
Diagnostics, Milan, Italy), Gd-DTPA-BMEA (gadoversetamide,
Optimark, Mallinckrodt, Staines-upon-Thames, UK), Gd-
DOTA (gadoterate, meglumine, Dotarem Guerbet, Princeton,
NJ, USA), and Gd-BT-DO3A (gadobutrol Gadovist, Schering
Diagnostics, Berlin, Germany). These extracellular agents for
non-specific liver MRI are commonly used worldwide because of
the good patient tolerance and satisfying diagnostic efficacy (19).
Thus, clinical recommendations from guidelines are almost
based on the Gd-chelates (8, 9). Moreover, the informative
images provided by contrast-enhanced MRI (CEMRI) also
contribute to the therapy assessment (Table 1).

Reticuloendothelial System Endocytosis
Ferumoxytol, a kind of iron oxide nanoparticles (IONPs)
approved by the Food and Drug Administration (FDA) as
medicine for iron deficiency in adults, was recently reported to
Frontiers in Oncology | www.frontiersin.org 3
be feasible for MR angiography thanks to the characteristic of
longer half-life in circulation and the advantage of
superparamagnetism (20–23). The so-called negative contrast
agents, containing iron oxide particles, darken the normal liver
background on T2-weighted images to negatively enhance the
target issue, in contrast with the so-called positive agents that
brighten the target tissue on T1-weighted images, like Gd-
chelates. The first commercially available reticuloendothelial
system (RES)-specific contrast agent is ferumoxides (Feridex)
(24), which makes lesions that contain negligible RES cells
conspicuous on T2-weighted images since the normal liver
background containing many RES cells can selectively take up
iron oxide particulates to lower the T2 signal intensity (25). Iron
oxide crystals coated with dextran or carboxydextran are named
superparamagnetic iron oxide (SPIO), which is normally
employed as T2 MR CM. With a sufficient infusion of SPIO,
normal hepatocytes containing many Kupffer cells are supposed
to catch most SPIO particles, leading to a dark area on T2-
weighted images. By contrast, tumors, whether benign or
malignant, primary or metastatic, that are deficient in Kupffer
cells cannot exhibit SPIO uptake, shaping a relatively
hyperintense area. However, focal nodular hyperplasia (FNH)
FIGURE 1 | Images of a man in his eighties with a pathological diagnosis of moderately differentiated hepatocellular carcinoma (HCC) and had a history of hepatitis
(C) At the Sonazoid-enhanced ultrasound (US), the liver lesion at a size of 43 mmwith a thin halo located at segment III was observed on B-mode US (A). It was rapidly
enhanced in the arterial phase (wash-in) (B), started to fade (wash-out) in portal phase (C), and was totally exhausted in the post-vascular phase (D). At Gd-EOB-DTPA-
enhanced MRI, the lesion was hypointense on T1-weighted image (E), with the typical characteristics of wash-in and wash-out from arterial phase, portal phase, to delayed
phase (F–H). It showed hyperintensity on T2-weighted image (I). At iodine agent-enhanced CT, it has low-density before enhancement (J). It also showed wash-in and
wash-out from arterial phase, portal phase, to delayed phase (K–M). Finally, the gross specimen vividly reflected the morphological information of tumor (N). Arrowheads
indicate the margin of the HCC lesion.
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seems to be an exception, since SPIO particles may accumulate
there and lead to a resultant isointense or even hypointense
appearance (26, 27). Following SPIO, the derivative in terms of
ultrasmall particulate iron oxides (USPIO) with advantages of
convenient administration and striking prolonged plasma half-
life that enables it also as a blood pool agent was developed
thereafter (28, 29) (Table 1).

Regarding UCA, Sonazoid is an MB of perfluorobutane core
wrapped by the shell of hydrogenated egg phosphatidylserine. At
first, Sonazoid MBs were used as the blood pool contrast agent.
As early as 1 min after the intravenous administration, the MBs
start to diffuse into extravascular and intercellular space where
they will be phagocytosed by the Kupffer cells in the normal liver
sinusoids. Approximately 10 min later, once intravascular MBs
are mostly eliminated, the remaining stable MBs endocytosed by
resident macrophages in liver parenchyma will shape the so-
called additional Kupffer phase or post-vascular phase, which
can last to 2 h after injection (30–32) (Table 1). Moreover, in the
classical enhancement features of wash-in and wash-out, HCC
theoretically appears to be perfusion defects in the Kupffer phase
Frontiers in Oncology | www.frontiersin.org 4
or post-vascular phase because of Kupffer cell shortage
(Figures 1, 2). The characteristics of the additional post-
vascular phase aid much in HCC detection and diagnosis.
Recently, Sonazoid has been proven to be non-inferior to
SonoVue in a retrospective clinical study for focal liver lesion
(FLL) (33). However, if the lesion is isoechoic in the post-
vascular phase, misdiagnosis can happen at a rate of
approximately 17% (34). Worse still, owing to histological
reasons of some well-differentiated HCC, the sign of perfusion
defect in the Kupffer phase could be observed at a rate of only
69% among HCC patients (35). Also, some benign lesions that
lack Kupffer cells have a chance to be misdiagnosed as a false-
positive sign in the Kupffer phase (36). Therefore, the expected
additional clinical benefit on diagnosis gained from the Kupffer
phase has not yet been confirmed (37). As for HCC intervention,
after US brings real-time monitoring for minimally invasive
operations like lesion biopsy and regional ablation, CEUS is
employed for more accurate guidance and unique immediate
evaluation during therapy (38–43). Vascular-sensitive
assessment makes CEUS an indispensable aid for effective
FIGURE 2 | Images of a man in his sixties with a pathological diagnosis of poorly to moderately differentiated hepatocellular carcinoma (HCC) and had a history of
cirrhosis. At the Sonazoid-enhanced ultrasound (US), the liver lesion was heterogeneous hyperechoic with the indistinct margin on B-mode US (A). It was rapidly enhanced in
the arterial phase (wash-in) (B), still iso-echoic in portal phase (C), and was totally exhausted in the post-vascular phase (D). At Gd-EOB-DTPA-enhanced MRI, the lesion
was hypointense on T1-weighted image (F), with uncharacteristic wash-in and delayed wash-out from arterial phase to delayed phase (G, H). It showed hyperintensity on
T2-weighted image (I). The contrast media (CM) were totally exhausted till the hepatobiliary phase (J). The gross specimen indicated the heterogeneous pathological
differentiation of HCC (E). Arrowheads indicate the margin of the HCC lesion.
TABLE 1 | The categories of extracellular contrast agents in clinical practice.

Category Specificity Class Classical agents Featured purposes Modality

Extracellular agent Non-specific Gadolinium
chelates

Gadopentetic acid (Gd-DTPA) Tumor imaging; blood pool
imaging

T1 agent for
MRI

Reticuloendothelial system (RES)
agent (Kupffer cells included)

RES specific Iron oxide Ferucarbotran (Feridex) Liver tumor imaging T2 agent for
MRI

Microbubbles Perfluorinated butane (Sonazoid) Liver tumor imaging; blood
pool imaging

Ultrasound
contrast agent

Hepatobiliary agent Hepatobiliary
specific

Manganese-based
compound

Mangafodipir (Mn-DPDP) MR cholangiography; liver
function indicator

T1 agent for
MRI

Gadobenate dimeglumine (Gd-BOPTA);
gadoxetic acid (Gd-EOB-DTPA)

Liver tumor imaging T1 agent for
MRI
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radiofrequency (RF)/microwave (MV) ablation (44, 45). On the
other hand, three-dimensional (3D) US can provide additional
lateral and other viewing angles, and morphological information
offers UCA another usable imaging modality (i.e., contrast-
enhanced 3D US, CE 3D US) (46, 47) (Figure 3). Moreover,
contrast enhancement is also employed in fusion imaging to
reveal extra small liver lesions and biopsy navigation
(48) (Figure 4).

Hepatocyte-Specific Uptake
Mangafodipir trisodium (Mn-DPDP) used to be a classical
hepatocyte-selective contrast agent that was developed in the
last century and has favorable contrast-to-noise measurements
and lesion detection rate as compared to non-enhanced MRI (49,
50). It was high-profile at the beginning for the prolonged
enhancement relative to the traditional T1 contrast agents (51).
The uptake of Mn-DPDP occurs in hepatocytes, and its
elimination is in the biliary tree. Thus, the metabolism process
of Mn-DPDP can indicate hepatobiliary function (52, 53).
Moreover, it is reported that the hepatocyte-selective contrast
agent is correlative with the pathological differentiation degree of
HCC (54). Since the uptake of Mn-DPDP strictly occurs in
hepatocytes, the extrahepatic originated metastases can be
negatively illustrated (55). However, in contrast to the question
of how many normal hepatocytes are contained in a lesion, the
question of whether a liver lesion is malignant or not will be the
highest concern for patients.
Frontiers in Oncology | www.frontiersin.org 5
By integrating the mechanisms of both hepatocyte-selective
contrast agents and non-specific extracellular Gd-chelates,
gadolinium-based hepatobiliary-specific agents were thereby
developed, such as gadobenate dimeglumine (Gd-BOPTA)
and gadoxetic acid (Gd-EOB-DTPA), which are worldwide
commercially available and have become a promising MRI
contrast agent for FLL (56–58). For HCC diagnostic imaging,
the so-called hepatobiliary contrast agents achieve further
detection in the early stage for primary, recurrent, and
metastatic HCCs through usual dynamic imaging and
additional hepatobiliary delayed phase (59–62) (Figures 1, 2).
Beyond diagnosis, uptake of Gd-EOB-DTPA of HCC lesions is
reported to be a biomarker for prognosis (63), as well as the
estimation of liver function (64). Concerning patients’
tolerance, Gd-EOB-DTPA only requires a minimum injection
dose to present a satisfying enhancement in the liver and
smaller branch of the biliary tree relative to Gd-BOPTA
(55) (Table 1).
MOLECULAR IMAGING AGENTS

For the diagnostic and therapeutic purpose of molecular
imaging, by means of conjugating some antibody, peptide, or
ligand, molecular imaging agents are artificially designed to
anchor the targeted cellular and molecular hallmarks
pathologically (65).
FIGURE 3 | Sonazoid-enhanced ultrasound (US) images of a man in his seventies with a pathological diagnosis of moderately differentiated hepatocellular carcinoma
(HCC), who had a history of hepatitis C. The tumor was 70mm. Consecutive lateral images of the tumor remarkably illumed the irregular margin on the three-dimensional
(3D) US, which was obtained by auto-sweep 3D scanning in the post-vascular phase. Tomographic ultrasound images in plane A, which can be translated from front to
rear, with a slice distance of 4.8 mm. Arrowheads indicate the margin of the HCC lesion.
June 2022 | Volume 12 | Article 921667
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Immune Molecular Anchoring
By means of immunoreaction, gadolinium-labeled reagents for liver
tumor marking and monitoring of the MR modality are commonly
employed in a tumor-bearing animal model for cancer research (66,
Frontiers in Oncology | www.frontiersin.org 6
67). The molecular weight of reagents mainly ranges from dozens to
hundreds of kDa. Likewise, the MBs or nanobubbles binding
compounds marked with the tumor-specific immune molecule
are also available for cancer research in the CEUS modality (66).
FIGURE 4 | Images of a man in his seventies with a pathological diagnosis of moderately differentiated hepatocellular carcinoma (HCC) and had a history of cirrhosis
and HCC. The hepatobiliary phase of EOBMRI (right side), as the reference, was combined with conventional grayscale US (left side), displayed an 8-mm indistinctive
hypointense area (the triangular arrow) in segment V on the same screen for the fusion imaging (A). The extrasmall lesion was hypervascular in the arterial phase of
Sonazoid-enhanced ultrasound (US) (B), while the post-vascular phase indicated it to be a slightly hypoechoic area (C). Pathway guidance was ready for
radiofrequency ablation (RFA) needle manipulation on real-time US (B–D), along with tracking for the metallic needle tip (the curved arrow) (D). The contrast-
enhanced US (CEUS) evaluated the target ablation area to be non-enhanced after RFA (E). Arrows indicate the margin of the bigger HCC lesion, which was
previously treated by RFA. And Arrowheads indicate the margin of the extrasmall HCC lesion.
June 2022 | Volume 12 | Article 921667
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Stimulus-Responsive/Microenvironment-
Dependent Contrast Agents
A T1/T2 switchable MR contrast agent was recently validated on
a mouse model for HCC early diagnosis (68, 69). Previously, the
diagnostic efficacy of IONP-based MRI was not as high as
expected when it was simply employed as a liver-specific T2
agent (70). However, researchers recently found that IONP
clusters could be accordingly disaggregated thanks to the acidic
tumor microenvironment, which can generate a downstream
tumor-specific T1 contrast agent. As a result, the IONP agents
can additionally be employed to delineate HCC on T1-weighted
images after switching to a downstream tumor-specific contrast
agent. Based on IONP, agents decorated with functional small-
molecular ligands through surface engineering are thereafter
designed to be stimulus-responsive agents, pH-sensitive, and
nanoscale distance-dependent (68, 71–75). Furthermore,
concerning the aggregation phenomenon that commonly
happened in nanoparticles with a large surface area/volume
ratio, ultrafine nanoparticles could facilitate intratumoral
homogeneous distribution of contrast agents (76). IONP at a
diameter of 3.6 nm is supposed to be an optimal T1 agent in vivo
(77). Moreover, core engineering of various designs of size,
shape, composition, surface coating, molecular weight, and
drug delivery has indicated IONP to be a hopeful T1 contrast
agent (78–85). Beyond imaging, Yang et al. developed a novel
nanoparticle that releases Fe2+ for the treatment of folic acid (FA)
receptor-positive solid tumors through the ferroptosis pathway
while being supervised through the Mn agent-enhanced imaging
(86, 87). Also, Song et al. developed an assay of therapeutic
natural killer cells (NK cells) conjugated with Sonazoid MB to
make the antitumor process visible in real-time CEUS (88).
Scale-Dependent Particles
As nanomedicine was developed recently, emerging
nanomaterials have been studied for contrast enhancement
imaging. Some nanoscaled CM can permeate into tumor
stroma through weak tumor vessels to depict the tumor with
or without the assistance from functional parts equipped in
advance (89). Moreover, sonoporation induced by external
stimulation of focused US can reversibly increase the
permeabilization of the cell membrane, leading to the potential
visualization of HCC intracellular therapy in the future (90).
CLINICAL CHALLENGES
AND PROSPECTS

As for the clinically commonly used contrast agents, Guang et al.
performed a meta-analysis to compare the diagnostic value of
CEUS, CT, and MRI in FLL. To rule out HCC from FLL, CECT
has the highest sensitivity of 90% (95% CI: 88%–92%), followed by
CEUS (88%) and CEMRI (86%). Both CEUS and CEMRI have a
higher sensitivity of 81% than CECT (77%). However, all results
have no statistical significance (16, 91). Moreover, Westwood et al.
Frontiers in Oncology | www.frontiersin.org 7
found that CEUS could be a cost-effective alternative for HCC
diagnosis relative to CECT or CEMRI with similar diagnostic
performance (92). Research about combined multimodal medical
imaging (including Sonazoid-enhanced US, Gd-EOB-DTPA-
enhanced MRI, and CECT) conducted by Masatoshi Kudo
figured out that the sensitivity for HCC diagnosis is 72%, 74%,
and 86% for CEUS, CECT, and Gd-EOB-DTPA-enhanced MRI,
respectively, with no significance among the three imaging
modalities. When combining US with MRI, the sensitivity
soared as high as 90% (93).

Meanwhile, controversies still remain regarding the diagnostic
efficacy of HCC. Despite that the hepatobiliary agent-enhanced
MRI is believed to reach an early diagnosis for HCC that is still in
the hypovascular stage (94), researchers analyzed the clinical trials
that use different contrast agents for HCC diagnosis and found no
significant difference in the diagnostic efficacy in terms of
sensitivity and specificity between the MRI using extracellular
agents and hepatobiliary agents (95, 96). Imbriaco et al. claimed
that Gd-EOB-DTPA-enhanced MRI has a better diagnostic
performance than CECT only for lesions that are smaller than
20 mm and patients with Child-Pugh class A (97). Moreover, for
patients with cirrhosis, Kim et al. demonstrated better
performance of hepatobiliary agent-enhanced MRI relative to
routine US screening for surveillance of people at a higher risk
of HCC (2). In addition, molecular imaging agents, like IONP-
based MR agents, are still on the way to fulfilling the various
clinical needs (98). On the other hand, although current CM has
been deeply improved through materials science, biosafety is still
the most crucial factor for patients having various allergies and
metabolism troubles. Necessary reinjection of contrast agents for
CT and MRI may come with a potential risk of side effects.
Minimized dose of contrast agent that meets all clinical needs will
be a future trend for CM research.

To sum up, the CM brings out the best diagnostic performance
for suitable patients under appropriate conditions. Although
Gd-DTPA-enhanced MRI and non-ionic iodinated agents-
enhanced CT are usually recommended for HCC diagnosis by
mainstream guidelines, liver-specific CM, like Gd-EOB-DTPA and
Sonazoid, have already played an anticipated role inHCCdiagnosis
and prognosis prediction. Furthermore, the amelioration of
molecular imaging agents has drawn a blueprint for future
medical imaging.
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