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Receptor for activated C kinase 1 (RACK1) has been shown to promote

oral squamous cell carcinoma (OSCC) progression, and RACK1 expression

levels have been negatively correlated with prognosis in patients with

OSCC. Here, we investigated the impact of RACK1 OSCC expression on

the recruitment and differentiation of tumor-associated macrophages. High

RACK1 expression in OSCC cells correlated with increased M2 macro-

phage infiltration in tumor samples from a clinical cohort study. Moreover,

the combination of RACK1 expression and the M2/M1 ratio could suc-

cessfully predict prognosis in OSCC. OSCC cells with high RACK1 expres-

sion inhibited the migration of THP-1 cells, promoted M2-like macrophage

polarization in vitro, and increased the proportion of M2-like macrophages

in a xenograft mouse model. Moreover, both M1- and M2-like macro-

phage polarization-associated proteins were induced in macrophages cocul-

tured with RACK1-silenced cell supernatant. A mechanistic study revealed

that the expression and secretion of C-C motif chemokine 2 (CCL2), C-C

motif chemokine 5 (CCL5), interleukin-6 (IL-6), and interleukin-1 (IL-1)

are closely related to RACK1 expression. In addition, blocking nuclear fac-

tor-kappa B (NF-jB) could promote M2-like macrophage polarization.

These results indicate that RACK1 and the M2/M1 ratio are predictors of

a poor prognosis in OSCC. RACK1 promotes M2-like polarization by reg-

ulating NF-jB and could be used as a potential therapeutic target for

antitumor immunity.
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1. Introduction

Oral squamous cell carcinoma (OSCC) is one of the most

common human cancers (Torre et al., 2015) affecting

more than 400 000 people every year. Due to its high

recurrence and metastasis rates, OSCC has a high mor-

tality rate and a poor prognosis. In recent decades,

despite the enormous progress in diagnosis and treat-

ments such as radiotherapy and chemotherapy, the 5-

year survival rate is no more than 50% (Panzarella et al.,

2014). A better understanding of the mechanisms under-

lying the occurrence and development of OSCC will

facilitate the development of novel treatment options.

According to their different functions, macrophages

fall into two categories: classically activated macro-

phages (M1) for killing tumor cells, and alternatively

activated macrophages (M2) for promoting tumor cells

(Brown et al., 2017). Tumor-associated macrophages

(TAM) are macrophages present in high numbers in the

tumor microenvironment (TME) (Sica et al., 2008). It is

well acknowledged that TAM mainly have an M2-like

phenotype. Clinical and experimental evidence has

shown that TAM promote the development and pro-

gression of most tumor types (Ruffell and Coussens,

2015; Tan et al., 2018b). There are many macrophages

in OSCC tissues, and TAM are also believed to partici-

pate in OSCC progression (Kubota and Moriyama,

2017; Petruzzi et al., 2017; Sun et al., 2018). The most

commonly used markers for M1 macrophages are

CD11c, CD80 and HLA-DR. CD206, CD163 and

CD204 are useful for M2 detection. Moreover, CD68 is

considered a pan-macrophage marker (Guo et al., 2018;

Gustafson et al., 2015; Han et al., 2016; Motomura

et al., 2015; Olesch et al., 2015; Salmi et al., 2018; Tan-

Garcia et al., 2017; Wang et al., 2014a).

Receptor for activated C kinase 1 (RACK1), a

highly conserved WD40 repeat scaffold protein, is a

multifaceted signaling adaptor. RACK1 has been con-

firmed to take part in multiple biological events,

including cell migration(Li et al., 2012b), virus infec-

tion (Majzoub et al., 2014), neural development (Weh-

ner et al., 2011; Xu et al., 2015), angiogenesis (Berns

et al., 2000; Zhou et al., 2014) and cancer metastasis

(Li et al., 2012a). In our previous study, we found that

RACK1, an organ-specific prognostic predictor in

OSCC, could promote the malignant biological behav-

ior of OSCC (Liu et al., 2018b; Zhang et al., 2016).

However, the effect of RACK1 on the tumor immuno-

logical microenvironment in OSCCs is poorly under-

stood. Whether RACK1 is related to the recruitment

and differentiation of TAM and the underlying mecha-

nisms are unclear.

Here, we showed that RACK1 can suppress the activa-

tion of nuclear factor-kappa B (NF-jB), regulate the

expression of IL-6, CCL5 and CSF secreted by tumor

cells, inhibit the massive recruitment of macrophages and

severe inflammatory reactions, induce a chronic smolder-

ing inflammatory microenvironment and promote the

development of tumors. RACK1 could serve as a poten-

tial target in antitumor immunity against OSCC.

2. Materials and methods

2.1. Patients and follow-up

One cohort included 45 patients with OSCC who

underwent surgery between 2005 and 2009. All patients

were informed of sample collection and usage. The tis-

sue samples were collected and used in accordance with

a protocol approved by the Human Research Ethics

Committees of the West China Hospital of Stomatol-

ogy, Sichuan University and Guangdong Provincial

Stomatological Hospital. This research was performed

in accordance with the Declaration of Helsinki and

according to national and international guidelines. All

animal studies were approved by the Animal Care and

Use Committee, State Key Laboratory of Oral Dis-

eases, in compliance with the Guide for the U.S. Public

Health Service’s policy on the humane care and use of

laboratory animals. Animals were housed in compliance

with the Association for the Assessment and Accredita-

tion of Laboratory Animal Care International guide-

lines. The other cohort (TCGA), comprising 460

patients with HNSCC, was obtained from the TCGA

database.

2.2. Immunohistochemical (IHC) assay and

analysis

The IHC assay was performed as previously described (Liu

et al., 2018a). Briefly, sections were incubated overnight at

4 °Cwith a RACK1 antibody (Santa Cruz Biotechnology,

Santa Cruz, CA, USA, RACK1: sc-17754, 1 : 200 dilu-

tion), CD11b antibody (Abcam, Cambridge, MA, USA,

anti-CD11b antibody, ab133357, 1 : 4000 dilution),

CD206 antibody (Abcam, anti-mannose receptor anti-

body, ab64693, 1 : 5000 dilution) and CD68 antibody

(Abcam, anti-CD68 antibody ab955, 1 : 200 dilution) after

antigen retrieval. The cells were then detected with a

ChemMate DAKO EnVision Detection Kit (DAKO,

Copenhagen, Denmark). Finally, the sections were coun-

terstained with Mayer’s hematoxylin. The staining was

assessed by three independent investigators without any

knowledge of the clinico-pathological data.
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The following criteria were used to score the

RACK1 staining: staining intensity: 0 – no detectable

staining, 1 – light yellow, 2 – medium yellow, 3 – deep

yellow or 4 – brown; and staining proportion: 1

(≤ 10%), 2 (10–50%), 3 (50–80%) or 4 (≥ 80%). The

product of the two scores was considered the final

score (nine levels: 1, 2, 3, 4, 6, 8, 9, 12 and 16). For

TAM, the scoring method was as follows: in the soft-

ware graphics processing function of IMAGESCOPE

(Vista, CA, USA), the scope of the tumor stroma was

framed and the percentage of positive cells within the

frame calculated. The value calculated by the software

was used for the patient survival analysis. The above

score was divided into nine categories to match the

final RACK1 score and to conveniently perform a cor-

relation analysis between the two indicators.

2.3. Reagents

Phorbol-12-myristate-13 acetate (PMA) and the NF-jB
inhibitor BAY11-7082 were obtained from Beyotime

(Shanghai, CHN). Primary antibodies were from Santa

Cruz Biotechnology [CREB (sc-271); p-CREB (10E9)

(sc-81486); STAT3 (sc-8019); PPARc (sc-7273); p-

PPARc S112 (sc-28001); GAPDH (sc-47724); Actin (sc-

8432)], Abcam [RACK1 (ab129084); STAT1 (ab92506);

p-STAT1 (S727) (ab109461); CD206 (ab64693)], Cell

Signaling Technology (Danvers, MA, USA) [c-Jun

(#9165); NF-jB p65 (#8242); p-NF-jB p65 (#3033); p-

mTOR (Ser2448) (#5536); p-ERK (Thr202/Tyr204)

(#4370)]. Antibodies used for flow cytometry, including

anti-human CCR7-FITC (#353216) and CD206-PE

(#321106), and anti-mouse CD11b-APC (#301310), F4/

80-FITC (#123107) and CD206-PE (#141705) were pur-

chased from BioLegend (San Diego, CA, USA).

2.4. Cell culture

Cal-27 cells were obtained from the American Type Cul-

ture Collection (Manassas, VA, USA). HSC-3 and

HSC-4 cells were purchased from the Japanese Collec-

tion of Research Bioresources (JCRB, Shinjuku, Japan).

RAW264.7 cells were purchased from the Chinese

Academy of Sciences (ATCC Number: TIB-71, Beijing,

China). THP-1 cells were the kind gift of X. Zhou (State

Key Laboratory of Sichuan University). Cal-27, HSC-3,

HSC-4 and RAW264.7 cells were maintained in Dul-

becco’s modified Eagle’s medium (DMEM) containing

10% FBS. THP-1 monocytes were cultured in RPMI

medium supplemented with 10% FBS. The generation

of stable HSC-3 cells with low RACK1 expression (sh-

RACK1) and HSC-4 cells with RACK1 overexpression

(OE-RACK1) was performed as previously described

(Zhang et al., 2016). All cells were cultured under a

humidified atmosphere with 5% CO2 at 37 °C.

2.5. Cell migration assay

The supernatants from infected HSC-3 (sh-NC, sh-

RACK1, OE-vector or OE-RACK1) cells cultured in

serum-free DMEM were harvested after 48 h. The

infected HSC-3 cell supernatants were filtered using 0.45-

lm polyvinylidene difluoride membrane filters and con-

centrated by ultrafiltration (Amicon Ultra 3K; Merck

Millipore, Billerica, MA, USA). The Bradford method

was employed to determine the protein concentrations.

THP-1 cells (2 9 107 per well) or RAW264.7 cells

(1 9 106 per well) were added to the upper compartment

of a 24-well Transwell chamber and then cocultured for

24 h with DMEM containing 40 lg�mL�1 infected

OSCC supernatants. The lower compartment contained

DMEM supplemented with 2% FBS. The migrated

THP-1 cells were counted by flow cytometry, and the

migrated RAW264.7 cells were fixed, stained with Cell

Stain Solution (Sigma-Aldrich, St Louis, MO, USA) and

photographed under a light microscope.

2.6. Cell invasion assay

THP-1 cells (2 9 107 per well) or RAW264.7 cells

(1 9 106 per well) were added to the upper compart-

ment of a 24-well Transwell chamber coated with

Matrigel and cocultured for 48 h with DMEM con-

taining 40 lg�mL�1 infected OSCC supernatants. The

lower compartment contained DMEM supplemented

with 2% FBS. The numbers of invaded THP-1 cells

were counted by flow cytometry, and the invaded

RAW264.7 cells were fixed, stained with Cell Stain

Solution and photographed under a light microscope.

2.7. Western blot analysis

Cell protein was extracted with RIPA lysis buffer. The

protein expression levels of RACK1, STAT3, c-Jun,

NF-jB, p-NF-jB, STAT1, p-STAT1, p-ERK, PPARc,
CREB, p-CREB, p-mTOR and actin in OSCC cells

and macrophages were examined.

2.8. Analysis of human cytokines and genes

HSC-3 cells grown to 70% confluence in a 10-cm dish

were lipofected with 100 nM si-RACK1 or si-NC using

Lipofectamine 2000. The cells and supernatants were

harvested after 48 h. The variations in human angiogen-

esis genes and proteins in si-RACK1 and si-NC cells

and supernatants were detected by a Human Cytokine
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Array Panel A (ARY005; R&D Systems, Minneapolis,

MN, USA) and a whole human gene expression profile

PCR array (KangChen Bio-tech, Shanghai, China).

2.9. Flow cytometry analysis

THP-1 cells were adjusted to 1 9 106 cells per mL in

RPMI medium with 100 ng�mL�1 PMA for 24 h to

induce THP-1 differentiation into macrophages. The

cells were then cocultured with 40 lg�mL�1 infected

OSCC supernatants for 8 h. PE-, APC- and FITC-

conjugated anti-human CCR7 and CD206 and anti-

mouse F4/80 and CD11b antibodies were used to ana-

lyze the surface antigen expression of macrophages

and homogeneous isotypes were used as controls. The

cells were washed and then stained for 30 min at 4 °C.
The stained cells were analyzed by flow cytometry

(EXLTM; Beckman Coulter, Brea, CA, USA). Data

analysis was performed using FLOWJO software (Tree

Star, Ashland, OR, USA).

2.10. Tumor xenograft model

Female BALB/c nude mice (4–6 weeks of age) were

used and assigned randomly to two groups (five mice

in each group): sh-NC and sh-RACK1. A human

OSCC tumor model was established by subcutaneously

injecting 1 9 106 cells (0.1 mL) into the right upper

flanks of the mice. From the fresh tumor tissues, single

cells were isolated using collagenase IV and then

stained with CD206, CD11b and F4/80 antibodies for

30 min at 4 °C. The stained cells were washed and

resuspended in PBS/0.1% bovine serum albumin plus

azide. Flow cytometry was performed and the results

were analyzed by FLOWJO software.

2.11. Neutralization

The supernatant from sh-NC cells was harvested after

48 h of culture in serum-free DMEM with the NF-jB
inhibitor BAY 11-7082 (0.1%, 10 lM in DMSO; Bey-

otime) or 0.1% DMSO. The methods used for protein

concentration and measurement for the supernatants

were the same as those described in the cell migration

assay. The method used to analyze macrophage sur-

face antigen expression was the same as that described

for flow cytometry analysis.

2.12. Statistical analysis

Overall survival (OS) was estimated using the Kaplan–
Meier method with a log-rank test for the univariate

analysis. A two-sided P-value < 0.05 was considered

significant. The results are expressed as the

mean � SD of at least three different experiments.

3. Results

3.1. High levels of RACK1 expression are

associated with high numbers of tumor-

infiltrating M2 macrophages and a poor

prognosis in OSCC

According to previous studies, an increased level of

RACK1 indicates a poor clinical outcome and tumor

progression in patients with OSCC (Liu et al., 2018b;

Wang et al., 2008; Zhang et al., 2016). A high number

of M2 macrophages infiltrating the tumor is also asso-

ciated with poor prognosis in OSCC. To evaluate the

clinical significance of RACK1 and M2 macrophages,

we analyzed 36 primary OSCC patient specimens by

IHC staining (Table 1). The numbers of CD68+

macrophages (total macrophages, M0), CD11b+

macrophages (M1 macrophages) and CD206+ macro-

phages (M2 macrophages) were counted in 36 paraf-

fin-embedded tissues. High RACK1 protein expression

was associated with more CD206+ macrophage cells;

conversely, low RACK1 protein expression was associ-

ated with fewer CD206 positive macrophage cells

(Fig. 1A). The expression of RACK1 correlated signifi-

cantly with the M2 phenotype in OSCC (Fig. 1B,

r = 0.698, P < 0.001). Survival analysis revealed that

the number of CD68+ macrophage (M0) cells had no

correlation with the OS of OSCC patients, consistent

with the TCGA database analysis (Fig. S1A,B,

P < 0.05). Notably, patients with a high M2/M1 ratio

had a poorer OS than patients with a low M2/M1

ratio (Fig. 1C, P = 0.026), consistent with the TCGA

database analysis (Fig. 1D, P < 0.01). These findings

indicated that the ratio of M2/M1 macrophages affects

the prognosis of OSCC but not the total amount of

macrophages. RACK1 may affect the M2/M1 macro-

phage ratio in the OSCC microenvironment.

3.2. RACK1 expression in OSCC cells inhibits

macrophage recruitment in vitro

To uncover the biological function of RACK1 during

macrophage recruitment in OSCC, both cell migration

and invasion assays were performed. First, a stable

HSC-3 cell line with low RACK1 expression (sh-

RACK1) and a stable HSC-4 cell line with RACK1

overexpression (OE-RACK1) were generated as previ-

ously described (Zhang et al., 2016). Then, we investi-

gated the migration abilities of macrophages after
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coculture with conditioned media from OSCC cells

with different levels of RACK1 expression. We found

that RACK1 depletion promoted the ability of

OSCC cells to induce THP-1 cell migration (Fig. 2A,

P < 0.001). However, RACK1 expression did not

affect the invasion of THP-1 cells. Similarly, silencing

RACK1 promoted the ability of OSCC cells to induce

the migration and invasion of RAW264.7 cells

(P < 0.001), whereas overexpressing RACK1 strongly

induced inhibition (Fig. 2B,C). In addition, according

to TCGA data, the mRNA expression of RACK1 is

negatively correlated with the mRNA level of CD68,

which is a biomarker for M0 (Fig. S1C, Spearman’s

rank correlation coefficient r = �0.1249, P = 0.0043).

Collectively, these results indicate that RACK1 inhi-

bits macrophage recruitment in the TME of OSCC.

3.3. RACK1 expression in OSCC inhibits

macrophage activation but increases the

proportion of M2 macrophages in vitro and

in vivo

Next, to determine the effect of RACK1 on macrophage

activation in OSCC, we induced THP-1 monocyte dif-

ferentiation into macrophages by PMA treatment and

then cocultured them with infected OSCC supernatants.

The western blot results showed that M1- and M2-re-

lated molecular pathways were activated in macro-

phages cocultured with OSCC supernatants. M2-type

macrophage pathway-related molecules, such as mTOR

and CREB, were not changed significantly, and PPARc
and STAT3 were significantly increased after coculture

with RACK1-silenced OSCC supernatant. Interestingly,

levels of M1 macrophage pathway molecules, such as

ERK, AP-1 (AP-1 consists of c-Jun and c-Fos) and NF-

jB, were dramatically higher than those in the control

group after coculture with RACK1-silenced OSCC

supernatant; STAT1 levels, however, did not change

(Fig. 3A). These results suggest that following the down-

regulation of RACK1 expression, both M1- and M2-as-

sociated factors are significantly increased.

The flow cytometry results showed that RACK1

silencing inhibited (P = 0.038) whereas RACK1 overex-

pression increased (P = 0.022) the proportion of M2

macrophages in vitro (Fig. 3B,C). In addition, to investi-

gate whether RACK1 contributes to macrophage

recruitment in the tumorigenic environment, sh-NC and

sh-RACK1 HSC-3 cells were grafted into the flanks of

nude mice by subcutaneous injection (Fig. S2). Then, the

proportion of CD11b+ (a common marker of mouse

macrophages) cells in the tumor tissues was assessed by

flow cytometry. There were more CD11b+ (M0) cells in

RACK1-silenced tumors than in control tumors

(Fig. 3D,E, P < 0.01). Interestingly, the RACK1-si-

lenced group had fewer CD11b+CD206+F4/80+ cells

(M2) than the control group (Fig. 3D,E, P = 0.021).

Combined, these results indicate that RACK1 inhibits

macrophage activation but increases the proportion of

M2 macrophages.

Table 1. Baseline characteristics of the patients with OSCC in our

cohort.

Characteristic

Guangzhou cohort (n = 36)

P-value*n (%)

Age (mean � SD) 61.56 � 13.13

< 60 years 14 (38.89) 0.191

≥ 60 years 22 (61.11)

Sex

Male 25 (69.44) 0.070

Female 11 (30.56)

Smoking

Never 19 (52.78) 0.778

Ever 17 (47.22)

Drinking

Never 23 (63.89) 0.439

Ever 13 (36.11)

Differentiation

High 29 (80.55) 0.246

Moderate 6 (16.67)

Low 1 (2.78)

Tumor stage

T1 6 (16.67) 0.431

T2 16 (44.44)

T3 8 (22.22)

T4 6 (16.67)

Nodal stage

N0 17 (47.22) 0.355

N1–N3 19 (52.78)

Clinical TNM stage

I 4 (11.11) 0.858

II 10 (27.78)

III 11 (30.56)

IV 11 (30.56)

Surgery type

Local 2 (5.56) 0.669

Unilateral neck 29 (80.56)

Bilateral neck 4 (11.11)

Other 1 (2.78)

Radiotherapy

Yes 4 (11.11) 0.906

No 32 (88.89)

Chemotherapy

Yes 22 (61.11) 0.940

No 14 (38.89)

Radiotherapy or chemotherapy

Yes 24 (66.67) 0.962

No 12 (33.33)

*P-values of comparisons between studies were generated using a

mixed linear model for continuous variables and Chi-square test or

Fisher’s exact test for categorical variables.
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3.4. RACK1 expression in OSCC cells increases

the intratumoral M2/M1 ratio in an NF-jB
axis-dependent manner

To investigate differences in the expression of cytokines

in the conditioned medium from OSCC cells with or

without RACK1 expression, human cytokine and gene

arrays were performed. The levels of three cytokines,

CCL5, IL-6 and CSFs, were remarkably increased in

RACK1-ablated supernatant compared with those in

the control group (Fig. 4A). Furthermore, the gene chip

analysis also showed that the gene expression levels of

CCL5 and CSFs were remarkably increased after

RACK1 depletion (Fig. 4B,C, P < 0.05). TRRUST

(http://www.grnpedia.org/trrust/) was used to analyze

several related cytokines [RACK1, CCL2, CCL5, CSF2,

CXCL10, CXCL2, IL-1B, IL-6 and tumor necrosis fac-

tor (TNF)], and we found that NF-jB was the key pro-

tein in regulating these factors. These results were

confirmed with transfected OSCC cells and 293 cells by

western blot analysis. Compared with that in the control

cells, p-NF-jB was reduced in the RACK1-silenced

cells, whereas it was increased in the RACK1-overex-

pressing cells (Fig. 4D). To explore the effect of inhibit-

ing NF-jB activity, BAY 11-7082 was added to

conditioned media from HSC-3 cells. As a result, BAY

11-7082 significantly increased the proportion of M2

macrophages compared with DMSO (Fig. 4E,F,

P = 0.018). These results suggest that RACK1 decreases

IL-6, CCL5 and CSF levels and increases the M2/M1

ratio in an NF-jB axis-dependent manner.

4. Discussion

Oral squamous cell carcinoma has an intricate TME

that includes immune cells. Among these cells, TAM

(M2) are believed to participate in the development

and progression of OSCC (Fujii et al., 2012; He et al.,

Fig. 1. The M2/M1 ratio is positively correlated with the RACK level and is associated with a poor prognosis in OSCC. (A) IHC staining of 36

paraffin-embedded OSCC sections with human antibodies against RACK1 and CD206 (scale bar: 100 lm). (B) Statistical analysis revealed

that the expression intensity of RACK was positively correlated with the number of M2 macrophages (r = 0.698, P < 0.001). (C) Kaplan–

Meier survival analysis revealed that a high M2/M1 ratio indicated a poor OS in 36 OSCC patients (P = 0.0262). (D) TCGA database analysis

showed that a high M2/M1 ratio indicated a poor OS in human primary oral cancers (P < 0.01).
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2014; Kubota et al., 2017; Lei et al., 2016; Matsuoka

et al., 2015; Sato-Kaneko et al., 2017). Current studies

of macrophages in OSCC are not thorough and are

limited to IHC staining experiments. There have been

controversial conclusions about the relationship

between TAM and the prognosis of OSCC patients

(Alves et al., 2018). Our study revealed the correlation

between RACK1 and TAM and the underlying mecha-

nisms through a clinical cohort analysis and in vitro

and in vivo experiments. To exclude the influence of

other immune cells as much as possible, especially for

T cells, we used BALB/c nude mice, without mature T

cells but with macrophages, to construct the animal

model. Further investigation indicated that RACK1

could inhibit macrophage recruitment and increase the

M2/M1 ratio in an NF-jB axis-dependent manner,

thus promoting the development of OSCC.

The relationship between TAM and the prognosis of

OSCC patients is controversial. Although there is sub-

stantial evidence that a larger number of CD68+

macrophages indicates a poorer prognosis (Liu et al.,

2008; Lu et al., 2010; Ni et al., 2015), some reports

Fig. 2. RACK1 inhibits the capacity of OSCC cells to recruit macrophages. (A) Transwell migration and Transwell Matrigel invasion assays

used THP-1 cells in the upper chamber and infected OSCC supernatants in the lower chamber. The average numbers of migrated and

invaded cells were quantified (mean � SD; ***P < 0.001). (B) Transwell migration and Transwell Matrigel invasion assays used RAW264.7

cells in the upper chamber and infected OSCC supernatants in the lower chamber (scale bars: 200 lm). (C) The average numbers of

migrated and invaded RAW264.7 cells were quantified (mean � SD; ***P < 0.001).
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have suggested that there is no correlation (Costa

et al., 2013; Fang et al., 2017; Marcus et al., 2004). In

addition, Udeabor et al. (2017) found that there were

more M1 macrophages than M2 macrophages in most

OSCC tissues, but the M2 number was higher than the

M1 number in only 15% of the tissues. This result

may be associated with both the antitumor and tumor-

suppressive properties of TAM, and the composition

of TAM is different for different stages of OSCC.

Unlike the controversial conclusions about the correla-

tions between the total number of macrophages and

the prognosis of OSCC, most studies have supported

that more M2-type macrophages indicate a poorer

prognosis in OSCC patients (Balermpas et al., 2014;

Fujii et al., 2012; He et al., 2014; Hu et al., 2016; Mat-

suoka et al., 2015; Sakakura et al., 2016; Wang et al.,

2014b). Here, we found that the proportion of M2/M1

macrophages, but not the total amount of

macrophages, affects the prognosis of OSCC patients.

The results based on the TCGA database are consis-

tent with ours.

In the TME, the recruitment and polarization of

macrophages play an indispensable role in the develop-

ment of tumors (DeNardo and Ruffell, 2019). Previous

studies have revealed that various cytokines, such as

CCL2 (Eggert et al., 2016; Garzia et al., 2018; Hartwig

et al., 2017; Long et al., 2016; Shen et al., 2017; Tan

et al., 2018a; Tsai et al., 2018), CCL3/4/5/7 (Coma

et al., 2006; Mineharu et al., 2012; Yan et al., 2011),

CXCL12 (Mineharu et al., 2012; Yan et al., 2011),

VEGF (Horwitz et al., 2014) and PDGF (Dewar

et al., 2005; Yang et al., 2016), have chemotactic

effects on circulating monocytes. Accordingly, our

research provided evidence that the expression of IL-6,

CCL5 and CSFs in OSCC cells and the secreted IL-6

levels in cell supernatants were significantly higher in

Fig. 3. RACK1 inhibits macrophage activation but increases the proportion of M2 macrophages. (A) Immunoblots of p-mTOR, CREB,

p-CREB, PPARc, p-PPARc, p-ERK, STAT1, p-STAT1, c-Jun, STAT3, NF-jB and p-NF-jB in macrophages, induced from THP-1 cells by

100 ng�mL�1 PMA for 24 h, cocultured with infected OSCC supernatants for the indicated times (0, 0.25, 0.5, 1 and 2 h). (B) Macrophages

were induced from THP-1 cells by PMA following incubation with transfected OSCC supernatants (sh-NC, sh-RACK1, OE-Vec or OE-RACK1)

for 8 h. After centrifugation, the macrophages were stained with CD206 and CCR7 antibodies. The percentages and cell numbers of

different macrophages were analyzed using flow cytometry. (C) Analysis of the M2/M1 ratio of different THP-1-induced groups detected by

flow cytometry (mean � SD; *P < 0.05). (D) Single cells were isolated from tumor tissues using collagenase IV and then stained with

CD206, CD11b and F4/80 antibodies. The percentages and cell numbers of macrophages were analyzed using flow cytometry. R5: CD11b-

positive macrophages; E6: both CD206- and F4/80-positive macrophages (M2). (E) Analysis of the numbers of M0 and M2 macrophages in

tumor tissues from different groups detected by flow cytometry (mean � SD; *P < 0.05, **P < 0.01).
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the RACK1-silenced group than in the control group.

In other words, RACK1 could inhibit the expression

of IL-6, CCL5 and CSF in OSCC cells and their secre-

tion and then inhibit macrophage recruitment to the

TME of OSCC. Furthermore, during the polarization

process of macrophages, AP-1, NF-jB and STAT1

activation is required for M1 polarization, and mTOR,

PPARc/d and STAT6 activation is critical for M2

polarization (Czimmerer et al., 2018; Zhu et al., 2015).

Our study demonstrated that both M1 and M2 key

activation factors, such as AP-1, NF-jB, STAT1

mTOR, and PPARc, were significantly increased after

RACK1 was silenced in OSCC cells. Moreover, we

found that RACK1 could inhibit the recruitment of

macrophages and then induce a ‘large bang’ of inflam-

matory factors, which could induce M0 cell polariza-

tion into M1 or M2 macrophages and increase the

M2/M1 ratio. Thus, RACK1 could inhibit the recruit-

ment of macrophages, increase the ratio of M2/M1,

and create a chronic uncontrollable inflammatory envi-

ronment, which could affect the development and

metastasis of tumors.

In the TME, chronic and persistent inflammation

without obvious clinical symptoms, also known as

chronic smoldering inflammation, is the fundamental

cause of the occurrence and development of tumors

(Balkwill et al., 2005). Here, we revealed that RACK1

can inhibit the activation of NF-jB, consistent with

previous results (Yao et al., 2014). RACK1 can regu-

late the expression and secretion of proinflammatory

cytokines and macrophage chemotactic factors in

tumor cells, inhibit the massive recruitment of macro-

phages and severe inflammatory reactions, induce

chronic smoldering inflammation in the TME and pro-

mote the progression of tumors, which may be an

important reason why RACK1 promotes OSCC devel-

opment. Considering the plasticity of TAM and the

controversial relationship between the number of M0

and the prognosis of OSCC patients, targeting M2

macrophages instead of all macrophages may be a bet-

ter treatment strategy.

The present study clearly has limitations that must

be acknowledged. The RACK1 concentration and M2/

M1 ratio are positively correlated, but the mechanism

by which RACK1 promotes macrophage polarization

to induce TAM to differentiate towards an M2-like

phenotype requires further investigation. Last but not

least, whether RACK1 regulates NF-jB directly

remains to be explored.

5. Conclusions

In conclusion, our study demonstrates that RACK1

and M2 macrophages are upregulated and are associ-

ated with a poor prognosis in OSCC through a clinical

cohort analysis. Further investigation indicated that

Fig. 4. RACK1 increases the M2/M1 ratio in an NF-jB axis-dependent manner. (A) Human cytokine array analysis of the conditioned

medium from HSC-3 control cells and HSC-3 cells with RACK1 silencing for 36 h. (B) Unsupervised hierarchical clustering analysis by

complete linkage between si-NC- and si-RACK1-transfected HSC-3 cells for 36 h. (C) Analysis of CCL5, CSF2, CXCL10, IL-8 and CXCL2

mRNA levels in HSC-3 cells transfected with si-NC- or si-RACK1 for 36 h (P < 0.05). (D) Western blots for p-NF-jB and RACK1 in two

infected OSCC cell lines. (E) Macrophages were induced from THP-1 cells by PMA and cocultured with sh-NC HSC-3 cell supernatant (with

DMSO or BAY 11-7082 included) for 8 h. After centrifugation, the macrophages were stained with CD206 and CCR7 antibodies. The

percentages and cell numbers of macrophages were analyzed using flow cytometry. (F) Analysis of the M2/M1 ratio in different induction

groups (DMSO or BAY 11-7082) (mean � SD; *P < 0.05).
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RACK1 could inhibit macrophage recruitment and

increase the M2/M1 ratio in an NF-jB axis-dependent

manner, thus promoting the development of OSCC

(Fig. 5), suggesting that RACK1 could be used as a

potential therapeutic target for antitumor immunity.
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Fig. S1. M0 number is not correlated with OSCC

prognosis but is negatively associated with RACK1 at

the mRNA level. (A) OS according to CD68 protein

expression in a clinical cohort of OSCC patients

(n = 37, P = 0.9829). (B) OS according to CD68

mRNA expression in OSCC TCGA data (n = 460,

P = 0.5385). (C) Correlation between RACK1 and

CD68 mRNA expression in the TCGA database

(Spearman’s rank correlation coefficient r = �0.1249,

P < 0.01).

Fig. S2. The tumor volumes of the sh-RACK1 group

were smaller than those of the sh-NC group.
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