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Abstract: Cancer causes considerable morbidity and mortality across the world. Socioeconomic,
environmental, and lifestyle factors contribute to the increasing cancer prevalence, bespeaking a need
for effective prevention and treatment strategies. Phytochemicals like plant polyphenols are generally
considered to have anticancer, anti-inflammatory, antiviral, antimicrobial, and immunomodulatory
effects, which explain their promotion for human health. The past several decades have contributed
to a growing evidence base in the literature that demonstrate ability of polyphenols to modulate
multiple targets of carcinogenesis linking models of cancer characteristics (i.e., hallmarks and
nutraceutical-based targeting of cancer) via direct or indirect interaction or modulation of cellular and
molecular targets. This evidence is particularly relevant for the lignans, an ubiquitous, important class
of dietary polyphenols present in high levels in food sources such as flaxseed. Literature evidence on
lignans suggests potential benefit in cancer prevention and treatment. This review summarizes the
relevant chemical and pharmacokinetic properties of dietary polyphenols and specifically focuses on
the biological targets of flaxseed lignans. The consolidation of the considerable body of data on the
diverse targets of the lignans will aid continued research into their potential for use in combination
with other cancer chemotherapies, utilizing flaxseed lignan-enriched natural products.

Keywords: flaxseed lignans; dietary polyphenols; phytochemicals; cellular/molecular targets;
pharmacokinetics; chemopreventive; chemotherapeutic; hallmarks of cancer; quality of life

1. Introduction

The exploration of alternative strategies for cancer prevention and treatment has become necessary
owing to the high costs of current chemotherapies, prolonged time in regulatory authorization processes
for new cancer treatments, and the considerable expenditure associated with taking a medicinal agent
from bench to bed-side. Repositioning of noncancer therapeutics, such as plant polyphenols, to treat
cancer offers an alternate strategy to address these challenges. Such therapeutic interventions are
usually associated with lower costs and manageable toxicity with concomitant improvement in quality
of life. Plant polyphenols have a long history of proposed benefits in the prevention and treatment of
a chronic disease like cancer [1–4]. Although the evidence for health benefits of plant polyphenols
is available throughout the literature, the flaxseed polyphenols have gained increasing attention.
Flaxseed contains numerous nutrient and non-nutrient chemical constituents, like α-linolenic acid,
fiber, and lignans, which can support our well-being [5–20]. More recently, polyphenols of flaxseed—the
lignans—have sparked increased interest mostly attributing to their antioxidative, anti-inflammatory,
anti-atherosclerogenic, and antiestrogenic potential, thus suggesting ability to reduce risk and protect
against cancer [16,21–38]. Such attributes have compelled expansion of investigations into lignan
mechanisms of action.
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Plant lignans [39], different from lignins (racemic polymers that are components of the plant
cell wall [39,40]), are non-nutrient, noncaloric, bioactive phenolic plant compounds [39]. Diverse
lignanoid constituents from plant-based food resources [41], like secoisolariciresinol diglucoside
(SDG) [42], lariciresinol [41], isolariciresinol [43], 7-hydroxymatairesinol [44], matairesinol (MAT) [45],
pinoresinol, arctigenin, syringaresinol [46], and asarinin [47], can be precursors of enterolignans—the
mammalian-derived lignans—following oral consumption of plant lignans [39]. The primary intent
of this review is to consolidate the evidence of lignan pharmacokinetics and modulation of cellular
processes and cell signaling pathways within the cancer phenotype so as to provide opportunity to
direct future investigations into the role and benefit of the dietary polyphenols, specifically flaxseed
lignans, in the prevention and treatment of cancer (i.e., complementary and integrative medicine [48]).

2. Growing Use of Naturally Derived Products

Unsatisfactory results of Western medicine have given complementary and alternative treatment
options more attention [49]. Many patients rely on phytochemicals and herbal medicines (collectively
referred to as natural health products (NHPs) for the purpose of this review) for primary health care,
especially in the developing world [50]. In developed countries, NHPs are used to promote healthier
living [50]. Although several NHPs have promising effects with wide utilization, some remain untested
with clinical use unmonitored and undocumented [50], while some NHPs have safety concerns [51].
Existence of a regulatory framework for NHPs provides greater reassurance to consumers; however,
regulations and product quality specification vary among countries [49]. As an example, the Dietary
Supplement Health and Education Act (DSHEA) of 1994 provided the U.S. FDA the authority to
implement Good Manufacturing Practices (GMP) for dietary supplements and ensure safety of such
products, and the framework of the Federal Food, Drug, and Cosmetic Act, which led to the DSHEA,
provides the necessary framework needed by the Food and Drug Administration (FDA) to regulate
dietary supplements [52]. Additionally, in Canada, NHPs approved by Health Canada (e.g., herbal
remedies [53]) are regulated under the Natural and Non-Prescription Health Products Directorate [54].
This allows for large production and lower prices (due to competition) by companies, even though
NHPs are regulated somewhat similar to pharmaceutical drugs under the Natural Health Products
Regulation (NHPR). These regulations protect Canadians by ensuring that the products obtained meet
their health needs [55,56]. Regardless of the preclinical evidence of NHPs, translational capabilities
into the clinic can be hampered by similar factors encountered by drugs in development such as
the dose size and dosage forms and the variability in outcomes caused by gender, ethnicity, and
comorbidities [55].

3. Cancer, the Unmet Medical Need

Cancer was identified as an important human disease thousands of years ago [57]. In the
subsequent thousands of years cancer patients faced little hope for cure and survival, a situation
unchanged for some cancers and clearly an unmet medical need for these patients. Globally, cancer
contributes to considerable mortality with estimates projected to increase from 14 million new cases per
year in 2012 [2] to an estimated 19.3 million cases yearly by 2025 [58,59]. Colorectal, liver, breast, gastric,
prostate, cervical, and lung cancers remain the principal causes of cancer deaths [2], and the majority
of cancer related mortality occurs in low- and middle-income countries [60,61]. Surgery, radiotherapy,
and systemic therapy, which include general chemotherapy, hormonal therapy, immunotherapy, and
targeted therapies, are the current treatments of cancer [58]. In too many patients these treatments fail,
and cancer remains a major challenge to clinical interventions. A need exists to discover more effective
ways of targeting cancer and new avenues of disease management might offer some potential.

Today’s improved understanding of the characteristics of cancer offer renewed hope for treating
cancer. The pioneering work of Weinberg and colleagues to categorize the cancer characteristics into
distinct tumor properties, the so-called “Hallmarks of Cancer”, provide a framework around which
to rally the considerable scientific and technological advances to identify more effective treatments
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for different cancer phenotypes [62,63]. Among the different cancer characteristics, mutations enable
malignant cells both continuity and survival. These driver mutations stem from various mechanisms
including carcinogen exposure [57]. Carcinogenesis is a complex multifactorial and multistep process
separated into three closely related stages: initiation, promotion, and progression [64–67] (Figure 1). The
first stage, initiation, follows usually from carcinogen (or its metabolite) exposure and is traditionally
considered an irreversible step with one or more genetic alterations resulting from DNA mutations,
transitions, transversions, or deletions [65,68]. Promotion is the second stage and is considered
a reversible stage where the proliferation of neoplastic cells takes prominence [65]. This stage
does not involve DNA structural changes but rather changes in genome expressions brought out by
promoter–receptor interactions [68]. Tumor progression is the last stage where neoplastic transformation
occurs followed by tumor growth, invasion, and metastasis [65]. Stages of carcinogenesis are governed
by proto-oncogenes, cellular oncogenes, and tumor suppressor genes. These genes and their protein
products may serve as druggable targets for cancer treatment.

In order to reduce the incidence and mortality of different malignancies, effective preventive
strategies that impede tumorigenesis are needed [69]. Although the heterogeneity of tumors and tumor
development may pose a challenge for successful therapeutic interventions [70], the initial stages of
carcinogenesis is usually associated with a lower burden of molecular and cellular aberrations such
that chemopreventive or early chemotherapy is more likely to achieve therapeutic efficacy as compared
with treatment of more advanced stages of tumorigenesis [70]. Furthermore, it is well known that
cancer development and progression is associated with inflammation. Hence, early preventive or
treatment strategies should include anti-inflammatory therapies. While recruitment and activation of
inflammatory cells due to mutations that initiate cancer may trigger cancer-intrinsic inflammation,
a multitude of factors (e.g., toxin exposure, microbial infections, autoimmune disease, and obesity)
are responsible for cancer-extrinsic inflammation [71]. Epidemiologic studies reveal that ~20% of all
cancers emerge as a direct result of long-standing inflammatory disease [71–73]. For these reasons
inflammation is a frequent mechanism of action for diverse cancer risk factors [71]. Therefore, various
anti-inflammatory agents such as selective cyclooxygenase-2 inhibitors, nonsteroidal anti-inflammatory
drugs, and natural health products with anti-inflammatory properties have been identified as potential
chemopreventive agents [69,71,74–79].

4. Cancer Prevention

The sequence of events in the multistage process of carcinogenesis provides opportunities for
intervention with the goal of preventing, reversing, or delaying tumor development and progression [80].
Interventions generally fall into three categories of prevention, namely primary (preventing disease or
injury), secondary (reducing impact of disease or injury), and tertiary (reducing impact of ongoing
disease or injury having lasting consequences) [81–88]. These categories are based on the concept of
chemoprevention first proposed in the early 1970s by Sporn [85,89], and extended by Wattenberg, who
suggested the selective inhibition of carcinogenesis in any of the phases of cancer—initiation, promotion,
or progression [90,91]. Primary chemopreventives block the disease by inhibiting mutagenesis, cancer
initiation, and tumor promotion [65]. During early stages of tumorigenesis, secondary chemopreventive
agents inhibit tumor progression by interfering with signal transduction, hormones, angiogenesis,
antioxidant activity, and immune status [65]. The third class promotes chemoprevention by blocking
cancer invasion and metastasis in patients usually after initial therapy [65] through mechanisms
including activation of antimetastatic processors and modulation of cell adhesion factors or extracellular
matrix degradation components [3,65,88] (Figure 1). However, interventions that interfere with all
three phases will likely bring about a more meaningful degree of cancer prevention [81].
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Figure 1. Polyphenolic phytochemicals (e.g., lignans) block and suppress carcinogenesis. Carcinogenesis
is a multistage process of initiation, promotion, and progression. Carcinogens may initiate carcinogenesis
by causing the conversion of a normal cell into an “initiated cell”, a process that is irreversible and
involves genetic mutations. Initiated cells further transform into pre-neoplastic cells during the stage of
promotion, and subsequently progress into neoplastic cells. Polyphenolic phytochemicals are capable of
interfering with cellular and molecular processors in various stages of carcinogenesis. Phytochemicals
may block cancer initiation through inhibition of procarcinogen activation into electrophilic species
and their subsequent interaction with DNA. Alternatively, phytochemicals can stimulate carcinogen
detoxification and their subsequent elimination from the body. Phytochemicals may suppress cancer
by interfering with cancer promotion (a reversible process that involves nongenetic changes) or by
regulating cancer progression, a complex process that involves both genetic and nongenetic changes as
well as cell survival. Some polyphenols can act as blocking agents; others act as both blocking and
suppressing agents, and some function as suppressing agents to modulate autophagy, cell cycle, and
differentiation, thus affecting cancer cell proliferation. Adapted from references [3,4,67].
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In general, chemoprevention can be achieved through reduction in bioactivation of procarcinogens,
obstruction of expansion of additional malignant cells, or through suppression of metabolism of
specific compounds to reduce toxicity [4,92]. This understanding has led to four notable categories
of chemoprevention and include medications, hormones (i.e., antiestrogens and antiandrogens),
vaccines, and dietary agents [93]. Only a handful of agents have been clinically approved for cancer
chemoprevention (e.g., the anti-inflammatory drugs, aspirin, celecoxib and diclofenac) [70,71], with
several others suggested as possible chemopreventive agents (e.g., the anti-hypercholesterolemic statins,
the antidiabetic drug metformin, and antiosteoporosis bisphosphonates) [94]. The complexity associated
with cancer pathogenesis has otherwise limited our ability to identify primary, secondary, or tertiary
interventions that effectively reduce cancer risk or progression. The cost of patient survival and quality
of life, though, continue to drive research into effective chemopreventive interventions [70,71,91,95].

An active avenue of research in chemoprevention involves natural chemicals derived from
plants (i.e., phytochemicals). Over 80,000 species of plants are utilized in healthcare management,
while more than 60% of the existing anticancer drugs come from nature [96]. The broad selection of
biologically active, structurally different natural compounds continues to aid the process of cancer drug
discovery with respect to chemoprevention and chemotherapy [97,98]. An abundance of phytochemical
constituents with preventive anticancer properties against cancers such as lung, breast, ovarian, prostate,
thyroid, and colon have been reported throughout the literature [92,99–109]. These phytochemicals
have not seen wide application despite the limitations of current treatment methods [110] as general
Western practices often dismiss their value for patient treatment. For this reason, researchers covering
a wide area of health research have turned their focus on alternate ways to address the issues related to
general western practices and to capitalize on the protective effects of phytochemicals [111].

5. Alternate Approaches to Malignant Disease

The Halifax Project—an international task force comprising of 180 scientists—has posed a
“broad-spectrum therapeutic approach” as an alternate low-toxicity strategy to mitigate the problems of
cancer chemotherapy [58]. Following from a rigorous examination of the cancer hallmarks, this
interdisciplinary group identified 74 high-priority targets. Many of the suggested therapeutic
approaches for these targets were phytochemicals with evidence of low toxicity [58]. Such
phytochemicals are also commonly considered complementary and alternative medicines (CAMs), and
are associated with integrative medicine. For cancer, integrative medicine is based on a foundation of
lifestyle therapies, drawing attention to diet, dietary components, and physical activity [58,112,113]. It
focuses on patient quality of life and demands marshalling of all therapeutic and lifestyle strategies
to ensure the best outcomes and optimal health of the patient [112,114]. Phytochemicals as CAMs
should be included as a strategic lifestyle intervention in a broad-spectrum approach to cancer disease
management [58]. Already, the potential psychological and socioeconomic benefits of CAM use is
exemplified by studies that report 32–66% of cancer patients having used cost-effective CAMs as a
means to improve quality of life and therapeutic outcomes [115]. Furthermore, studies employing
a combination of clinically relevant chemotherapeutic drugs with natural bioactive compounds
demonstrate enhancement in antitumor effects and reduction in side-effects [111,112,116]. Some reports
also document the potential of phytochemicals in overcoming chemoresistance and radioresistance
of malignant cells [111,117]. Hence, the repositioning of traditionally considered “noncancer”,
nontoxic phytochemical therapies with promising antineoplastic characteristics may help achieve
better therapeutic outcomes and reduced toxicity profiles [118]. Convincing practitioners of this
broad-spectrum therapeutic approach will be important to ensure a larger number of patients achieve
improved quality of life and cancer treatment outcomes with phytochemical interventions.

6. Potential of Dietary Phytochemicals for Malignant Disease

The World Health Organization (WHO) reported that approximately 65% of the world’s population
relied on plant-derived drugs for their primary health care by 1985 [119]. These therapies demonstrate
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potential, but their safe and rational use in Western medicine is limited by a lack of rigorous
scientific investigation of their potential therapeutic and adverse effects, mechanisms of action,
and interactions with pharmaceuticals and functional foods [50]. Although the use of dietary
phytochemicals in cancer treatment has had a long history, their efficacy is variable due to their
complexity, their poorly defined targets and modes of action, and lack of knowledge of effective
doses [120]. Nonetheless, a number of phytochemicals have been applied successfully in the clinical
setting such as metformin and nonsteroidal anti-inflammatory drugs (NSAIDs) [121,122]. As well, the
complexity and diversity in structure of phytochemicals make these compounds an often exploited
scaffold to aid the discovery and synthesis of analogs that share similar structures but with improved
and modified efficacy [123–125]. High-throughput screening (HTS), a specialized tool using automation
to screen compound libraries against the drug target within a short period of time [126], has made
the rediscovery of phytochemicals even more feasible [55]. The pleiotropic, multitarget effects of
phytochemicals as well as polypharmacology also resonate within the emerging paradigm in drug
discovery [127–130]. These factors identify dietary phytochemicals as an invaluable resource for new
treatment options in current unmet medical needs, such as cancer. Yet few randomized clinical trials
document the use of dietary phytochemicals in combination with standard of care treatments against
human malignancies. An ability of phytochemicals to enhance the efficacy of standard treatments
against cancer warrants an investigation into the wide range of biologically active compounds that
have been isolated, identified, and tested for their application as treatments for cancer [131].

6.1. Dietary Polyphenols as Principal Phytochemicals for Malignant Disease

An inverse relationship exists between the high consumption of fruits and vegetables and a
reduced risk of cancer [132,133], with an average 35% of all human cancer mortality directly attributed
to diet [4,134]. Such statistics prompted organizations such as the WHO, the American Cancer Society
(ACS), the American Institute of Cancer Research (AICR), and the U.S. National Cancer Institute (NCI) to
establish dietary guidelines in an attempt to reduce cancer risk [4]. These guidelines are complemented
by ongoing clinical trials that investigate diet and dietary supplements for the prevention of cancer [4].
Although food is generally perceived as providing nutritional value, phytochemicals have an additional
potential to modulate molecular and cellular targets [135]. Their influence on biological function
suggests that institution of an adequate, economical, and rapid system for evaluation and testing of
phytochemicals with potential anticancer properties may augment the current dietary guidelines or
identify lead compounds for drug discovery in different cancer phenotypes [96,136].

Phytochemicals (“phyto” in Greek means plant) are bioactive non-nutritive chemical components
of plant-based diets such as fruits, vegetables, nuts, and grains [4,137] produced as primary and
secondary metabolites of the plant [65]. These are generally classified into polyphenols, alkaloids,
carotenoids, and organosulfur compounds [135,138] (Table 1). Primary metabolites are involved in plant
functions such as respiration, development and photosynthesis, while secondary metabolites play a role
in defense against herbivores and pathogens, attracting pollinators, and protection against ultraviolet
radiation [139]. These secondary metabolites can have benefit in vertebrates as chemopreventive
agents, drugs, herbicides, and antibiotics [65,139], and their chronic exposure is suggested to have
health benefits for neurodegenerative disorders, cancer, diabetes and cardiovascular disease [140–142].
Polyphenols are an important class of beneficial secondary metabolites found in food and drink sources
from vegetables, fruits, nuts, spices, grains, coffee tea, and wine [65].

Plant polyphenolic secondary metabolites are synthesized from carbohydrates through the
shikimate pathway [143,144]. Although these metabolites may exist as insoluble or bound forms [144],
they are present generally as glycosylated forms with single or multiple sugar or carbohydrate residues
conjugated to a hydroxyl functional (–OH) group or an aromatic ring involving a co-translational or
post-translational enzymatic process. Over 8000 plant-based polyphenols have been identified [65,145],
and are divided into a number of classes based on chemical structure, source, and biological function
including the flavonoids (flavonols, flavones, flavanones, catechins, anthocyanidins, and isoflavones),



Pharmaceuticals 2019, 12, 68 7 of 64

phenolic acids (benzoic acids and cinnamic acids), stilbenes, lignans, coumarins, tannins, and other
polyphenols (e.g., curcumin, rosmarinic acid, gingerol) [137,139,141,146]. More broadly, polyphenolics
can be classified as either being flavonoid and nonflavonoids based on their abundance [65,139].
There are over 4000 types of diverse flavonoids accounting for ~60% of structurally-related dietary
polyphenols [80,141], while ~30% of dietary polyphenols are phenolic acids (i.e., hydroxy-cinnamic
and hydroxy-benzoic acids) [80,141]. Flavonoids, phenolic acids, stilbenes and lignans are the most
abundantly occurring plant polyphenols [80].

Table 1. The classification of phytochemicals. Adopted from references [135,138,139].

Classification Representative Members Examples of Dietary
Sources

Poly-Phenolics

Phenolic Acids
Hydroxycinnamic

acids
p-Coumaric, caffeic, ferulic,

sinapic

Barley, eucalyptus, coffee,
Arabidopsis, Hibiscus,

cereal grains

Hydroxybenzoic
acids

Gallic, vanillic, syringic,
ellagic

Chestnuts (boiled or
roasted), witch hazel, tea
leaves, oak bark, rhubarb,

pomegranate, grapes,
chocolate, wine

Lignans Plant Lignans

sesamin, secoisolariciresinol
diglucoside, lariciresinol,

isolariciresinol,
7-hydroxymatairesinol,

matairesinol, pinoresinol,
arctigenin, syringaresinol,

asarinin

Flaxseed, pumpkin,
sunflower, poppy, rye,
oats, barley, wheat, oat,

rye, berries

Mammalian
Lignans

(enterolignans)
Enterodiol, enterolactone

Stilbenes Grapes

Other Phenolics Coumarins Tonka bean, vanilla grass

Tannins Eucalyptus, geranium

Flavonoids

Flavonols Quercetin, kaempferol,
myricetin

Aloe Vera, European
elderberry, soy, St John’s

wort, tomatoes, red onions

Flavones Apigenin, luteolin
Celery, parsley, chamomile
tea, green peppers, thyme,

oregano

Flavanols
(catechins)

Catechin, epicatechin,
epigallocatechin gallate

White tea, green tea,
persimmon, pomegranate,

cocoa beans

Flavanones Eriodictyol, hesperetin Citrus fruits, rose hip,
mountain balm

Anthocyanidins Cyanidin, pelargonidin,
malvidin

Grapes, berries, red
cabbage, red onions,
plums, kidney beans,

geranium

Isoflavonoids Genistein, glycitein Lupin, fava beans, soy,
coffee

Alkaloids Poppy, tomatoes, potatoes

Carotenoids

α-carotene,
β-carotene, lutein,

zeaxanthin,
lycopene

Carrots, broccoli, spinach,
zucchini

Organosulfur
compounds

Isothiocyanates,
indoles, allyl

sulfur compounds

Cabbage, broccoli, spinach,
garlic, onions
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The literature provides ample evidence for the anticancer properties of polyphenols [2,140,147–150].
The key anticancer characteristics of polyphenols include anti-inflammatory and antioxidative
effects, immunomodulation, and modulation of molecular/cellular targets within signaling pathways
involved with cell proliferation, survival, differentiation, angiogenesis, migration, and hormonal
activities [2,151,152]. In general, the pleiotropic effects of dietary polyphenols usually follow from
their multitarget effects having the ability to impact an entire process or several processors of the
malignant disease condition or status. Polyphenols typically exhibit low to moderate affinity for
their targets. However, their ability to simultaneously modulate multiple targets with low affinity
is suggested to account for their effects in the cancer phenotype [153,154]. Since bioactivity is not
only dependent upon the interaction of the polyphenol with its target sites, but also on the chronic
exposure to the polyphenol, the increasing popularity of polyphenols have led to the emergence of
two new terms, ‘nutridynamics’ and ‘nutrikinetics’ [155,156]. These terms, similar in meaning to
drug pharmacodynamics and pharmacokinetics, are expected to make significant contributions in
our understanding of the relationship between disease phenotypes and bioactivity, as well as the
interplay between chronic exposure and the host’s physiology including digestion, metabolism, and
gastrointestinal microflora [157,158].

6.2. General Properties of Polyphenols and Evidence on Health

As drug discovery efforts continue to move away from single target drugs, the multitarget
characteristics of polyphenols, such as the lignans, warrant further attention to fully grasp their
potential use in the clinic. Diet-derived polyphenols have gained popularity among nutritionists,
food scientists, and consumers during recent years for their health-promoting and chemopreventive
properties [141,159]. The beneficial effects on human health by long-term polyphenol rich diet
consumption is linked to the modulation of cell proliferation, body weight, chronic disease, and
metabolism [160]. The antioxidant and anti-inflammatory potential of polyphenols as indicated in
animal, human, and epidemiologic studies, suggest chemopreventive or therapeutic effects for a number
of noncommunicable diseases such as neurodegenerative disorders, obesity, diabetes, cardiovascular
disease, osteoporosis, gastrointestinal issues, pancreatitis, and cancer [160–162]. Overconsumption of
dietary polyphenols, especially when they are not consumed in a form of a food matrix, though, may
result in adverse effects on health [160,163,164]. Our understanding of the mechanisms underlying the
potential health benefits largely arise from in vitro studies and, therefore, a certain degree of uncertainty
exists if these mechanisms hold true in human patients [160,165–168]. Nonetheless, polyphenol
mechanism of action has greater complexity than the long standing belief that polyphenols form
stabilized chemical complexes to negate free radicals and prevent further reactions [160,169], or result
in the production of hydrogen peroxide (H2O2) for protection against oxidative stress to aid in the
immune response and modulate cell growth [160,169,170].

6.2.1. General Pharmacodynamic (or Nutridynamic) Effects of Polyphenols

In general, nutridynamic effects of polyphenols can be broadly summarized and grouped
based on the following general molecular mechanisms [92]; (a) modulation of phase I and II drug
metabolizing enzymes (e.g., cytochrome P450s and UDP-glucuronyltransferases) [69,80,141,171–173];
(b) inhibition of reactive oxygen species and modulation of antioxidant activity [4,141,171,174–176];
(c) inhibition of multidrug resistance (e.g., c-Myc and HDACs) [4,80,141,176,177]; (d) modulation of
inflammation [69,141,172,175,177]; (e) modulation of androgen and estrogenic activity [141,176,178–181];
(f) inhibition of tyrosine kinases [80,141,176,177,182]; (g) modulation of matrix metalloproteinases,
epithelial-to-mesenchymal transition [183], and metastases [80,91,141,172,177]; (h) modulation of
angiogenesis [91,141,171,177,184]; (i) inhibition of cell cycle regulators and induction of cell cycle
arrest [80,141,171,177,185]; (j) induction of apoptosis [80,91,141,171,175]; (k) inhibition of cell growth
and proliferation [91,141,174,175,177]; (l) modulation of endoplasmic reticulum-stress and type II
programmed cell death or autophagy [141,175,176,185–187]; (m) modulation of mitogen-activated protein
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kinases [69,141,171,176,177]; (n) modulation of PI3K-AKT signaling [4,69,141,177,185]; (o) modulation of
JNK pathway [80,141,176,177,185]; (p) modulation of glucose and lipid [69,171,174,185,188,189]; and (q)
hepatoprotective effects [190–194]. However, only a few polyphenols (e.g., flavonoids) have gained
approval as NHPs, some with defined health claims, and none have been widely approved for clinical
use [92].

6.2.2. General Pharmacokinetic (Or Nutrikinetic) Characteristics of Polyphenols

Absorption and disposition (i.e., nutrikinetics) characteristics play an important role in exposure
to dietary polyphenols and their eventual therapeutic effects. With oral consumption, nutrikinetic
processes ultimately determine the concentration and persistence of polyphenolic compounds at
their target sites. Since both genetic and epigenetic factors influence the nutrikinetics of polyphenols,
these factors often result in considerable interindividual variation in blood and tissue exposure
levels [137,195–200]. Despite the importance of nutrikinetics as a determinant of polyphenolic action,
only a handful of in vivo studies have systematically addressed the factors that contribute to the
differences in their absorption and disposition characteristics [137].

Dietary polyphenols must become systemically available to influence cancer treatment. Many
plant polyphenols first undergo modification by gastrointestinal enzymes and/or bacteria to produce
metabolites that are more or less systemically biologically active. The initial metabolic transformations
typically involve deglycosylation to release aglycones into the gastrointestinal tract lumen following
enzymatic breakdown of polymeric forms with subsequent deconjugation of monomeric forms
by β-glucosidases on the brush border membrane or by the resident (small intestine and colon)
gut bacteria [137,143,144]. These aglycones may undergo absorption or be further subjected
to microbial enzymatic transformations including ring fission, α/β-oxidation, dihydroxylation,
dehydrogenation, and demethylation reactions [137,144,201–203], with their subsequent absorption
from the gastrointestinal lumen. Given their interactions with intestinal bacteria, polyphenols also
can induce intestinal microbial changes [144], with reports that identify a polyphenol–gut microbiota
interaction that either contributes to or prevents the development of disease [144,204,205].

During their permeation across the intestinal epithelium or with passage through the liver,
aglycones or their metabolites may undergo extensive first-pass metabolism. These metabolic
transformations typically involve conjugation reactions, with glucuronic acid or, to a lesser extent,
with glutathione or sulfate [137]. UDP-glucuronosyltransferases (UGT), sulfotransferases (SULTs), and
glutathione-S-transferases (GST) carry out conjugation reactions in both enterocytes and hepatocytes
to produce conjugates that are excreted into the bile or become systemically available with subsequent
excretion by the kidney into the urine [137]. Conjugates excreted into bile may undergo enterohepatic
recycling making available the nonconjugated form for absorption following deconjugation by intestinal
and/or microbial β-glucuronidase [137]. Typically, the aglycones are more biologically active, but the
glycosidic forms, and rarely the glucuronide conjugates, have biological activity [137,206–213].

An important consideration in the oral bioavailability of phytochemicals is the role of intestinal
epithelial transporters. Plasma membrane ATP-binding cassette (ABC) transporters play a vital
role in the systemic availability of a number of dietary polyphenols or their metabolites. These
ATP-dependent transmembrane efflux transporters are expressed on the apical or basolateral epithelial
membrane, depending on the isoform. On the basolateral membrane, ABC transporters actively efflux
phytochemical conjugates from intestinal cells (where conjugation occurred) into the portal blood
supply. When expressed on the apical side of the epithelium, ABC transporters efflux phytochemicals
back into the intestinal lumen to cause reductions in oral bioavailability [137]. P-Glycoprotein
(Pgp/ABCB1/MDR1), multidrug resistance proteins (MRPs/ABCCs), and the breast cancer resistance
protein (BCRP/ABCG2) are the key ABC efflux transporters [137,214,215] known to influence systemic
availability of a number of dietary polyphenols [216,217]. For example, enterolactone is a substrate and
competitive inhibitor of ABCG2 [218]. These ABC transporters exhibit several genetic polymorphisms
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that may influence the systemic availability of these compounds, which can contribute to considerable
interindividual variation in their oral bioavailability [219–221].

Members of the solute carrier (SLC) family of transporters also contribute to the intestinal
epithelial uptake of certain dietary polyphenolic compounds. The polar glycosidic forms of the dietary
polyphenols typically exploit SLC transporters to ensure their systemic availability [142,222–225].
Glucosides could be transported into enterocytes by sodium-dependent glucose transporters (SGLT)
such as SGLT-1 [142]. Once inside they can be hydrolyzed by cytosolic β-glucosidase to their aglycone
forms [142]. Additionally, in the small intestine brush border membrane, extracellular hydrolysis of
several glucosides can be carried out by lactase phloridzine hydrolase [142]. Although it is speculated
that both enzymes are involved this process, their relative contribution towards different glucosides is
unknown [142]. The aglycone metabolites have sufficient lipophilicity for passive diffusion to be the
principal transport process during absorption. However, some polyphenols show ability to inhibit
SLC transporters to influence the uptake of substrates of such transporters [215].

The relatively limited information on the tissue distribution of dietary polyphenols largely comes
from preclinical evaluations with rodent models. Polyphenol compounds generally accumulate in
highly perfused tissues such as the liver, kidney, heart, lung, and intestine, and many are present
predominantly in their conjugated forms [142,145,226–231]. Tissue specific accumulation is observed as
well, as is the case for flaxseed lignans which accumulate in prostate and breast tissue [232,233]. Extent of
plasma protein binding, which can function to limit availability of polyphenols to tissue sites depending
upon relative affinity between plasma protein and tissue binding sites, tends to increase with increasing
lipophilicity of the compounds [213,230,234–237]. However, the polar conjugates of dietary polyphenols
exhibit very limited plasma protein binding characteristics. Finally, expression of ABC transporters
at tissue–blood barriers might limit access of certain polyphenols to such tissues preventing their
accumulation and possible activity at such sites. For example, tumor cells typically overexpress ABC
transporters to restrict access of a broad range of chemically unrelated pharmacological therapeutics
to the cancer cell (aka multidrug resistance or MDR) [215]. ABC transporters also function to reduce
intracellular concentrations of polyphenols, but as competitive inhibitors [215] polyphenols may
enhance the cellular concentration and pharmacological response of chemotherapeutic drugs [238–240].

Most polyphenols are eliminated by intestinal and hepatic metabolism [241,242]. Aglycones of plant
polyphenols that bypass first-pass metabolism are typically eliminated via hepatic phase II metabolism
with the subsequent excretion of these metabolites by the biliary or renal system [241–243]. First-pass and
systemic phase II metabolism are typically considered inactivation processes that result in loss of biological
activity [241]. Very limited phase I metabolism occurs yielding primarily aromatic hydroxylated metabolites
largely mediated by the cytochrome P450 enzyme superfamily [241,244,245]. These hydroxylated
metabolites undergo further phase II conjugation and subsequent excretion by the kidney [241,242].
Given the extensive first-pass metabolism and ability to undergo enterohepatic recirculation, fecal excretion
represents a major route of elimination of many dietary polyphenols, while fecal and urinary excretion is
the principal route of elimination for the metabolites of polyphenols [231,241,246].

7. Challenges Associated with Cancer Prevention and Dietary Polyphenols

Screening, early detection, and chemoprevention are widely accepted as the major strategies to
address the burden of cancer [85]. Chemoprevention as a major strategy is viewed less optimistically, as
there exists a lack of clear understanding of the benefits of chemoprevention. The clustering of various
approaches including dietary manipulation, NHPs such as polyphenols, and repurposed “benign
drugs” into the idea of chemoprevention has done little to mitigate the uncertainty associated with the
value of chemoprevention in reducing cancer risks [85]. Nonetheless, preventive strategies support the
rationale for the early disruption of the carcinogenic process, which can avoid the treatment difficulties
arising with the complexity and heterogeneity of more advanced stage cancers [85]. Chemoprevention
has potential to address the many intrinsic genetic, epigenetic, and environmental factors that influence
individual risk for cancer [85,247–252]. Hence, a basic rethinking of the nature of carcinogenesis
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as proceeding in a nonlinear fashion with irregular interruptions owing to changes in genetics and
epigenetics [85] may benefit and expand the understanding and application of chemoprevention [85].

A variety of obstacles have hindered the development of dietary polyphenols as clinically
approved chemopreventives. There has been a general inability to confirm their effect in reducing
cancer risk due to a number of factors that include the lack of appropriate experimental models, the
costs and time associated with epidemiological studies, as well as variations in length of exposure and
adherence data in clinical populations, difficulties in evaluating the dietary intake of polyphenols, the
variation in composition of polyphenols among different dietary sources, degradation or alteration of
polyphenol chemical structures that may result in loss of bioactivity, variability and unpredictability in
pharmacokinetic profiles, the impact of the microbiome on polyphenol bioactivity, and drug–polyphenol
interactions [92,160,230,253–260]. To address these obstacles, research is focusing on improved
extraction and purification methodology [92,261–264], development of microbial production systems for
plant polyphenols [265–270], formulation of polyphenols into micro- or nanodelivery systems [271–274],
development of antibody directed enzyme prodrug therapy approaches [275–278], administration
of glycosidic derivatives [92,279,280], use of bioenhancers [281–283] or specific ATP binding cassette
transporter inhibitors [92,284], use of antibiotics or other natural products to modulate intestinal
microflora [260,285], development of novel polyphenol derivatives by modification of chemical
structures [286–290], and polyphenol complexing with protein or phospholipids [92,291–295]. To date
though, much of the investigation into polyphenols have involved in vitro evaluations and a sparsity
of clinical trials using well-defined amounts of polyphenolic compounds [296] suggests a need for
well-conducted clinical investigations to resolve their safety and efficacy as chemopreventives. The
substantive evidence that exist beyond their publicized antioxidant properties [259,297], for their
selective actions on a plethora of cellular and molecular signaling pathways, warrant their investigation
in human clinical populations so that we may realize the health benefits of polyphenols in chronic
diseases such as cancer [298–301].

8. Polyphenols of Flaxseed as Important Phytochemicals in Malignant Disease

Flax is well known for its usefulness as a source for industrial oil and fiber [109,302]. Canada
and the United States are among the top producers of flax [15]. Flaxseed is considered to be a
multicomponent system consisting of plant-based dietary fiber (insoluble 20–30% and soluble fiber
9–10%), oil (triacylglyceride fatty acid typically include linolenic 52%, linoleic 17%, oleic 20%, palmitic
6%, and stearic 4% acids), minor lipids and lipid-soluble components (tocopherols, monoacylglycerides,
diacylglycerides, sterols, sterol-esters, phospholipids, waxes, free fatty acids, and carotenoids), protein,
soluble polysaccharides, vitamins, minerals, lignans, and other phenolic compounds [15,303,304].
Various flaxseed products, such as whole and ground flaxseed, defatted flaxseed meal, and flaxseed oil,
are available with suggested health benefits [305–314] and even health claims [308,315–318]. Although
these products contain a number of bioactive substances including α-linolenic acid and the linusorbs
(cyclolinopeptides) [5,319–321], lignans receive increasing attention for their health effects [322].

The lignans of flaxseed were once marketed in a highly concentrated standardized formulation as
BeneFlax®, a ∼38% secoisolariciresinol diglucoside (SDG)-enriched product (Archer Daniel’s Midland)
approved by both the U.S. Food and Drug Administration Agency and Health Canada that ensured a
significant source of lignan with oral consumption [323]. BeneFlax® demonstrated good tolerability
and safety with long-term supplementation [323,324]. Additionally, Goyal et al. exhaustively listed the
traditional and medicinal uses of different flax forms such as flaxseed tea, flaxseed flour and flaxseed
drink for various health conditions as well as of various medicinal preparations using flaxseed oil [15].
Flaxseed oil, whole seed, ground whole seed, fully defatted flaxseed meal, partially defatted flaxseed
meal, flaxseed hulls, flaxseed mucilage extracts, flaxseed oleosomes, and flaxseed alcohol extracts
are among the many different types of available flaxseed products for consumption [304]. However,
most of these commercially available products contain insufficient amounts of lignan, with levels of
consumption unlikely to achieve therapeutic concentrations. The use of such products containing
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relatively modest to low lignan levels in studies investigating the health effects of lignans have
contributed to inconclusive and unsatisfactory results of flaxseed lignan interventions [325–329]. The
mounting preclinical and clinical evidence, though, suggests a need to revisit the requirement for lignan
enriched products, particularly as the role of flaxseed lignans against chronic disease such as cancer
continues to attract increased attention [22,33,303,330–347]. These include detailed investigations into
the molecular mechanisms in order to relate to lignan safety and efficacy in malignant disease.

8.1. Lignans of Flaxseed

Naturally occurring plant lignans are present in vegetables, fruits, and whole grains [22], although
the major source is flaxseed (the richest known source with 9–30 mg per gram, with lignan production
at 75–800 times over other sources [28,348]) followed by sesame and rye bran [349]. The seed of Linum
usitatissimum (Linum, a Celtic word for lin or “thread,” and usitatissimum, a Latin word for “most
useful” [302]) contains a rich source of the plant lignan, secoisolariciresinol diglucoside (SDG) [350],
and contains minor amounts of other lignans [351,352] and cyanide-containing substances [213,303,353].
Biosynthesis of lignans in flaxseed is reported to occur through the following pathways that include
phenylpropanoid pathway, stereospecific coupling by dirigent proteins, biosynthesis of dibenzylbutane
lignans, and glycosylation of lignans into SDG [6,354–356]. SDG primarily exists in the seed hulls [350]
with an average of 32 nmol/mg hull compared with 9.2 nmol/mg in the other parts of the seed [357].
Flax is an old agronomic crop with over 300 species [318]. Newer cultivars, though, can contain higher
concentrations of lignans in the hull [358,359]. Differences in climatic conditions and methods of
cultivation can influence the percentage composition of the various bioactive compounds [213,360,361].
In 1956, Bakke and Klosterman were first to isolate SDG from flaxseed [213]. However, scientific
interest grew in the early 1970s with the discovery of enterodiol and enterolactone, later referred to as
the mammalian lignans [362,363] when Axelson et al. identified SDG as the precursor for mammalian
lignans [213,364]. Traditionally, plant lignans are considered phytoestrogens along with stilbenes and
flavonoids containing the dibenzyl butane scaffold [213,365,366]. Today, lignan interest as potential
bioactive compounds goes beyond the long-held belief of estrogenic effects as their health benefits
undergo further scrutiny at the molecular level.

8.2. Chemistry and Pharmacokinetics (or Nutrikinetics) of Lignans

Lignans are a complex class of polyphenolic bioactive phytochemicals. Lignans can be described
as stereospecific dimers of monolignols (aka cinnamic alcohols) bonded at carbon 8, which can
exist free or bound to sugars in plants [39]. Secoisolariciresinol, syringaresinol, and pinoresinol are
commonly found lignan diglucosides [39]. The major lignan, SDG, exists as two enantiomers—(+)
and (-)—with varying distribution in different Linum species where some species predominatly
contain one of the two enantiomers, while others contain both (e.g., L. elegans and L. flavum) [6,302].
Additionally, hydroxycinnamic acid derived monolignols can be dimerized into lignans (monolignol
dimers) or polymerized into lignins (insoluble dietary fibers composed of p-coumaryl, coniferyl, and
sinapyl hydroxycinnamic alcohol large polymers [367,368]) [39]. Although lignans are not categorized
as dietary fibers, lignans and lignins share some chemical characteristics [39,369]. Mataresinol
(MAT), SDG, lariciresinol, and pinoresinol are the most common plant lignans, but the lignans
arctigenin, syringaresinol, cyclolariciresinol (isolariciresinol), medioresinol, 7′-hydroxymatairesinol,
and 7-hydroxysecoisolariciresinol, sesamin, and the lignan precursor sesamolin, can also exist in
plant-based food [39,138,370].

Flaxseed lignans are formed by the coupling of two coniferyl alcohol residues that become
integrated into an oligomeric polymeric structure, termed the lignan macromolecule [371,373,374]
(Figure S1). This polymer complex is composed of five SDG structures held together by four
hydroxy-methylglutaric acid (HMGA) residues (3-hydroxy-3-methyl glutaric acid [371]) with
the hydroxycinnamic acids, p-coumaric glucoside (4-O-β-d-glucopyranosyl-p-coumaric acid or
linocinnamarin [371]), and ferulic acid glucoside (4-O-β-d-glucopyranosyl ferulic acid [371]) as
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end units linked to the glucosyl moiety of SDG [354,372,374–376]. HMGA is considered the backbone
of the lignan macromolecule [374] (Figure 2). The flavonoid herbacetin diglucoside (HDG) is also part
of the lignan macromolecule attached via ester linkages with HMGA, similar to SDG [374,377]. This
complex is a straight chain oligomeric complex with an average molecular weight of 4000 Da [371] and
the average chain length of the complex is three SDG moieties with a hydroxycinnamic acid at each of
the terminal positions [372]. Additionally, caffeic acid glucoside (CaAG) has also been isolated from the
flaxseed lignan macromolecule [378]. The suggestion that the different phenolic compounds of flaxseed
exist in acylated forms adds further complexity to the lignan polymer composition of flaxseed [371].
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Figure 2. Chemical composition of flaxseed. (a) Schematic representation of the lignan macromolecule.
The principal flaxseed lignan, secoisolariciresinol diglucoside (SDG), exists as a macromolecule in
the flaxseed hull. This polymer complex is composed of five SDG structures held together by four
hydroxy-methylglutaric acid (HMGA) residues with the hydroxycinnamic acids, p-coumaric glucoside
(4-O-β-d-glucopyranosyl-p-coumaric acid or linocinnamarin) (CouAG), and ferulic acid glucoside
(4-O-β-d-glucopyranosyl ferulic acid) (FeAG) as end units linked to the glucosyl moiety of SDG.
The backbone moieties of this macromolecule are represented by the circles. The overlapping circles
represent the linker molecule HMGA and the squares represent the terminal units. The terminal unit can
be CouAG/FeAG or HMGA. (b) Postulated structure of the lignan oligomer. The SDG–HMGA polymer
complex is converted into its monomer units—3-HMGA and SDG—by hydrolysis (average size, n
= 3). Flaxseed contains high levels of the lignan oligomer (with ester linkages to HMGA, cinnamic
acid, and other phenolic glucosides), which undergoes conversion to its aglycone, secoisolariciresinol
(SECO), with further biotransformation into mammalian lignans by the action of the colonic bacteria in
mammalian systems. Adopted from references [234,302,348,371,372].

The bioactivity of the lignans requires their removal from the oligomeric macromolecule structure
upon oral consumption of the seed hull. The mechanism of release of SDG from the complex is
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uncertain, but the cleavage of the glucose groups of SDG is thought to be mediated by β-glucosidase
and bacterial fermentation in the gastrointestinal tract to yield its aglycone, secoisolarisiresinol
(SECO) [379]. SDG-deglycosolating bacteria strains Clostridium sp. SDG-Mt85-3Db (DQ100445),
Bacteroides ovatus SDG-Mt85-3Cy (DQ100446), Bacteroides fragilis SDG-Mt85-4C (DQ100447), and
B. fragilis SDG-Mt85-5B (DQ100448) are mainly responsible for conversion in the human gastrointestinal
tract [55,380]. Alternative bacterial species (e.g., Butyrivibrio fibrosolvens, Peptostreptococcus anaerobius,
and Fibrobacter succinogens in cow [381] and Klebsiella [382], Bacteroides distasonis, Clostridium
cocleatum, Butyribacterium methylotrophicum, Eubacterium callendari, Eubacterium limosum, Ruminococcus
productus, Peptostreptococcus productus, Clostridium scindens, Eggerthella lenta and ED-Mt61/PYG-s6 in
human [179,380,383,384] and Ruminococcus gnavus in goat [385], Prevotella spp., and
B. proteoclasticus [381]) are also involved in various reactions with lignan conversion [380,381].
SECO may undergo further bacterial demethylation and dihydroxylation reactions to produce the
mammalian lignan, enterodiol (ED), which undergoes further oxidation to enterolactone (ENL) by
microbes. Streptomyces avermitilis MA-4680 and Nocardia farcinica IFM10152 bacteria have the highest
hydroxylation activity for ED [386]. The microorganism P450 enzyme, Nfa45180, is reported to show
the highest hydroxylation activity towards ED, especially for ortho-hydroxylation of the aromatic ring
in vivo [386]. Other plant lignans in flaxseed, such as matairesinol (MAT), pinoresinol (pinoresinol
diglucoside [387]), and lariciresinol (isolariciresinol [351]) that are found in minor amounts, are also
converted into the mammalian lignans ENL and ED [46,388] (Figure 3). Hence, following consumption,
SDG is released from the macromolecule (the exact location within the gastrointestinal tract is unknown)
and is principally converted to the mammalian lignans in the lower intestine, either by the brush border
enzymatic activity of the gut mucosa or by bacterial enzymatic activity [379,389]. Oral antimicrobial
drugs are known to decrease serum concentrations of mammalian lignans highlighting the importance
of gastrointestinal flora in the production of mammalian lignan [390]. A detailed composition of the
flax lignan macromolecule, history of lignans and the analytical methods used to identify lignans as
well as extraction, isolation and purification techniques are described in previous reviews [28,391].

Bioactivity of the lignans also requires their adequate systemic exposure following oral
consumption. Systemic exposure of the lignans is generally quite low due to their limited oral
bioavailability. As a polar molecule, SDG does not undergo oral absorption due to its poor permeation
characteristics across the gastrointestinal mucosa [199,213,234,323,392,393]. The lipophilicity of the
aglycone SECO and the mammalian lignans encourages passive diffusion across the gastrointestinal
mucosa [392]. However, these lignan metabolites (Table S1) are subject to extensive first-pass
metabolism, primarily through phase II conjugation reactions, before they enter the systemic
circulation resulting in their rather limited bioavailability [55,323,379,392–399]. Glucuronidation
by UDG-glucuronosyltransferases (UGTs) is the principal conjugative reaction, although sulfation
by sulfotransferases (STs) and, to a minor extent, methylation by catechol-O-methyltransferase also
contribute to lignan metabolite metabolism [246]. Although the ST isoforms involved in lignan
metabolism are unknown, animal studies suggest the UGT2B subfamily is principally responsible
for the glucuronidation of lignans to mono- and diglucuronic acid conjugates [55,400]. The extent of
conjugation relates to the order of lipophilicity (SDG < SECO < ED < ENL) [392], and therefore indicates
that metabolism, excretion, and the ratios of each conjugate and aglycone may vary depending upon
the cell and tissue type. Polar conjugates of the lignans produced in enterocytes are transported out
of the cell to the portal blood supply through the activity of the multidrug resistance-like protein,
MRP3 [242]. Such polar metabolites bypass the liver and are ultimately excreted by the kidney, but
lignans escaping intestinal first-pass metabolism undergo additional hepatic phase II metabolism and
to a limited extent, cytochrome P450 enzyme mediated metabolism [46,55,213]. Relevant lignan–drug
interactions have not been identified, but lignans may reversibly inhibit several cytochrome P450
enzymes at high concentrations [213,401]. Additionally, SECO and ENL can activate the nuclear
receptor pregnane X receptor (PXR), which may modulate the induction of phase I and II enzymes and,
in turn, alter systemic and tissue concentrations of other substrates of these enzymes [213,402].
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Figure 3. Lignan chemical structure and metabolites. Plant lignans are converted to various
metabolites including the mammalian lignans (enterolactone (ENL) and enteroldiol (ED)) and
their phase II metabolites such as glucuronide conjugates. The conversion of plant lignan
secoisolariciresinol diglucoside (SDG) into the mammalian lignans can by separated into four
catalytic reactions in order of O-deglycosylation (SDG to the its aglycone, SECO), O-demethylation
(SECO to 2,3-bis (3’-hydroxybenzyl)butyrolactone/2,3-bis(3,4-dihydroxybenzyl)butane-1,4-diol),
dehydrogenation (2,3-bis(3,4-dihydroxybenzyl)butane-1,4-diol to ED), and dihydroxylation (ED to
ENL). Adopted from references [42,380,381,384].

Given the propensity for hepatic phase II metabolism, SECO, ED, and ENL undergo enterohepatic
recirculation [403] (Figure 4). Reabsorption of nonconjugated lignans result in fluctuations in plasma
concentrations, as evidenced by secondary peaks in the oral plasma concentration-time profile [213], and
prolongation of their mean residence times in the body [199,213]. Approximately 20–50% of glucuronide
and sulphate conjugates are excreted into the bile [213,404], and of this amount 80% is deconjugated by
β-glucuronidase of intestinal microflora in the intestinal lumen [213,405]. β-glucuronidase activity
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has been detected in various bacterial genera such as Bacteroides, Bifidobacterium, Eubacterium, and
Ruminococcus, belonging to the prominent human intestinal microbiota [406], and specifically genes
encoding β-glucuronidase have been described in Escherichia coli, Lactobacillus gasseri, Clostridium
perfringens, Staphylococcus aureus, and Thermotoga maritina [406]. Due to the high β-glucuronidase
activity, such glucuronides are more likely to be hydrolyzed back to their aglycone forms for reabsorption
or their fecal excretion. As a result, physiologically relevant lignan concentrations in the range of 10 to
1000 µM are likely achievable in the colon lumen [407,408]. Enterohepatic recirculation also results in
10–35% of conjugated and unconjugated lignan excretion by the fecal route [213,409–412]. However, a
considerable proportion is excreted by the kidney as glucuronide conjugates with permanent removal
from the body [213,413]. Generally, a good correlation exists between plasma concentrations and
urinary excretion of various lignan metabolites [213,411,414], but the relative ratio and extent of urinary
excretion can vary depending upon population characteristics, e.g., postmenopausal women with
or without breast cancer [199,213,415–417]. Additionally, small portions of enterolignans have been
reported to be found in certain animal based food such as milk [39,418–420] and therefore can be
considered as another route of excretion.

Blood and tissue levels of the lignans and their conjugative metabolites show a high degree
of interindividual variability due to variation in their absorption and disposition (distribution and
elimination) characteristics as well as differences in diet, microflora, gender, and age [213,421]. Extensive
first-pass metabolism results in concentrations of unconjugated SECO, ED, and ENL in the lower
nanomolar range [323,421–424], with concentration of the conjugated forms 250 times or more higher
than the unconjugated lignans [55,213,323,379,393]. Low plasma concentrations are also due to their
wide distribution throughout the body with detection in tissues such as the intestine, liver, lung,
kidney, breast, heart, and brain with higher levels in liver and kidney [213,232,392,404,425,426]. In
humans, plasma protein binding of flaxseed lignans is unknown but in rat plasma the unbound
fraction for SECO, ED, and ENL was 33%, 7%, and 2%, respectively [234]. Plasma protein binding of
the conjugated metabolites of SECO, ED, and ENL is likely very low given the polar nature of these
metabolites. Additionally, an erythrocyte partitioning study indicated no accumulation of ENL in
erythrocytes [234]. Despite low blood levels of ENL and the polar nature of the conjugates, ENL and its
conjugates seem to concentrate in body fluids such as breast milk, intestinal fluid, prostatic and breast
cyst fluid [381,420,424,427,428]. Accumulation is also most prominent with chronic administration of
flaxseed lignans compared to acute administrations [213,233,429].

Although lignan accumulation into solid tumors is unknown, tumors commonly possess poorly
formed, highly permeable vasculature that results in the accumulation of various macromolecules
(e.g., plasma protein albumin) within the tumor microenvironment [430–432]. Several studies have
suggested tumors as sites of albumin catabolism, and the presence of putative albumin-binding
proteins on tumor cell surfaces [433]. Therefore, taking this into consideration, it is possible that
albumin bound lignans may accumulate in the tumor environment independently and/or released
upon albumin catabolism, e.g., similar to albumin conjugated drugs used for increasing intratumoral
accumulation of drugs for antitumor effects [434]. Similarly, the conjugated metabolites of the aglycone
and mammalian lignans may gain easy access to the tumor microenvironment due to the leakiness of
the tumor vasculature.

The biological interactions of SECO, ED, ENL, and their phase II conjugates within the molecular
and cellular environment remains unclear. Phase II enzyme reactions are typically considered as
deactivation pathways. Hence, extensive first-pass metabolism, which results in high levels of
circulating phase II conjugates traditionally considered to be inactive metabolites [400], raises questions
on how lignans exhibit health benefit following oral consumption. Recent evidence, though, may
suggest the conjugative metabolites of the mammalian lignans exert pharmacological activity in
certain cellular contexts [435]. Furthermore, evidence exists of the ability of polyphenolic glucuronide
conjugates to undergo deconjugation reactions in specific tissues such as the inflammatory sites of
the tumor microenvironment due to extracellular availability of β-glucuronidase, which expresses
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optimal enzyme activity at low pH [142,436–440], as well as evidence of the ability of the vascular
endothelium to deconjugate certain glucuronide conjugates [436,441]. This suggests that high circulating
glucuronide conjugates might act as aglycone carriers with release of the aglycones at target sites upon
deconjugation [436,442].
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Figure 4. Flaxseed lignan absorption, first-pass metabolism, and enterohepatic recycling. The flaxseed
lignan, secoisolariciresinol diglucoside (SDG), is biotransformed by bacteria in the gastrointestinal
tract upon oral intake. Due to their lipophilicity, the aglycones and mammalian lignans may cross
biological membranes via passive diffusion. With permeation into the enterocyte a portion of
the aglycone and mammalian lignans undergo first-pass metabolism by phase II enzymes (e.g.,
UDP-glucuronosyltransferases (UGT), sulfotransferases (ST)). The polar, water-soluble glucuronide
and sulfate conjugates require transport across the basolateral membrane of the intestinal epithelium by
active transporters to gain access to the portal blood supply. Unmetabolized aglycone and mammalian
lignans enter the hepatocyte by passive diffusion and undergo phase II metabolism by UGTs and
STs. The conjugated metabolites are actively transported into the bile and can be reintroduced into
the gastrointestinal tract. Here, they can be deconjugated and undergo reabsorption, a process called
enterohepatic recirculation (EHR). The various lignans and their corresponding metabolites may elicit
biological responses upon entering the systemic circulation by interacting with various enzymes,
transporters, and other cell signaling macromolecules. Elimination of the conjugated metabolites can
occur through either fecal or renal excretion. Adopted from reference [403].

8.3. Lignans as Therapeutic Agents for Cancer

Cancer involves complex mechanistic changes in multiple interdependent and redundant cellular
signaling networks that ensure initiation, survival, and promotion of carcinogenesis. This complexity
results in many failures of single target therapies in clinical drug development despite the enormous
investments made to advance such products to the market [443]. The effects of conventional
chemotherapy, though, might be enhanced by compounds that have ability to inhibit and antagonize
multiple targets within the complex array of cell signaling processes [444]. This is supported by an
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increased focus on multitarget agents in drug discovery and development, which has gained much
needed attention in recent years [445]. The historical presence in the human diet of phytochemicals
such as lignans, though, may have an advantage over synthetic compounds due to their coevolutionary
exposure. Given their possible multiple therapeutic effects, we have witnessed an increased investment
into the investigation of their mechanisms of actions in order to more fully understand their antitumor
effects [443].

Flaxseed lignans have a long history of purported health benefits [25,28,38,304] (Figure 5). For
cancer, flaxseed is consumed for both chemopreventive and treatment purposes [15,318,446,447].
Studies with preclinical models of cancer clearly have demonstrated therapeutic benefits of lignan rich
diets with evidence of reductions in early tumorigenesis [448,449], as well as inhibition of tumor growth,
angiogenesis, and progression of the disease [450,451]. Such evidence supports the putative relevance of
lignans in carcinogenesis [1,15,55,174]. However, clear evidence of benefit in human clinical populations
is confounded by the numerous epidemiological and population-based studies that report an unclear
accounting of the daily lignan dose and, hence, uncertain lignan exposure levels [325,452–457]. The
availability of standardized lignan-enriched products now provides opportunity to clearly understand
daily dose exposures and ensure adequate therapeutic levels for clinical benefit. Such lignan-enriched
products have demonstrated good safety and tolerability in vulnerable populations, such as frail
elderly adults [323,458], as well as in other preclinical and human clinical trials [32,55,459–461], except
during pregnancy [462–465] and lactation [420], or with products that produce high ED levels [466,467].
These lignan-enriched products can guarantee pharmacological lignan doses, which will allow us to
address past inconclusive epidemiological studies of the effect of lignans (and other polyphenols) on
human cancer risk and therapy [55,323,326,333,417,452,468–481].Pharmaceuticals 2019, 12, x FOR PEER REVIEW 19 of 68 
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8.4. Linking Benefits of Flaxseed with Cancer Associated Chronic Diseases

Cancer shares a number of risk factors common to other chronic disease states [482]. This
is emphasized by statistics that indicate cancer, diabetes, and cardiovascular disease (CVD) were
responsible for 71% of deaths globally in 2015 [482]. Chronic diseases, including type 2 diabetes [483–485],
and CVD risk factors, such as cholesterol level [486–491], heart rate [492,493], blood pressure [494–498],
uric acid [499–503], and chronic kidney disease [504–509], as well as pulmonary disease [510], are
associated consistently with the risk of cancer [482]. The abundant evidence confirming the health
promoting beneficial effects of flaxseed in chronic disease can be grouped according to health benefits
in (1) the cardiovascular system (e.g., platelet aggregation, atherosclerosis, hyperlipidemia, and
dyslipidemia [7,9,10,17,19,24,26,27,35,485,511–518]); (2) insulin resistance, glycemic control, and
obesity [9,25,27,35,519–526]; (3) inflammation [5,7,8,19,25,27,514,527,528] and oxidative
stress [5,12,21,23,35,407,513,514,529–534]; (4) hepatic [28,535] and renal systems (e.g., lupus
nephritis) [15,28,435,536]; (5) the immune and nervous system [7,15,28,537–543]; (6) the reproductive
system [8,11,14,25,28,33,311,352,514,542,544–546]; and (7) the gut microbiome [547–549]. Detailed
discussions on the relationship between chronic disease and flaxseed can be found in our previous
review [25] and others [5,6,8,15,16,21,34,304,513]. This collective epidemiological, observational, and
preclinical evidence support the idea of flaxseed lignans as qualified candidates for risk reduction and
treatment of chronic disease (Table S2) warranting additional clinical trials with known pharmacological
doses to provide the evidence base to support their use clinically [21,513].

8.5. Purposing Lignans into Established Models of Cancer Characteristics

Several models have been elaborated to describe the wide range of properties and characteristics
of cancer [62,550]. These models aid in understanding both the complexity of cancer pathogenesis and
the various processes contributing to cancer, as well as to focus research efforts on identifying possible
chemopreventive agents or therapeutics [59]. These models provide an organizing framework to explain
responses to a targeted therapy, where cancers may modify their dependence on a particular hallmark,
while enhancing the activity of another [551]. The “hallmarks of cancer” model established in 2000 by
Hanahan and Weinberg identified the six cancer hallmarks of evading growth suppressors, resisting
cell death, activating invasion and metastasis, enabling replicative immortality, sustained proliferative
signaling, and inducing angiogenesis [63]. This model was subsequently updated in 2011 with further
inclusion of two enabling characteristics (genomic instability and tumor-promoting inflammation that
support cancer cells to acquire the hallmarks) and two emerging hallmarks (deregulation of cellular
energetics and avoidance of immune destruction) [59,62]. In a model (signaling pathways and cellular
processes) articulated by Vogelstein et al. in 2013 [550], tumors contain two to eight “driver gene”
mutations that drive cancer growth, while the remaining “passenger” mutations do not add to the
selective growth advantage [59]. Genes either contain intragenic mutations (Mut-driver genes) or
epigenetic alterations (Epi-driver genes), both of which are responsible for carcinogenesis as well as a
selective growth advantage. According to this model, twelve major signaling pathways drive cancer
growth and include (a) cell survival: PI3K (phosphatidylinositide 3-kinase), MAPK (mitogen-activated
protein kinase), RAS (rat sarcoma), STAT (signal transducers and activators of transcription), cell
cycle/apoptosis, and TGFβ (transforming growth factor β); (b) cell fate: NOTCH, HH (Hedgehog),
APC (Adenomatous polyposis coli), chromatin modification, and transcriptional regulation; and
(c) genome maintenance: DNA damage control related pathways [59]. Finally, K.I. Block’s model
(pathways of progression and contributing metabolic factors) of nutraceutical-based targeting of
cancer lists nine “pathways of progression” (proliferation, apoptosis, treatment resistance, immune
evasion, angiogenesis, metastasis, cell-to-cell communication, differentiation, and immortality) and
six “metabolic terrain factors” (oxidation, inflammation, glycemia, blood coagulation, immunity, and
stress chemistry) that influence the quality of life of all cancer patients [59,552]. Together, these models
clearly demonstrate the interrelationships of different signaling network pathways and the enormous
number of targets that require interrogation for cancer prevention and therapeutic management.
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Many phytochemicals are known to modulate multiple targets within these complex cancer
processes [444,553–556]. In particular, flaxseed lignans may concurrently target various complex
interdependent pathways involved in cancer progression and survival raising the possibility that
lignans could be incorporated into a design of a broad-spectrum combination chemotherapy [557]
(Figure 6). Drug discovery programs today have moved away from the single-target approach and
currently consider systems biology approaches to improve pharmacological network understanding [59].
The complexities in tumor heterogeneity and in the interconnections amongst the various growth factors,
cytokines, chemokines, transcription factors, and the proteome makes systems biology approaches
exceedingly more relevant [558,559]. It also makes the broad-spectrum multitargeted approach to
cancer highly significant [59]. In recognition of this changing paradigm to cancer discovery, we
compiled the known lignan targets alongside their potential identification within the different cancer
characteristics models listed above (Table 2).Pharmaceuticals 2019, 12, x FOR PEER REVIEW 21 of 68 
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Figure 6. The cellular and molecular targets of lignans. Flaxseed lignans have the ability to target
multiple pathways in cancer given the evidence from both in vitro and in vivo evaluations (Table 2).
Cancer metastases can be inhibited by the modulation of the cytoskeleton and cell motility processors.
Modulation of cell growth and differentiation as well as cell cycle arrest interfere with tumor proliferation
and survival. Starving tumors by targeting angiogenesis as well as triggering apoptosis leads to
inhibition of progression and survival. Interfering with different cell signaling pathways linking AKT
and ERK modulates cell metabolism and disfavors progression and survival.

8.6. The Multitarget Effects of Lignans in Cancer (Nutridynamics)

In the following section, the ability of the lignans to influence the cancer phenotype is broadly
organized according to the cancer hallmarks [62]. Lignan modulation of a specific target is highlighted
under specific areas linked to hallmarks, although any one target might have overlapping function in
the different hallmarks. Examples are provided, but due to the complexity and interconnections among
molecular signaling networks, flaxseed lignans are able to impact an array of targets leading to the
modulation of various signaling cascades in the different stages of the malignant disease to disfavor
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progression. The reader is referred to the review by Teponno et al. [560] for detailed information on
other lignans and neolignans.

8.6.1. Antioxidant and Anti-Inflammatory Properties

Lignans are well recognized for their antioxidant and anti-inflammatory activities, key properties
that contribute to their multitarget effects [55,561]. As polyphenolic compounds, lignans can act as
direct antioxidants (e.g., direct scavenging of hydroxyl radical) [562] or through indirect mechanisms
such as modulation of the expression of antioxidant enzymes [563,564]. A number of in vitro studies
have shown the lignans to be effective direct antioxidants [565]. For example, the direct antioxidant
activity of SECO, ED, and EL exceeded vitamin E, a typical comparator, by approximately 4.5 to
5 times, with SDG showing similar activity to vitamin E [38,530]. ED and EL are reported to be effective
inhibitors of lipid peroxidation in vitro [407], and in a model of lipid autoxidation, SECO showed
much better antioxidant activity than SDG [566]. There is no significant difference between SECO/SDG
and BHT—a food preservative known to cause liver toxicity—to prevent/delay the autoxidation
process [567]. SDG and SECO are effective antioxidants (attributed to the 3-methoxy-4-hydroxyl
substituents) against 1,1-diphenyl-2-picrylhydrazyl (DPPH))-initiated peroxyl radical plasmid DNA
damage and phosphatidylcholine liposome lipid peroxidation [532]. In an aqueous environment,
benzylic hydrogen abstraction and potential resonance stabilization of phenoxyl radicals are likely
to aid in the antioxidant activity of the mammalian lignans [532]. Further details on the antioxidant
properties of flaxseed lignans can be found in several other reviews [38,568,569]. Despite these direct
antioxidant effects in vitro, it is debatable whether lignans attain adequate systemic concentrations with
dietary consumption to mediate similar effects in vivo as lignans largely exist as conjugated metabolites.

The indirect antioxidant activity of lignans is mediated through upregulation of a number of
antioxidant enzymes and phase II detoxifying enzymes. Upregulation of these enzymes is associated
with the nuclear factor erythroid 2 (Nrf2)-linked pathway—a key transcriptional regulator of many
antioxidative and anti-inflammatory pathways [570]. Nuclear factor-κB (NF-κB) is a transcription
factor that is of importance in inflammation and plays a role in development, cell growth, cell survival,
and proliferation [571]. Certain NF-κB-regulated genes play a pivotal role in controlling reactive
oxygen species (ROS), but ROS also has various inhibitory/stimulatory effects in NF-κB mediated
signaling [571]. Transcriptional regulation by Nrf2 is clearly associated with lignan induction of heme
oxygenase-1 (HO-1) expression [562] with subsequent modulation of NF-κB mediated inflammatory
and oxidative pathways [572,573]. Lignans also increase the abundance of antioxidant genes such as
superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) [564,574], and induce
the expression of glutathione S-transferases (e.g., GSTM1) and NAD(P)H dehydrogenase [quinone] 1
(NQO1) [575,576]. SOD2, SOD1, NQO1, CAT, GST, and GPX are all regulated by NF-κB [571]. SDG
in physiological solutions provide DNA radioprotection by scavenging active chlorine species and
reducing chlorinated nucleobases [577], suggesting SDG as a promising candidate for radioprotection
of normal tissue during cancer radiation therapy [578]. The molecular pathways connected to these
various antioxidant activities contribute to the control of multiple cancer hallmarks such as “resisting cell
death”, “genome instability and mutation”, “deregulating cellular energetics”, and others depending
on the context.

The anti-inflammatory properties of lignans are well-documented and are suggested to benefit
chronic inflammatory diseases such as cancer [55,576,579–581]. Lignans can modulate inflammation
through several mechanisms including modulation of immune cell activation through interference
with NF-κB pathway signaling [408]; reductions in proinflammatory cytokines, such as IL-1ß, IL-6,
TNFα, HMGB1, and TGFß1, and cytokine receptors, TNFαR1 and TGFßR1 [582]; and downregulation
of cyclooxygenase enzyme activity and levels [583]. Flaxseed also downregulates microRNA (miRNA)
miR-150, which is integrated into immune response-mediated networks [584]. Lignan influence on the
inflammatory process clearly impacts the “tumor promoting inflammation” hallmark of cancer.
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8.6.2. Anticarcinogenic and Antimutagenic Properties

Carcinogenesis occurs in several stages and mutagenesis supports the progression of the
malignant disease. As effective antioxidants against DNA damage and lipid peroxidation [532],
lignans are suggested to have chemopreventive properties in cancer, and SDG is emerging as
a potential anticarcinogenic agent [344,582]. Preclinical in vivo studies that have demonstrated
decreased incidence of tumor formation in tumor induction models and reductions in the
procarcinogenic microenvironment following flaxseed lignan supplementation, offer support for
lignans as chemopreventive agents [583,585–588]. Activation of p53 can induce cell cycle arrest as
well as apoptosis in response to DNA damage [589]. The transcriptional activation of target genes
of p53 is critical in cell fate determination after genotoxic stress [589,590]. Oxygen radical-based
alterations at specific nucleotides can lead to mutations that occur when altered bases are copied
by DNA polymerases (replicate the genome) [591]. ROS has been attributed to the pathogenesis of
liver, lung, and prostate cancers [591]. The use of antioxidant therapy (preventive), such as with the
lignans [576,581,582,592], has been suggested to slow tumorigenesis to prevent clinical presentation
of cancers [591]. In cancer cell model systems, lignans can modulate the percentage of cells in the
different stages of the cell cycle [593], downregulate viral oncogenes E6 and E7, upregulate tumor
suppressor p53, and fail to exhibit genotoxicity in cancer cells [588]. However, depending upon the
cancer type, p53 status, and lignan concentration, flaxseed lignans may have different effects on cancer
prevention and treatment.

Interestingly, the various signaling pathways involved in anticarcinogenic and antimutagenic
effects of lignans could be connected to lignan ability to favorably modulate lipid and glucose
homeostasis [9,519,537,594–596]. High cholesterol, fat, and glucose levels are known to increase
the risk of cancer [491,597–602]. Several studies have shown altered cholesterol metabolism and
accumulation within mitochondria of malignant cells seems to favor continuous cell growth, survival,
and progression [603–606]. The lignans variably influence targets within cellular energy and lipid
homeostasis pathways, including the ability to reduce expression and activity of CPT 1 (carnitine
palmitoyltransferase 1), as well as modulate pAMPK (5’ adenosine monophosphate-activated
protein kinase), PPARα (peroxisome proliferator-activated receptor alpha), FASN (fatty acid
synthase), expression and activity of SREBP1c (sterol regulatory element-binding proteins) and
adipogenesis-related genes, such as leptin, adiponectin, glucose transporter 4 (GLUT-4), and PPARγ
(peroxisome proliferator-activated receptor gamma) [213,607–610]. Additionally, a recent study reports
upregulation of INSIG-1 (insulin-induced gene 1) and alteration in intracellular cholesterol trafficking in
Caco2 colorectal adenocarcinoma cells [435]. Collectively, lignan effects on cellular energy metabolism
and lipid homeostasis favorably modulate the cancer hallmarks of “deregulated cellular energetics”
and “resisting cell death”.

8.6.3. Anti-proliferative properties

Lignans are known to reduce chemically-induced mammary and colon tumorigenesis [31,345,582].
In addition to their well-known antioxidative and anti-inflammatory effects, lignans are purported
phytoestrogens with ability to modulate estrogen receptors and other hormonal functions [611].
Their putative role as phytoestrogens prompted extensive investigation into hormone-dependent
cancers, since hormones play a vital role in their etiology influencing rate of cancer cell division,
differentiation, survival, and metastasis [55,612,613]. Interestingly, lignans demonstrate weak binding
properties to estrogen receptor α (ERα) and ERβ suggesting a limited potential for estrogenic and
antiestrogenic activity [614]. Yet, studies suggest lignans’ ability to inhibit hormone-dependent
cancer cell proliferation, cancer growth, and progression [55,467,615–617]. This may result from
such mechanisms as lignan-mediated reduction in the expression of hormonal and growth factor
receptor expression or binding affinity (e.g., ER, progesterone receptor (PR), EGFR (epidermal growth
factor receptor), and IGF-1R (insulin-like growth factor 1 receptor)) [341,453,618], regulation of
plasma sex hormone binding globulin (SHBG) levels [55,619] or binding affinity with endogenous
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hormones [55,620], competition with estradiol for the type II estradiol binding sites (EBS) [621–623],
inhibition of aromatase and 17β-hydroxysteroid dehydrogenase and thereby reducing sex hormone
synthesis [55,624–626], modulation of secreted matrix metalloproteinase (MMP) activities [531], and/or
alteration in the expression and activity of cell cycle regulators and signal transduction networks
regulating cell proliferation, survival, and migration [335,593,613,618,627–629]. The multitarget effects
of lignans on hormonal signaling pathways identify their key role in modulating the important cancer
hallmark of “sustaining proliferative signaling”.

8.6.4. Dysregulated cellular metabolism

A common feature of cancer cell metabolism is the ability to obtain nutrients from the nutrient-poor
tumor environment to maintain viability and make new biomass [630]. Given the linkage between
cell proliferation and cell metabolism [631], the core fluxes such as aerobic glycolysis, de novo lipid
biosynthesis, and glutamine-dependent anaplerosis, have been suggested to form a stereotyped
platform in order to carry out proliferation [631]. Additionally, regulation of these cellular fluxes are
predominantly linked to phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mechanistic target
of rapamycin (mTOR), hypoxia-inducible factor 1 (HIF-1), and Myc (myelocytomatosis oncogene)
mediated signal transduction and gene expression [631]. Interestingly, upregulation of HO-1 is
suspected to act through PI3K/Akt and Nrf-2 signaling pathways [632,633]. PI3K/Akt signaling (master
regulator of glucose uptake) stimulates mRNA expression of GLUT1 glucose transporter and the
translocation of its protein to the cell surface [630]. Akt amplifies the activity of the glycolytic enzymes
hexokinase, the first enzyme of the glycolytic pathway (phosphorylates glucose molecules, and prevents
their efflux out of the cell), and phosphofructokinase (catalyzes the main irreversible step) [630]. Akt
alone also is capable of stimulating glycolysis to restore cell size, viability, mitochondrial potential, and
ATP levels [630]. Additionally, constitutively active Akt can prevent reductions in ATP levels, which is
usually triggered by the loss of cellular attachment [630]. Lignans have been reported to reduce Akt
signaling [618,629,634], as well as HO-1 and Nrf-2 signaling [562]. Therefore, not only the hallmark
of “sustaining proliferative signaling” but other hallmarks such as “deregulating cellular energetics”,
“enabling replicative immortality”, and “evading growth suppressors” can be targeted by lignans.

8.6.5. Antiangiogenic Properties

Angiogenesis is a complicated process that depends on the type of tumor [635,636]. Solid tumors
with high vascularization (e.g., ovarian cancer, non-small cell lung cancer, renal cell carcinoma,
hepatocellular carcinoma, and colorectal cancer) have been the main focus of the development
for antiangiogenic drugs [636,637]. The series of events in this complex process include an initial
activation of endothelial cells (EC), which often results in the release of proteases that causes the
degradation of the basement membranes in the surrounding area of existing vessels, and the migration
of ECs to the growing lesion, followed by extensive cell proliferation forming tubes for new blood
vessels [635]. However, unlike normal tissue angiogenesis, tumor blood vessel network is disorganized
and leaky [638]. Lignans may have a role as effective agents in targeting the hallmark “inducing
angiogenesis”. Lignans were shown to inhibit estradiol-induced tumor growth and angiogenesis
in vivo [451]. The antiangiogenesis activity may relate to ability of lignans to reduce extracellular cancer
stroma-derived vascular endothelial growth factor (VEGF) and increase in placenta growth factor
(PIGF), a VEGF family member [331,451]. The platelet-derived growth factor (PDGF), its receptor,
PDGFR, fibroblast growth factor (FGF) and its receptor, FGFR pathways, can aid in compensatory escape
mechanisms facilitating tumor growth from anti-VEGF/VEGFR therapy drugs, which has been the gold
standard pharmaceutical target [636]. However, current antiangiogenic strategy is investigating novel
and emerging agents that target multiple pathways for treatment [636]. Interestingly, lignans also
modulate PDGF signaling pathways making it a multitargeted agent to suppress tumor growth [628].



Pharmaceuticals 2019, 12, 68 24 of 64

8.6.6. Anti-invasive and Antimigratory Properties

The lignans can modulate a number of key targets to reduce cancer cell propensity for invasion and
migration [13,32,55,330,331,467,618,639]. Lignans were shown to reduce metastasis in an experimental
model of melanoma [108,582]. They demonstrate ability to inhibit matrix metalloproteinases (MMPs),
the enzymes responsible for degradation of the extracellular matrix (ECM) [55,640–642], modulate the
phosphorylation of FAK (focal adhesion kinase), Src (proto-oncogene nonreceptor tyrosine protein
kinase Src), and Paxillin, with subsequent modulation of their key targets (e.g., uPA (urokinase-type
plasminogen activator), PAI-1 (plasminogen activator inhibitor-1), TIMP-1 (TIMP metallopeptidase
inhibitor 1) and TIMP-2, RhoA (Ras homolog gene family, member A), Rac1 (Ras-related C3 botulinum
toxin substrate 1), Cdc42 (cell division control protein 42 homolog), and ITGA2 (Integrin subunit
alpha 2)) [627,628], and inhibit organization of the actin cytoskeleton to influence cell motility and
clonogenicity [627,628,642,643]. Given that cancer relapse and metastasis continue to challenge
effective chemotherapy [644,645], such properties suggest a potential for the use of lignans to target
this cancer hallmark.

8.6.7. Induction of Apoptosis and Cell Death

Apoptosis plays a pivotal role in the pathogenesis of cancer where limited apoptosis results in
survival of malignant cells. The complex mechanism of apoptosis is linked to many cell signaling
pathways where deregulation can cause malignant transformation, metastasis, and resistance to
anticancer drugs [646]. Consequently, lignan-mediated enhancement of apoptosis can occur through
many mechanisms that are generally categorized into disruption of mitochondrial membrane potential
(mitochondrial mediated cell death) [55,629,634], and activation of the intrinsic or extrinsic apoptotic
pathways through mechanisms such as TRAIL (tumor necrosis factor (TNF)-related apoptosis-inducing
ligand)-induced BID (BH3 interacting-domain death agonist) cleavage [629], reduction in antiapoptosis
proteins, Bcl-2 (B-cell lymphoma 2) and survivin [22,588], caspase dependent cell death [634], and
death receptor-sensitization through decreased expression of death receptor DR4 expression and
TRAIL-DISC (death-inducing signaling complex) proteins, c-FLIPL/S (cellular FLICE-inhibitory protein:
short form; FLICE: (Fas-associated death domain-like interleukin 1β-converting enzyme) and caspase-8,
and pGSK-3β (glycogen synthase kinase 3 beta) [629,634]. Flaxseed along with radiation therapy
have reported to significantly decrease the p53-responsive miRNA, miR-34a, which is responsible for
regulating cellular senescence and apoptosis related factors [584]. Dietary flaxseed lignan complex,
mainly consisting of SDG, induced radiosensitizing effects in a model of metastatic lung cancer.
SDG is protective against radiation pneumonopathy, decreasing lung injury and eventual fibrosis,
while improving survival indicating its ability to selectively target malignant cells but spare normal
cells [576,581]. Although specific targeting of apoptosis can be associated with safety issues [646],
as one of multiple hallmarks influenced by lignans, the ability to enhance cell death is an important
attribute of the role of lignans in the therapeutic management of cancer.
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Table 2. Cellular targets modulated by flaxseed lignan and lignan metabolites in cancer 1.

Experimental System
and Lignan *

Targets: Molecules
(Protein/Gene) Block’s Model Hanahan and

Weinberg’s Model
Vogelstein et al.,

Model

MDA-MB231 (BC)
ENL *

↓Ki67, ↓PCNA, ↓FoxM1,
↓Cyclin E1, ↓Cyclin A2,
↓Cyclin B1 ↓Cyclin B2 [627]

Proliferation,
Immortality,

Treatment resistance

Sustaining
proliferative

signaling, Evading
growth

suppressors

Cell survival

↓pFAK, ↓pPaxillin [627]
↓ERK-1/2, ↓NF-κB,

↓MAPK-p38, ↓CD44 [647]

Proliferation,
Metastasis,
Cell-to-cell

communication and
Immortality

Activating invasion
& metastasis,

Sustaining
proliferative

signaling

Cell survival, Cell
fate

↓uPA, ↓MMP-2, ↓MMP-9,
↑PAI-1, ↑TIMP-1, ↑TIMP-2

[643]
↓N-cadherin, ↓vimentin,
↑E-cadherin, ↑occludin,

↓Snail [647]

Differentiation,
Metastasis

Activating invasion
& metastasis Cell fate

XM (MDA-MB231)
SDG * ↑LIV-1, ↑↓ ZIP2, ZnT-1 [648] Proliferation

Sustaining
proliferative

signaling
Cell survival

MO (basal-like BC)
SDG *

↓Proinflammatory markers
(F4/80, CRP), ↓p-p65 [649] Inflammation Tumor promoting

inflammation Cell survival

MO (MCF7) (BC)
ENL * ↓VEGF, ↑PIGF [331]

Proliferation,
Treatment resistance,

Angiogenesis

Inducing
angiogenesis Cell survival

OVX MO (MCF-7)
SDG *

↓ERα, ↓ERβ, ↓EGFR, ↓pS2,
↓IGF-1R, ↓BCL2 [341]

Apoptosis,
Proliferation,

Glycemia

Sustaining
proliferative

signaling, Resisting
cell death

Cell survival

↓pMAPK [341] Proliferation
Sustaining

proliferative
signaling

Cell survival

MCF7, MDA-MB231
ENL *

↓MMP2, ↓MMP9 ↓MMP14,
±MMP11 [642]

Differentiation,
Metastasis

Activating invasion
& metastasis Cell fate

A549, H60 (Lung
cancer)
ENL *

↓pFAK, ↓pSrc, ↓pPaxillin
[628]

Proliferation,
Metastasis,
Cell-to-cell

communication

Activating invasion
& metastasis,

Sustaining
proliferative

signaling

Cell survival, Cell
fate

↓RhoA, ↓Rac1, ↓Cdc42 [628]
Metastasis,
Cell-to-cell

communication

Activating invasion
& metastasis Cell fate

↑↓FAK, PDGF signaling
(AKT1, CCND3). ↓RhoA,

Rac1, Cdc42, ↑ITGA2 [628]

Metastasis,
Differentiation,
Proliferation,
Cell-to-cell

communication

Activating invasion
& metastasis,

Sustaining
proliferative

signaling

Cell survival, Cell
fate

MG-63 (Osteosarcoma)
ENL and ED *

Biphasic (↑↓) – osteonectin,
collagen I [650]

Proliferation,
Differentiation,

Cell-to-cell
communication

Activating invasion
& metastasis Cell fate

↑ALP, ↑osteopontin,
↑osteocalcin [650]

Proliferation,
Differentiation,

Metastasis,
Cell-to-cell

communication

Activating invasion
& metastasis Cell fate
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Table 2. Cont.

Experimental System
and Lignan *

Targets: Molecules
(Protein/Gene) Block’s Model Hanahan and

Weinberg’s Model
Vogelstein et al.,

Model

WPMY-1 (PS)
ENL *

↑GPER, ↑p-ERK, ↑P53, ↑P21,
↓Cyclin D1 [651]

Proliferation,
Immortality

Sustaining
proliferative

signaling
Cell survival

Rat prostate
SDG * ↑GPER [651] Proliferation,

Immortality

Sustaining
proliferative

signaling
Cell survival

WPE1-NA22,
WPE1-NB14,
WPE1-NB11,

WPE1-NB26 and
LNCaP (PC)

ENL *

↑↓DNA licensing genes
(GMNN, CDT1, MCM2,

MCM7) [593]

Proliferation,
Immortality,

Treatment resistance

Sustaining
proliferative

signaling

Cell survival,
Genome

maintenance

↓miR-106b cluster
(miR-106b, miR-93,

miR-25),↑PTEN [593]

Proliferation,
Angiogenesis

Sustaining
proliferative

signaling
Cell survival

LNCaP
ENL *

↓BRCA1, ↓CDK2, ↓CDKN3,
↓E2F1, ↓KLK3, ↓KLK4,
↓PCNA, ↓PIAS1, ↓PRKCD,
↓PRKCH, ↓RASSF1, ↓TPM1,

↓SLC43A1 [335]

Proliferation,
Immortality,

Differentiation,
Treatment resistance

Sustaining
proliferative

signaling,
Replicative
immortality,

Evading growth
suppressors

Cell survival,
Genome

maintenance Cell
fate

↓BIRC5, ↓BRCA1, ↓BRCA2,
↓CCNB1, ↓CCNB2, ↓CCNF,
↓CCNG1, ↓CCNH, ↓CDC2,
↓CDC20, ↓CDK2, ↓CDK4,
↓CDK5R1, ↓CDKN1B,

↓CDKN3, ↓CHEK1, CKS1B,
↓CKS2, ↓DDX11,

↓GADD45A, ↓KNTC1,
↓KPNA2, ↓MAD2L1,

↓MCM2, ↓MCM3, ↓MCM4,
↓MCM5, ↓MKI67, ↓MRE11A,
↓PCNA, ↓RBL1, ↓RPA3,
↓SKP2, ↑CCND2 [335]

Proliferation,
Immortality,

Treatment resistance,
Stress chemistry

Sustaining
proliferative

signaling, Evading
growth

suppressors

Genome
maintenance, Cell

survival

LNCaP
MAT *

↓pAKT [629]

Treatment resistance,
Apoptosis,

Proliferation,
Glycemia

Sustaining
proliferative

signaling
Cell survival

↓DR4 [629]
Apoptosis,

Proliferation,
Immortality

Resisting cell death Cell survival, Cell
fate

↓TRAIL-DISC proteins
(c-FLIPL/S, caspase-8) [629]

Apoptosis,
Proliferation

Sustaining
proliferative

signaling, Resisting
cell death

Cell survival, Cell
fate

↑TRAIL-induced BID
cleavage [629]

Apoptosis,
Proliferation Resisting cell death Cell survival

LNCaP
ENL *

↑Cytochrome c release,
↑cleaved caspase-3, ↑PARP

[634]

Apoptosis,
Proliferation,

Glycemia,
Immortality,
Oxidation

Deregulated
cellular energetics,

and Genome
instability and

mutation

Cell survival

↓pAKT, ↓pGSK-3β,
↓pMDM2, ↑P53 [634]

Apoptosis,
Immortality,
Proliferation

Sustaining
proliferative

signaling, Evading
growth

suppressors,
Enabling

replicative
immortality

Cell survival

↑Caspase cell death [634] Apoptosis Resisting cell death Cell survival
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Table 2. Cont.

Experimental System
and Lignan *

Targets: Molecules
(Protein/Gene) Block’s Model Hanahan and

Weinberg’s Model
Vogelstein et al.,

Model

PC3 (PC)
ENL *

↓pIGF-R(IGF-1), ↓pAKT,
↓p-p70S6K1, ↓pGSK3β,
↓pCyclinD1, ↓pERK 1

2 [618]

Proliferation,
Glycemia,

Immortality

Sustaining
proliferative

signaling,
Activating invasion

& metastasis

Cell survival, Cell
fate

↓IGF-1 signaling [618] Proliferation,
Glycemia

Sustaining
proliferative

signaling

Cell survival, Cell
fate

↓FASN [213] Proliferation,
Treatment resistance

Sustaining
proliferative

signaling,
Deregulated

cellular energetics

Cell survival

HUVEC (endothelial)
ENL * ↓VEGFR-2 [331] Proliferation,

Angiogenesis
Inducing

angiogenesis Cell survival

Adipocytes
ENL *

↓ROS - oxidative damage,
↓DNMTs, ↓HDACs, ↓MBD2

[334]

Proliferation,
Oxidation,

Inflammation, Stress
chemistry,

Immortality

Cell fate, Genome
maintenance

Colonocytes-YAMC
ENL and ED * ↓Cyclin D1, ↓Bcl-2 [586]

Proliferation,
Immortality,
Apoptosis

Sustaining
proliferative

signaling, Resisting
cell death

Cell survival

Colo201 (COC)
ENL *

↓Bcl-2, ↓PCNA, ↑cleaved
caspase-3 [22]

Apoptosis,
Proliferation Resisting cell death Cell survival

Apc-Min (intestinal)
Diet (flaxseed) * ↓COX-1, COX-2 [652]

Proliferation,
Immortality,

Inflammation

Sustaining
proliferative

signaling, Tumor
promoting

inflammation

Cell survival

Hens
Flaxseed supplement *

↓COX-2 [583]
Proliferation,
Immortality,

Inflammation

Tumor promoting
inflammation Cell survival

↓Prostaglandin E2, ↓ERα,
↓CYP3A4, ↓CYP1B1,
↓16-OHE1, ↑CYP1A1,
↑2-OHE1 [583]

Proliferation,
Inflammation,

Treatment resistance,
Stress chemistry

Tumor promoting
inflammation Cell survival

Hela (CC)
ENL *

↓Viral oncogene E6 [588] Proliferation Evading growth
suppressors Cell survival

↓Survivin [588] Apoptosis,
Proliferation

Resisting cell death,
Sustaining

proliferative
signaling

Cell survival

↑pHistone H2AX [588]
Apoptosis,

Immortality,
Proliferation

Resisting cell death Cell survival, Cell
fate

Hela
ED * ↑Caspase 3 [588] Apoptosis Resisting cell death Cell survival

CaSki (CC)
ENL *

↓Viral oncogene E7 [588] Proliferation Evading growth
suppressors Cell survival

↓Bcl-2 [588] Apoptosis, Treatment
resistance Resisting cell death Cell survival
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Table 2. Cont.

Experimental System
and Lignan *

Targets: Molecules
(Protein/Gene) Block’s Model Hanahan and

Weinberg’s Model
Vogelstein et al.,

Model

Hela and CaSki
ENL *

↑P53 [588] Proliferation,
Apoptosis

Evading growth
suppressors

Cell survival,
Genome

maintenance

↑Bax [588] Apoptosis, Treatment
resistance Resisting cell death Cell survival

Targets: Cellular
Processors

SKBR3 and
MDA-MB231 (BC)

ENL *

↓Cell viability with
anticancer agents [55,608]

Proliferation,
Treatment resistance,

Stress chemistry,
Apoptosis

Resisting cell death,
Sustaining

proliferative
signaling, Evading

growth
suppressors

Cell survival

MDA-MB231
ENL *

↑Cell cycle S phase, ↓cell
viability [627]

Apoptosis,
Immortality,
Proliferation

Sustaining
proliferative

signaling, Evading
growth

suppressors

Cell survival,
Genome

maintenance, Cell
fate

↓Actin cytoskeleton
organization [627,647]

↓Epithelial–mesenchymal
transition [647]

Proliferation,
Metastasis

Sustaining
proliferative

signaling,
Activating invasion

& metastasis

Cell survival, Cell
fate

↓Migration, invasion
[627,642] Metastasis Activating invasion

& metastasis Cell fate

↓Actin, filopodia,
lamellipodia [642]

Proliferation,
Metastasis

Sustaining
proliferative

signaling,
Activating invasion

& metastasis

Cell survival, Cell
fate

Anticancer/metastatic/
proliferative/migratory/clonogenic

[643]
Metastasis Activating invasion

& metastasis Cell fate

MCF7 and
MDA-MB231

SDG and ASECO *
↓Growth [653] Proliferation

Sustaining
proliferative

signaling
Cell survival

ER+ BC (XM)
ENL and ED * ↓Angiogenesis [451] Angiogenesis Inducing

angiogenesis Cell survival

WPMY-1
ENL *

↓proliferation, arrested cell
cycle (G0/G1) [651] Proliferation

Sustaining
proliferative

signaling
Cell survival

Rat model (PH)
SDG *

↓Prostate enlargement, #
papillary projections,

thickness of cell layers [651]
Proliferation

Sustaining
proliferative

signaling
Cell survival

WPE1-NA22,
WPE1-NB14,
WPE1-NB11,

WPE1-NB26 and
LNCaP
ENL *

↓Metabolic
activity,↑doubling time [593]

Proliferation, Stress
chemistry, Oxidation

Sustaining
proliferative

signaling,
Deregulated

cellular energetics,
Evading growth

suppressors

Cell survival, Cell
fate

Modulated cell cycle [593] Proliferation,
Immortality

Evading growth
suppressors,
Sustaining

proliferative
signaling

Cell survival,
Genome

maintenance

↑Apoptosis [593] Immortality,
Apoptosis

Sustaining
proliferative

signaling, Resisting
cell death

Cell survival
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Table 2. Cont.

Experimental System
and Lignan *

Targets: Molecules
(Protein/Gene) Block’s Model Hanahan and

Weinberg’s Model
Vogelstein et al.,

Model

LNCaP
ENL *

↑Sub-G0 and S, ↓G0/G1,
↓G2/M cell cycle [335]

Proliferation,
Immortality

Sustaining
proliferative

signaling, Evading
growth

suppressors

Cell survival, Cell
fate

↓Cell density, ↓metabolic
activity, ↓PSA, ↑apoptosis

[335]

Proliferation,
Apoptosis

Sustaining
proliferative

signaling, Resisting
cell death,

Deregulated
cellular energetics

Cell survival, Cell
fate

↑Apoptosis with anticancer
agents [335] Apoptosis Resisting cell death Cell survival

↓Mitochondrial membrane
potential [634]

Treatment resistance,
Stress chemistry,

Glycemia, Oxidation,
Proliferation,

Apoptosis

Deregulated
cellular energetics Cell survival

LNCaP
MAT *

Death receptor sensitizer
(sensitizes TRAIL-induced

apoptosis) [629]

Proliferation,
Apoptosis

Sustaining
proliferative

signaling, Evading
growth

suppressors,
Resisting cell death

Cell survival, Cell
fate

↑TRAIL-induced
mitochondrial

depolarization [629]

Proliferation,
Apoptosis

Resisting cell death,
Deregulated

cellular energetics
Cell survival

PC3
ENL *

↓IGF-1 induced proliferation,
↓cell cycle arrest (G0/G1)

[618]
Proliferation

Sustaining
proliferative

signaling, Evading
growth

suppressors

Cell survival

↓IGF-1 induced migration
[618] Metastasis Activating invasion

& metastasis
Cell survival, Cell

fate

A549 and H60
ENL *

↓Migration, invasion [628] Metastasis Activating invasion
& metastasis Cell fate

↓Density F-actin fibers [628] Metastasis,
Proliferation

Activating invasion
& metastasis,

Sustaining
proliferative

signaling

Cell survival, Cell
fate

YAMC
ENL and ED *

↓Cell growth, ↑ apoptosis
[586]

Proliferation,
Apoptosis

Resisting cell death,
Sustaining

proliferative
signaling, Evading

growth
suppressors

Cell survival

MG-63
ENL and ED *

Biphasic (↓↑)- cell viability,
ALP activity [650] Proliferation

Sustaining
proliferative

signaling

Cell survival, Cell
fate

Mouse model
ENL *

↓Estradiol-induced
endothelial cell infiltration

[331]
Metastasis Activating invasion

& metastasis
Cell survival, Cell

fate

Colo201
ENL *

↑Apoptosis (sub-G1
cells),↑cell viability [22]

Proliferation,
Apoptosis

Sustaining
proliferative

signaling, Evading
growth

suppressors,
Resisting cell death

Cell survival
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Table 2. Cont.

Experimental System
and Lignan *

Targets: Molecules
(Protein/Gene) Block’s Model Hanahan and

Weinberg’s Model
Vogelstein et al.,

Model

CC cells
ENL *

↑Cell death, ↓metabolic
activity in p53+ [588]

Immortality,
Proliferation,

Treatment resistance,
Glycemia, Apoptosis

Evading growth
suppressors,

Resisting cell death,
Deregulated

cellular energetics

Cell survival,
Genome

maintenance

↑Apoptosis (Hela) [588] Apoptosis Resisting cell death Cell survival

CC cells
ENL and ED * ↓Cell survival [588]

Immortality,
Proliferation,

Apoptosis

Sustaining
proliferative

signaling, Evading
growth

suppressors

Cell survival,
Genome

maintenance

TR C33-A (CC)
ENL and ED *

↓Promoter activity
(Episomal, HPV

oncoproteins) [588]
Proliferation

Sustaining
proliferative

signaling, Evading
growth

suppressors

Cell survival

Hela
ENL *

↑p53 activity [588] Immortality,
Proliferation

Evading growth
suppressors

Cell survival,
Genome

maintenance

No DNA-breaks
(genotoxicity) [588]

Proliferation,
Apoptosis

Resisting cell death,
Evading growth

suppressors
Cell survival

Hela/CaSki
ENL *

↑Apoptosis (Caspase 9,
Caspase 3) [588]

Proliferation,
Apoptosis Resisting cell death Cell survival

CaSki
ED * ↑Caspase 3 activity [588] Proliferation,

Apoptosis Resisting cell death Cell survival

1 Note: Processors may include anything other than an individual protein/gene target expression such as cell cycle,
invasion, motility, metastases, cell viability, apoptosis, cytoskeletal dynamics, ATP levels, metabolic rates, oxygen
consumption, target activity, etc. Each molecule or processor can be related to multiple pathways and hallmarks
indicated in the models, and therefore what is listed are some selected examples. The different types of lignans are
indicated with an asteric (*); e.g., Lignan*. Lower case (simple) “p” in certain instances denotes “phosphorylated”
protein. Refer to abbreviations.

9. Final Remarks

Cancer remains a significant unmet medical need despite the extensive research into possible
pharmaceutical solutions to tackle the various cancer phenotypes. Unfortunately, cancer will continue
to be an important cause of morbidity and mortality in the near future as we witness increasing
urbanization, increasing life expectancy, changing lifestyle, globalization, and changing environmental
factors [4,654–658]. To address this global health dilemma, we may need to adopt a “broad-spectrum
therapeutic approach” into our chemopreventive and therapeutic plans of cancer mitigation. Such a
trend is already being observed as the 2012 U.S. National Health Interview Survey (NHIS) reported
over 30% of adults and 12% of children used atypical approaches to health care [48]. The application
of plant-derived bioactives or phytochemicals for disease prevention and treatment continues to
gain attention as a desired approach for preventing or delaying disease [91]. Both human and
preclinical studies suggest synergism of polyphenols such as lignans with existing therapeutics and,
therefore, represent possible candidates for chemoprevention or as combination treatments with
standard therapies such as chemotherapy, radiotherapy, immunotherapy, and gene therapy [259].
The overall results seem promising, yet the clinical evidence remains inconclusive [326,477,659–662].
Adoption of dietary polyphenols, like flaxseed lignans, into a “broad-spectrum therapeutic approach”
will require an interdisciplinary approach combining prospective cohort studies investigating lignan
exposure [326,477,481] with mechanistic studies to confirm the health benefits of flaxseed lignan
interventions [4,654–658].
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10. Conclusions

Dietary polyphenols represent a diverse array of chemical subgroups with evidence of variable
efficacy in mitigating cancer risk and progression. Despite epidemiological support of possible benefit,
these compounds lack general acceptance as therapeutic modalities in cancer treatment. This likely
relates to an incomplete understanding of their mechanisms of action as well as a general lack of
understanding of their absorption and pharmacokinetic characteristics resulting too often in exposure
levels inadequate to address the disease process. Hence, an important purpose of this article was to
review the scientific evidence of the role of flaxseed lignans in chemoprevention and on the growth,
survival, and progression of malignant cells. This review consolidates years of unsystematic research
with the flaxseed lignans and identifies lignans as having multiple targets and modes of action within
the cancer phenotype. These multitargeted effects are broadly grouped as modulation of cell signaling
and metabolism, cell growth and differentiation, cell motility and cytoskeletal dynamics, cell cycle,
angiogenesis, and apoptosis. Such effects might explain the limited epidemiological evidence of lignan
benefit in cancer, but a systematic approach, which includes lignan preclinical studies with translational
relevance as well as clinical trials utilizing therapeutically relevant doses, will be needed to clarify
their role in cancer. As other pharmaceuticals (e.g., the statin drugs) undergo repurposing to cancer
treatment, a systematic investigation of polyphenolics such as the lignans might also harness their
potential benefits towards chemoprevention and enhancement of patient longevity and quality of life.
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Abbreviations

Apc-Min Mouse tumor model (intestinal and mammary)
AKT1 AKT (RAC-alpha) serine/threonine kinase 1
ASECO Anhydro-secoisolariciresinol
Bax Bcl-2-associated X protein
BC Breast cancer
Biphasic ↑lower/↓higher concentration
CC Cervical Cancer
TR Transfected
COC Colon cancer
ALP alkaline phosphatase
miR micro RNA
ERK Extracellular signal–regulated kinases
subG1 DNA profile representing cells in the G1 stage of the cell cycle
F-actin Filamentous actin
BIRC5 Survivin
BRCA1 breast cancer type 1 (BCT1) susceptibility protein
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BRCA2 BCT2 susceptibility protein
CCNB1 Cyclin B1
CCNB2 Cyclin B2
CCND2 Cyclin D2
CCNF Cyclin F
CCNG1 Cyclin G1
CCNH Cyclin H
CDC2 Cell division cycle 2
CDC20 Cell division cycle 20
CDK2 Cyclin dependent kinase 2
CDK4 Cyclin dependent kinase 4
CDK5R1 CDK5 regulatory subunit 1
CDKN1B Cyclin dependent kinase inhibitor 1B/p27/Kip1
CDKN3 Cyclin dependent inhibitor 3/Cip2
CDT1 DNA replication factor Cdt1
CHEK1 CHK1 checkpoint homolog
CKS1B CDC28 protein kinase regulatory subunit 1B
CKS2 CDC28 protein kinase regulatory subunit 2
COX1/2 Cyclooxygenase 1 & 2
CRP C-reactive protein
CYP Cytochrome P450
DDX11 DEAD/H box polypeptide 11
DNMT DNA methyl transferases E2F1, Retinoblastoma protein transcription factor
F4/80 (EMR1) EGF-like module-containing mucin-like hormone receptor-like 1
GADD45A Growth arrest and DNA-damage-inducible, alpha
GMNN Geminin
GPER G protein-coupled estrogen receptor 1
HDACs Histone deacetylases
HPV Human papillomavirus
ITGA2 Integrin subunit alpha 2
KLK3 Prostate-specific antigen (PSA)/kallikrein-3
KLK4 Kallikrein 4
KNTC1 Kinetochore associated 1
KPNA2 Karyopherin alpha 2
LIV-1 Zinc transporter SLC39A6
MAD2L1 MAD2 mitotic arrest deficient-like 1
MBD2 Methyl-CpG-Binding domain protein
MCM2 Mini-chromosome maintenance 2/mitotin
MCM2/7 Mini-chromosome maintenance complex component 2/7
MCM3 Mini-chromosome maintenance 3
MCM4 Mini-chromosome maintenance 4
MCM5 Mini-chromosome maintenance 5
MCM2/7 Mini-chromosome maintenance complex component 2/7
MKI67 Antigen identified by mAb Ki-67
MBD2 Methyl-CpG-Binding domain protein
MO Mouse orthotopic
MRE11A Meiotic recombination 11 homolog A
16/2-OHE1 16/2-hydroxyestrone
OVX Ovariectomized rat
p21 (p21WAF1/Cip1) Cyclin-dependent kinase inhibitor 1 (CDK-interacting protein 1)
P53 Tumor protein p53 (aka “guardian of the genome”)
p65 Transcription factor p65 (nuclear factor NF-kappa-B p65 subunit)
p70S6K1 Ribosomal protein S6 kinase beta-1 (S6K1)/p70S6 kinase 1
PARP poly-ADP ribose polymerase
PC Prostate cancer
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PCNA Proliferating cell nuclear antigen
PDGF Platelet-derived growth factor
PH Prostatic hyperplasia
PIAS1 E3 SUMO-protein ligase PIAS1
PRKCD Protein kinase C delta type
PRKCH Protein kinase C eta type
Prostaglandin E2 Dinoprostone
PS Prostate Stromal
pS2 (TFF1) Trefoil factor family 1
RASSF1 Ras association domain-containing protein 1
RBL1 Retinoblastoma-like 1/p107
RPA3 Replication protein A3
SKP2 S-phase kinase-associated protein
SLC43A1 Large neutral amino acid transporter small subunit 3
TPM1 Tropomyosin alpha-1
VEGFR Vascular endothelial growth factor receptor
XM Xenograft model
YAMC Young adult mouse colon
ZIP2 Zinc transporter SLC39A2
ZnT-1 Zinc transporter protein 1
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