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Abstract

The retinal pigment epithelium (RPE) plays a central role in neuroretinal homoeostasis

throughout life. Altered proteolysis and inflammatory processes involving RPE con-

tribute to the pathophysiology of age‐related macular degeneration (AMD), but the

link between these remains elusive. We report for the first time the effect of advanced

glycation end products (AGE)—known to accumulate on the ageing RPE's underlying

Bruch's membrane in situ—on both key lysosomal cathepsins and NF‐κB signalling in

RPE. Cathepsin L activity and NF‐κB effector levels decreased significantly following

2‐week AGE exposure. Chemical cathepsin L inhibition also decreased total p65 pro-

tein levels, indicating that AGE‐related change of NF‐κB effectors in RPE cells may be

modulated by cathepsin L. However, upon TNFα stimulation, AGE‐exposed cells had

significantly higher ratio of phospho‐p65(Ser536)/total p65 compared to non‐AGEd
controls, with an even higher fold increase than in the presence of cathepsin L inhibi-

tion alone. Increased proportion of active p65 indicates an AGE‐related activation of

NF‐κB signalling in a higher proportion of cells and/or an enhanced response to TNFα.

Thus, NF‐κB signalling modulation in the AGEd environment, partially regulated via

cathepsin L, is employed by RPE cells as a protective (para‐inflammatory) mechanism

but renders them more responsive to pro‐inflammatory stimuli.
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1 | INTRODUCTION

The retinal pigmented epithelium (RPE) is a monolayer of highly spe-

cialized cells that underlie the neuroretina and help maintain retinal

homoeostasis.1 Together with the underlying support matrix (Bruch's

membrane, BrM), the RPE forms a selective barrier between the

neuroretina and the choroid. In addition, the BrM is involved in mod-

ulation of RPE differentiation, migration and adhesion thus underpin-

ning the role of the RPE–BrM complex in normal eye physiology.2-4

The longevity of RPE cells—owing to their terminally differenti-
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age‐related changes which in turn can impact on specialized cellular

processes. The RPE undergoes several structural changes with age

including loss of melanin, accumulation of lipofuscin and atrophy of

RPE microvilli.6-8 The BrM also displays age‐related structural and

physiological changes such as an increase in overall thickness and an

increase in phospholipids, triglycerides and fatty acids content. In

addition, collagen components of the BrM show increased cross‐link-
ing and decreased solubility.9-12 Gaining a better understanding of

the ageing process and its impact on RPE cellular function has

become a key area of research in age‐related macular degeneration

(AMD), the most common cause of blindness in developed countries,

whose pathophysiology is believed to be directly linked to RPE

impairment.13,14

An important phenomenon of ageing in all tissues is the accumu-

lation of advanced glycation end products (AGE).15 AGE are a group

of heterogeneous reaction products formed between reducing sugars

and either lipids or the free amino groups on biomolecules such as

proteins.15,16 AGE accumulate on long‐lived extracellular matrix pro-

teins such as collagen, where by altering macromolecular structure

and function, they contribute to the development and progression of

age‐related diseases.16,17 AGE adducts are known to accumulate in

the BrM with age and their presence has been associated with

AMD.18-20 Exposure to AGE alters the gene expression profile of

cultured RPE cells, which in turn impacts their functional capacity. It

has been shown for example, that RPE cells grown on AGE‐modified

substrate have been shown to have down‐regulated expression of

cathepsins D, G and S.19

Cathepsins, such as the cysteine proteases cathepsins L and S and

the aspartic protease cathepsin D govern lysosomal function.21,22

Cathepsins B, D, L and S are known to be key regulators of autop-

hagy.23-25 Within RPE cells, cathepsins D and S are involved in the

degradation of photoreceptor outer segments (POS) and thus play a

direct role in the maintenance of visual homoeostasis.26,27 In addition,

the activity of cathepsins has been linked to the modulation of sig-

nalling pathways; notably cathepsin L was shown to be involved in the

regulation of the nuclear factor kappa B (NF‐κB) signalling path-

way.28,29 NF‐κB is a transcription factor that participates in the

expression of many genes such as the pro‐inflammatory cytokines

interleukin‐1β (IL‐1β) and interleukin 18 (IL‐18).30, 31 Both IL‐1β and IL‐
18 are synthesized as precursors that require proteolytic maturation

by caspase‐1 which must first be activated by multi‐protein complexes

known as inflammasomes.32 As inflammation plays a major role in the

pathogenesis of AMD,33 dysregulation of cathepsin activity might be a

contributing factor to RPE dysfunction and AMD pathology.

Importantly in this context, cathepsins have been shown to be

susceptible to age‐related alterations. An increase in cathepsin D

activity along with a decrease in cathepsin L activity was docu-

mented in the ageing rat brain.34 The activity of cathepsins such as

L and H significantly decreased in kidney proximal tubule cell line

LLC‐PK1 after AGE exposure.35 A decrease in mRNA expression of

lysosomal enzymes cathepsin S, cathepsin G, acid phosphatase, β‐
galactosidase and β‐mannosidase was observed in RPE cells exposed

to AGE; cathepsin D activity levels also decreased in RPE cells after

AGE exposure.19 Moreover, in addition to cathepsins, AGE exposure

was shown to modulate NF‐κB activity through activation of their

receptor RAGE.36

Given the evidence that cathepsins can regulate NF‐κB activity, it

is hypothesized that AGE adducts could exert their effects on the

NF‐κB signalling pathway and thus on processes such as inflammation,

through modulation of cathepsins activity. This study tested the above

hypothesis in RPE cells, making use of an in vitro model of RPE cells

exposed to AGE‐modified basement membrane mimicking an ageing

BrM.19 Specifically, we analysed the effects of AGE on expression and

activity of RPE‐expressed cathepsins alongside endogenous levels of

effectors of the NF‐κB signalling pathway and investigated the link

between cathepsin L and NF‐κB regulation. We demonstrate that fol-

lowing AGE exposure, both cathepsin L expression and activity, as well

as protein levels of key NF‐κB pathway effectors, are reduced in RPE

cells. Furthermore, we also show that cathepsin L is involved in regula-

tion of NF‐κB regulation in RPE cells indicating the decrease of NF‐κB
effectors following exposure to AGE may at least in part be because of

changes in cathepsin L levels. We propose that the alterations of

cathepsin L expression and activity and the associated dampening of

the NF‐κB signalling serve as an early cellular protective mechanism in

the ageing RPE, but may contribute to the environment in which cells

are more vulnerable and receptive to subsequent or persistent pro‐
inflammatory stimuli.

2 | MATERIALS AND METHODS

2.1 | RPE cell culture and AGE modification of
extracellular matrix (ECM)

An authenticated human RPE cell line ARPE‐19 (ATCC, Rockville,

Maryland, USA) was maintained in 1:1 mixture of DMEM/F12

(Sigma, Dorset, UK) media supplemented with 10% FCS for the first

4 days in culture after which the cells were maintained for long‐term
culture in medium containing 2% FCS leading to the formation of

stable RPE monolayers.

Experiments were carried out in standard 6‐well or 12‐well plates,

previously coated with a solubilized basement membrane matrix

extract, Matrigel (MG)™ (BD Biosciences, Oxford, UK) for 1 hour at

37°C. MG™, rich in common basement membrane matrix components,

was used to mimic the innermost layer of the BrM. To mimic an aged

phenotype of BrM, the Matrigel coat was AGE‐modified as previously

described.19,37 Briefly, AGE adduct formation was induced by incubat-

ing the MG™ substrate in the presence of 100 m mol L−1 glycolalde-

hyde (Sigma, Dorset, UK) at 37°C for 4 hours, followed by thorough

washing with PBS. Termination of the glycation reaction was achieved

by incubating the MG™ with 50 m mol L−1 sodium borohydride

(Sigma, Dorset, UK) at 4°C overnight, followed by thorough washing.

For control wells, MG™ was treated in the same way, with the excep-

tion of glycolaldehyde substitution with PBS. The degree of AGE mod-

ification and collagen cross‐linking in this ageing in vitro model was

previously described.37 For the 6‐well plate experimental set‐up,
ARPE‐19 cells were seeded on control and AGE‐modified MG™ at a
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cell density of 1 x 104 cells per well; cell number was appropriately

rescaled for 12‐well plate experiments.

2.2 | Cathepsin L inhibition

ARPE‐19 cells were seeded at a density of 1 x 105 on 6‐well plates

and allowed to grow in culture for 4 days in DMEM/F12 (Sigma, UK)

with 10% FCS to reach confluency. The confluent cells were treated

with 40uM Cathepsin L Inhibitor III (Merck Millipore, Darmstadt,

Germany) for 8 hours at 37°C and followed by thorough washing

with PBS. Cells were lyzed in lysis buffer38 and subjected to SDS

polyacrylamide electrophoresis for analysis of protein expression by

Western blotting as described below.

2.3 | TNFα treatment

Following the respective times for cathepsin L inhibition or AGE

exposure, ARPE‐19 cells were treated with 10 ng/mL TNFα (Thermo-

Fisher Scientific, Waltham, USA) for a further 2 hours. The control

cells were not treated with TNFα. Cells were then thoroughly

washed with PBS after which cell lysates were collected following

the addition of lysis buffer38 to the wells. As the activation of NF‐κB
signalling pathway in Hela cells in response to TNFα treatment is

well documented,39 these cells were used as a positive control for

TNFα activity and for the immunodetection of NF‐κB effectors.

2.4 | Western immunoblotting

Protein content in cell lysates was determined using the Qubit fluo-

rometer 2.0 (Invitrogen Ltd, Paisley, UK). Proteins in cell lysate sam-

ples were resolved by SDS‐PAGE, alongside a molecular weight

marker (PageRuler Prestained Protein Ladder, Thermo Scientific,

Rockford, USA) after which immunoblotting analysis was performed

as previously described.40 To standardize and normalize across blots,

an aliquot of a random sample was loaded on each gel as an internal

control. Primary and secondary antibodies used are listed in Table 1.

Protein detection was achieved using an enhanced chemiluminescent

(ECL) substrate kit (Thermo Scientific, Rockford, USA) followed by

imaging on the ChemiDoc BioRad ChemiDOC™ digital imager

(BioRad, Hampstead, UK). Band densitometry values were obtained

using Image Lab Software (Bio‐Rad, Hampstead, UK) and the read-

ings were normalized against values of the internal control on each

blot (given arbitrary value of 1) and to the loading control (glycer-

aldehyde 3‐phosphate dehydrogenase (GAPDH).

2.5 | Real‐time quantitative PCR (qPCR)

RNA isolation was carried out using the RNeasy Plus Mini‐Kit (Qia-

gen, Hilden, Germany). Complementary DNA was synthesized from

RNA using the First Strand cDNA Synthesis Kit (Thermo Scientific,

Waltham, USA). Quantitative PCR was performed with the MESA

BLUE qPCR Mastermix Plus Kit for SYBR assay (Low ROX; Eurogen-

tec, Belgium) using a modified version of a previous protocol.41

Reactions were run on a Stratagene MX3000P qPCR System (Strata-

gene, California, USA), with a minimum of three biological replicates

for each experimental condition and three technical replicates for

each cDNA sample. Primer sets used are listed in Table 2. Final val-

ues were expressed relative to a calibrator sample assigned an arbi-

trary value of 1 and normalized to the expression of three

housekeeping genes, beta tubulin, GAPDH and ribosomal protein L5

using the efficiency‐corrected ddCt method. The specificity of ampli-

fication reactions was confirmed by melt curve analysis.

2.6 | Cathepsin enzyme activity assays

Enzymatic activities of cathepsins B, L, S and D were determined in

ARPE‐19 exposed to AGE‐modified MG™ in parallel with ARPE‐19
cells exposed to control MG™ through the use of commercially avail-

able fluorometric based activity assays (Abcam, Cambridge, UK). All

steps in this procedure were performed according to manufacturer's

TABLE 1 Antibodies used for the analysis of protein expression
levels

Antibody Dilution

Anti‐cathepsin B (Abcam) 1:500

Anti‐cathepsin D (Abcam) 1:500

Anti‐cathepsin L (Abcam) 1:500

Anti‐cathepsin S (Abcam) 1:500

Anti‐NF‐κB p65 (Abcam) 1:500

Anti‐Phospho‐NF‐κB p65 Ser536P (Cell Signalling,

Hertfordshire, UK)

1:500

Anti‐IkB‐α (Abcam) 1:500

Anti‐GAPDH (Abcam) 1:500

Secondary horseradish peroxidase (HRP)‐conjugated anti‐
rabbit (Sigma‐Aldrich, Dorset, UK)

1:1000

Secondary horseradish peroxidase (HRP)‐conjugated anti‐
rabbit (Sigma‐Aldrich)

1:2000

TABLE 2 Primers used for gene expression level analysis

Cathepsin B Forward 5′GCTTCGATGCACGGGAACAATG3

Reverse 5′CATTGGTGTGGATGCAGATCCG3′

Cathepsin D Forward 5′GCAAACTGCTGGACATCGCTTG3′

Reverse 5′GCCATAGTGGATGTCAAACGAGG3′

Cathepsin L Forward 5′GAAAGGCTACGTGACTCCTGTG3′

Reverse 5′CCAGATTCTGCTCACTCAGTGAG3

Cathepsin S Forward 5′TGGATCACCACTGGCATCTCTG3′

Reverse 5′GCTCCAGGTTGTGAAGCATCAC3′

Beta tubulin Forward 5′CTGGACCGCATCTCTGTGTACT3′

Reverse 5′GCCAAAAGGACCTGAGCGAACA3′

GAPDH Forward 5′TTGCCCTCAACGACCACTTT3′

Reverse 5′TGGTCCAGGGGTCTTACTCC3′

Ribosomal protein

L5

Forward 5′ATGCTCGGAAACGCTTGGT3′

Reverse 5′GCGCAGACTATCATATCCCCC3′
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protocol with fluorescence measured in black 96‐well plates using

the Fluostar Optima plate reader (BMG Labtech, Aylesbury, UK).

2.7 | Statistical analysis

Data analysis was performed with commercial software Microsoft

Excel (Version 2010, Microsoft UK Ltd, Reading, UK) and GraphPad

Prism (Version 5, GraphPad Software, Inc., USA). A P value ≤0.05

was considered to be significant.

3 | RESULTS

3.1 | Cathepsins expression in RPE cells exposed to
AGE: reduction of cathepsin L protein and activity
levels

An in vitro system that mimics an important phenomenon of the

ageing process, the accumulation of AGE, was used to determine the

effects of ageing on the expression and activity of cathepsins in RPE

cells. ARPE‐19 cells were cultured for 14 days on either untreated

MG™ (NA) or AGE‐modified MG™ (A). Despite a slower rate of

growth, RPE cells grown on AGE‐modified MG™ reached confluence

and presented comparable epithelioid cell morphology by day 14 in

culture (Figure 1A)—the time‐point thus chosen for experimental

measurements. Furthermore, no significant difference in cell number

between control and AGE‐modified MG™ at the 2‐week time‐point
was observed (Figure 1B).

Expression of cathepsins B, L, S and D was demostrated, both by

immunoblotting and real time qPCR, in all ARPE‐19 cell lysates from

these cultures (Figure 2). The analysis of expression showed that

cathepsins L (active form) and S (pro‐ and active forms) protein levels

were decreased in cells grown on AGE‐modified MG™ (Figure 2A).

On the other hand, the aspartic protease cathepsin D (active form)

showed an increase in protein levels in RPE cells grown on AGE‐
modified MG™. The analysis of RNA levels showed no difference for

all cathepsins tested in RPE cells grown on control MG™ vs AGE‐
modified MG™, except for cathepsin S which displayed a decrease

(Figure 2B). This observation indicates that protein alterations of

F IGURE 1 A, Morphology by phase contrast microscopy and growth characteristics of ARPE‐19 cells cultured on non‐modified MG™ (NA)
(I, III and V) or AGE‐modified MG™ (A) (II, IV, VI). Representative image of cell cultures at 24 h post seeding (I, II), day 5 post seeding (III, IV)
and day 14 post‐seeding (V, VI). Cells seeded on control NA MG™ presented a higher rate of growth and reached confluency quicker than the
cells seeded on AGE‐modified MG™. Thus, at day 5 post‐seeding, ARPE‐19 cells had reached a confluent state when grown on control MG,™

whereas cells grown on AGE‐modified MG™ were ~40% confluent (III and IV). By day 14, ARPE‐19 cells grown on both control and AGE‐
modified MG™ were confluent and had developed a cobblestone appearance (V and VI) making this time‐point appropriate for comparison
studies. Scale bar represents 100 μm. B, Graph shows cell counts from ARPE‐19 cells grown on control NA MG™ and AGE‐modified MG™ for
7 and 14 d (average ± SEM, n = 3; Student's t test, ***P ≤ 0.001). At each time‐point, dead cells were washed away using PBS after which
remaining cells were removed via trypsinization and counted using a haemocytometer. At 1 wk, (top graph) a significantly higher amount of
cells were found on control NA MG™ compared to cells found on AGE‐modified MG™. By 2 wk (bottom graph), there was no significant
difference between cell number on both control and AGE‐modified MG™
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cathepsins L and D are most likely because of post‐translational
events whereas the decrease in total cathepsin S protein levels is a

consequence of reduced transcription.

As the amount of protein is a factor that can affect cathepsin

enzymatic activity, we thereafter analysed cathepsin‐linked enzy-

matic activity in RPE cells (Figure 3). When grown on AGE‐modified

MG™, ARPE‐19 cells showed a significant decrease in cathepsin L‐
linked enzymatic activity after 14 days in culture. All other cathep-

sins tested showed no significant changes of their activity level.

Taken together, the data highlighted the significant down‐regulation
of cathepsin L at both protein and importantly at activity level in

ARPE‐19 cells cultured on AGE‐modified substrate.

3.2 | Protein levels of key effectors of the NF‐κB
pathway, p65, phospho‐p65 (Ser536) and IκBα are
altered in RPE cells exposed to AGE

As cathepsin L is known to contribute to the regulation of NF‐κB
signalling, alterations of this enzyme, as demonstrated by this study,

could influence NF‐κB activity. Therefore, we investigated the

effects of AGE on the regulation of NF‐κB regulation by first assess-

ing the overall protein levels of total p65 and phospho‐p65 (Ser536),

as well as the NF‐κB inhibitor IkBα in ARPE‐19 cells.

A significant decrease of both total p65 and phospho‐p65
(Ser536) protein levels (consistent with decreased mRNA levels for

p65, data not shown) was observed in RPE cells exposed to AGE‐
treated Matrigel, compared with control cells cultured in non‐AGEd
conditions (Figure 4A,B). IkBα protein levels were also decreased

in RPE cells exposed to AGE, suggesting an overall decrease in

the NF‐κB signalling pathway in RPE cells exposed to AGE. Fur-

thermore, the ratios of phospho‐p65 (Ser536P)/total p65 and total

p65/IkBα protein levels showed no significant alterations between

cells exposed to AGE and control cells (Figure 4C‐D). The results

indicated a similar decrease in protein and activity levels of these

key effectors of the NF‐κB signalling pathway subsequent to

exposure to the AGEd environment, suggestive of an AGE‐
related cellular response resulting in dampening of this signalling

pathway.

3.3 | Effect of cathepsin L inhibition on the
constitutive expression of NF‐κB signalling effectors
in RPE cells

In order to investigate the potential functional link between cathep-

sin L and regulation of NF‐κB signalling in RPE cells, the protein

levels of total p65, phospho‐p65 (Ser536) and IkBα were measured

and compared in the presence and absence of the irreversible

cathepsin L inhibitor III (Merck Millipore). Optimization of inhibitor

concentration/time course experiments were carried out and showed

that concentrations of 25 μ mol L−1 and 40 μ mol L−1 of cathepsin L

F IGURE 2 Analysis of expression levels of the cysteine proteinases cathepsins B, L, S and the aspartic proteinase cathepsin D in ARPE‐19
cells cultured on non‐modified MG™ (NA) and AGE‐modified MG™ (A) for 14 d. A, Protein levels of cathepsins B, L, S and D were assessed by
immunoblotting. GAPDH immunodetection was used as a loading control and for normalization. Representative Western blots shown, with
graphs presenting average normalized protein expression (active form; arbitrary units ± SEM, minimum of n = 9; Student's t test, *P ≤ 0.05;
**P ≤ 0.01). Cathepsin L (active form) and cathepsin S (pro‐ and active forms) protein levels were significantly reduced in ARPE‐19 cells after
AGE exposure. In addition, cathepsin D (active) levels were significantly up‐regulated in ARPE‐19 cells after AGE exposures. B, mRNA levels of
cathepsins B, L, S and D were analysed by qRT‐PCR. Graphs show average expression normalized against three housekeeping genes as
described in Methods (arbitrary units ±SEM, n = 3; Student's t test, **P ≤ 0.01). No significant changes were observed in mRNA levels for all
cathepsins tested after AGE exposure with the exception of cathepsin S, which showed a significant decrease
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inhibitor were sufficient to inhibit cathepsin L activity for up to

8 hours in RPE cells, with viability unaffected in all conditions. We

therefore used the highest concentration (40 μ mol L−1) and the

longest time‐point (8 hours) for subsequent experiments to ensure

effective and sustained cathepsin L inhibition (Figure 5A). A signifi-

cant decrease of total p65 protein level was observed in ARPE‐19
cells treated with cathepsin L inhibitor III, consistent with a role for

cathepsin L in modulation of NF‐κB signalling (Figure 5B,C). Protein

levels of phospho‐p65 (Ser536) and IkBα were not significantly

altered (although the latter slightly decreased). Thus, the overall out-

come of the cathepsin L inhibition translated into a significant

increase of the phospho‐p65 (Ser536)/total p65 ratio (Figure 5D).

Taken together, these results indicate that the overall decrease of

the total p65 protein pool upon cathepsin L inhibition is accompa-

nied by the enhancement of the proportion of activated p65

(Ser536) in the total p65 cellular pool, thus potentially shifting the

profile of p65 activity, similar to signal priming events.

3.4 | Effect of cathepsin L inhibition on the TNFα‐
induced NF‐κB signalling in RPE cells

After determining that cathepsin L activity contributes to modulation

of p65 protein levels in RPE cells, we next investigated whether the

NF‐κB signalling pathway response to the pro‐inflammatory stimulus

F IGURE 3 Activity analysis of
cathepsins B, L, S and D in ARPE‐19 cells
cultured on non‐modified MG™ (NA) and
AGE‐modified MG™ (A) for 14 d. Activity
levels were determined by fluorescence‐
based activity assays. Cathepsin L activity
was decreased in RPE cells after AGE
exposure. Activity levels of cathepsins B, D
and S remained unchanged in ARPE‐19
cells after AGE exposure. Graphs show
average normalized activity in relative
fluorescence units (RFU) (±SEM, minimum
of n = 5; Student's t test, *P ≤ 0.05)

F IGURE 4 The effect of AGE on NF‐κB pathway effectors in ARPE‐19 cells. A, Protein levels of total p65, phospho‐p65 (Ser536) and IκBα
in ARPE‐19 cells cultured on non‐modified MG™ (NA) and AGE‐modified MG™ (A) for 14 d were successively assessed by immunoblotting.
GAPDH immunodetection was used as a loading control and for normalization. B, Graphs show average normalized protein expression
(arbitrary units ±SEM, n = 10; Student's t test, *P ≤ 0.05; **P ≤ 0.01). Protein levels of total p65, phosph‐p65 (Ser536) and IkBα were all
significantly decreased in ARPE‐19 cells after AGE exposure. C, Ratios of active phospho‐p65 (Ser536)/total p65 and total p65/IkBα showed no
significant difference between non‐AGE and AGE conditions, indicating decrease of respective protein levels at similar rates
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TNFα is altered following inhibition of cathepsin L activity. In both

control (without cathepsin L inhibition) and treated (with cathepsin L

inhibitor III) ARPE‐19 cells, a significant increase of total p65, phos-

pho‐p65 (Ser536) and IkBα protein levels were observed after TNFα

exposure (Figure 6A‐D). Importantly, however, there was no signifi-

cant difference between the fold increase of the ratio of phospho‐
p65 (Ser536)/total p65 induced by TNFα and by cathepsin inhibition

alone (Figure 6E). These data also corroborated the effect of cathep-

sin L inhibition on the profile of active vs total p65 pool demon-

strated for unstimulated conditions (Figure 5D).

3.5 | Effect of AGE on the TNFα‐induced NF‐κB
signalling effectors in RPE cells

After observing that cathepsin L activity modulates the level of

NF‐κB signalling effectors in RPE cells, we sought to determine the

response to TNFα in AGE‐exposed RPE cells, where cathepsin L

activity is decreased. TNFα treatment led to a significant increase in

levels of total p65 only in control cells with overall levels remaining

unaffected in AGE‐exposed cells (Figure 7A,B). Phospho‐p65
(Ser536) and IkBα were significantly increased in both control and

AGE‐exposed cells after exposure to TNFα (Figure 7C,D).

As AGE can independently influence the different NF‐κB effec-

tors, the actual effect of TNFα on the NF‐κB signalling response is

best represented by the phospho‐p65 (Ser536)/total p65 ratio. Thus,

although the ratio of phospho‐p65 (Ser536)/total p65 was signifi-

cantly increased for both control and AGE‐exposed cells after TNFα

treatment (indicating a functional NF‐κB signalling pathway), this

ratio was significantly higher in RPE cells exposed to AGE, indicating

a higher proportion of active p65 in the general pool in an AGE‐con-
taining environment. This is illustrated by the substantial (approxi-

mately six times higher) fold increase of the ratio of phospho‐p65
(Ser536)/total p65 induced by TNFα in the presence of AGE (Fig-

ure 7E). Overall the data show an increased activation of the NF‐κB
signalling in a higher proportion of cells and/or through an enhanced

response to TNFα when cells are exposed to AGE.

4 | DISCUSSION

In this study, we demonstrated that cathepsin L expression and its

enzymatic activity as well as key NF‐κB signalling pathway effectors

decrease in RPE cells exposed to AGE. In addition, we showed that

cathepsin L is involved in modulating the NF‐κB pathway, indicating

that AGE‐induced alterations of NF‐κB effectors may, at least in part,

be a consequence of the changes in cathepsin L levels. Unexpect-

edly, the AGE‐related constitutive dampening of the NF‐κB effectors

created an environment in which cells mounted an increased

F IGURE 5 The effect of cathepsin L activity inhibition on the expression of NF‐κB signalling effectors in RPE cells. A, Evaluation of
cathepsin L inhibitor III concentration and exposure time for effective enzymatic activity inhibition in ARPE‐19 cells. Significant decrease of the
enzymatic activity observed up to 8 h post‐treatment at inhibitor concentrations of 25 μmol L−1 and 40 μmol L−1. B, Immunoblotting analysis
of total p65, phospho‐p65 (Ser536) and IkBα protein levels in ARPE‐19 cells, untreated and treated with 40 μ mol L−1 cathepsin L inhibitor III.
HeLa cells ± TNFα were used as controls. GAPDH immunodetection was used as a loading control and for normalization. C, Comparison of
protein expression of total p65, phospho‐p65 (Ser536) and IkBα normalized to GAPDH level in the absence and presence of cathepsin L
inhibition (arbitrary units ±SEM, minimum of n = 10; Student's t test, *P ≤ 0.05). Protein level of total p65 was significantly decreased in
ARPE‐19 cells in the presence of cathepsin L inhibition (D) Ratio of phospho‐p65 (Ser536)/total p65, indicating the proportion of activated p65
in the total p65 protein pool, in the absence and presence of cathepsin L inhibition (minimum of n = 10; Student's t test, *P ≤ 0.05).
Significant increase in ratio was observed in ARPE‐19 cells in the presence of cathepsin L inhibition compared to control cells. This indicates a
higher amount of activated p65 from the total p65 protein pool
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response to TNFα, indicating that the cells exposed to AGE are more

sensitive and more responsive to pro‐inflammatory conditions. This

data highlights possible key mechanisms in which alterations to

cathepsin L and NF‐κB play a role in the physiology of the ageing

RPE.

The cellular model used in this study exploited the presence of

AGE in the ECM of RPE cells to mimic one aspect of the ageing pro-

cess of these cells. Glycolaldehyde was used to induce AGE formation

on the basement membrane matrix as glycolaldehyde‐derived AGE

adducts involving reactive α‐oxaloaldehydes have been observed in

human BrM.19,42 The use of glycolaldehyde to induce AGE formation

on matrix in vitro, along with the degree of AGE adduct formation and

crosslinking have been described previously.19,37,42 A progressive rise

in AGE has been observed in the BrM with age.18,19 As a direct rela-

tionship between the RPE and BrM exists, AGE deposition on the BrM

may be partially attributed to RPE dysfunction and linked to subse-

quent atrophy and photoreceptor degeneration.

We report here the characterization of expression of cathepsins

B, H, L and D in ARPE‐19 cells and the changes in their expression

in cells exposed to AGE. The most prominent change induced by the

presence of AGE was for cathepsin L, which showed significantly

decreased protein and activity levels (Figures 2 and 3). Being a

potent lysosomal protease, the implications of decreased cathepsin L

activity could have severe impact on crucial proteolysis‐related RPE

functions such as POS degradation and autophagy, processes which

when impaired contribute to the accumulation of cellular debris such

as lipofuscin and ultimately lead to cellular dysfunction.19,43,44 Nota-

bly in the context of RPE function, in addition to core lysosomal

functions, cathepsin L was previously shown to be involved in com-

plement and NF‐κB activity regulation.28,29,45,46

Dysregulated complement plays a key role in AMD development.47

Interestingly, survival of immune cells was shown to be dependent on

intracellular cathepsin L‐mediated cleavage of the key complement

component C3 into biologically active C3a and C3b fragments.45 In

addition, it was also demonstrated that complement factor H (CFH),

an inhibitor of the complement pathway, binds to apoptotic RPE cells

and is internalized where it acts as a co‐factor enhancing cathepsin L‐
mediated cleavage of C3 and opsonization.46 This then aids removal of

damaged/dysfunctional RPE cells as well as preventing excessive

inflammation. As cathepsin L‐mediated cleavage of C3 contributes to

survival of cells, it is possible that a reduction of this enzyme in RPE

cells exposed to AGE, a known inducer of cell death,48 contributes to a

cellular environment unfavourable for RPE survival. Furthermore, dam-

aged/dysfunctional RPE cells would not efficiently be removed

because of reduction in cathepsin L‐mediated cleavage of C3 and sub-

sequent diminished opsonization. An accumulation of dysfunctional

cells may then contribute to biogenesis of material such as drusen and

further exacerbate inflammatory conditions.

Of particular interest and a focus in this study was the role of

cathepsin L in NF‐κB activity regulation. Cathepsin L was shown to

F IGURE 6 The effect of TNFα treatment on the level of NF‐κB signalling effectors in RPE cells after cathepsin L inhibition. A, total p65,
phospho‐p65 (Ser536) and IkBα protein expression determined by Western blotting analysis in ARPE‐19 cells exposed to ± cathepsin L
inhibition and ± TNFα treatment. (B‐D) Graphs show average protein expression normalized to GAPDH (arbitrary units ±SEM, minimum of
n = 8; One way ANOVA followed by Tukey's multiple comparison test, *P ≤ 0.05; ***P ≤ 0.001). E, Ratios of phospho‐p65 (Ser536)/total p65
indicate the proportion of phosphorylated p65 (and thus potentially active) in the total p65 pool in RPE cells; data demonstrates similar fold
increase of these ratios upon TNFα stimulation and cathepsin L inhibition

412 | SHARIF ET AL.



have a dual role in NF‐κB regulation, being involved in the activation

as well as the suppression of NF‐κB activity.28,29 Current evidence

supports the idea that increased activation of NF‐κB, as a key tran-

scriptional regulator of genes involved in processes such as inflam-

mation and apoptosis,30,31,49,50 is a driving force behind the ageing

process.51 It is also known that AGE exposure leads to NF‐κB activa-

tion.36 As cathepsin L can regulate NF‐κB activity, it is possible that

AGE exert their effects on the NF‐κB signalling pathway, at least in

part, through modulation of cathepsin L levels.

To test the above hypothesis, we investigated the impact of AGE

on levels of key NF‐κB effectors—p65, phospho‐p65 (Ser536) and

IkBα, and addressed the role of cathepsin L in NF‐κB regulation in

RPE cells through the use of a chemical activity inhibitor. Surpris-

ingly, following exposure to AGE, RPE cells displayed decreased total

p65, phospho‐p65 (Ser536) form and IkBα protein levels, which sug-

gested an overall decrease in the NF‐κB signalling system (Figure 4).

Cathepsin L inhibition led to decreased protein level of total p65 in

RPE cells which suggested that the decrease in cathepsin L activity

may contribute to the decrease of total p65 seen in AGE‐exposed
RPE cells. Notably, however, the overall decrease of the total p65

protein pool upon cathepsin L inhibition was accompanied by the

enhancement of the proportion of activated p65 (P‐Ser536) in the

total p65 cellular pool, thus indicating a shift in the profile of p65

activity.

Alterations in NF‐κB signalling effectors lead to changes in genes

and processes regulated by this pathway. We know that p65

regulates the expression of pro‐apoptotic genes such as p53, a

tumour suppressor that induces cell death.49,50 In previous studies,

AGE exposure (up to 48 hours) of RPE cells was shown to induce

cell death, a response associated with increased oxidative insult.48 In

the 2‐week AGE‐exposed RPE cell culture system investigated in our

study, it was observed that AGE‐exposed cells had a slower rate of

growth but did reach confluence and comparable morphology to

control cells by day 14 (Figure 1). This slower rate of growth could

be explained by the known AGE‐induced impairment of replicative

capacity.37 Furthermore, it is possible that once cells were seeded

onto the AGE‐modified basement membrane, a level of cell death

occurred in the first few days which led to a decrease in cell number

and thus a lag behind controls in reaching confluency. Cells that

manage to survive on the AGE‐modified substrate initiated mecha-

nisms and adapted to their environment enabling them to remain

viable. Decreased NF‐κB activation following cathepsin L inhibition

was linked functionally with protection against apoptosis.28 Thus,

dampening of the NF‐κB signalling pathway, which may at least in

part be because of decreased cathepsin L levels in RPE cells, could

be a protective mechanism that helps remaining cells on the AGE‐
modified basement membrane maintain viability in spite of the

adverse and damaging effects of AGE.

Down‐regulation of NF‐κB activity can also influence the expres-

sion of inflammatory genes such as IL‐1β and IL‐18 and affect

inflammation processes.30,31 Clarification of how inflammation arises

and is modulated in the ageing RPE is crucial for understanding how

F IGURE 7 The effect of TNFα treatment on the response of NF‐κB signalling effectors in RPE cells after AGE exposure. A, Total p65,
phospho‐p65 (Ser536) and IkBα protein expression determined, alongside normalizing GAPDH, by Western blotting analysis of ARPE‐19 cells
cultured on non‐modified MG™ (NA) and AGE‐modified MG™ for 14 d. (B‐D) Average normalized total p65, phospho‐p65 (Ser536) and IkBα
protein expression, respectively (arbitrary units ± SEM, minimum of n = 8; One way ANOVA followed by Tukey's multiple comparison test,
***P ≤ 0.001). E, Fold increase of the ratio phospho‐p65 (Ser536)/total p65 following stimulation with TNFα in cells is augmented in AGE‐
exposed cells
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AMD develops. AGE exposure leading to decreased NF‐κB activity

may indicate that RPE cells are able to mount an initial protective

response against inflammatory stimuli. The idea of cells protecting

themselves from damaging stimuli is in line with the concept of

“para‐inflammation,” an adaptive response to cellular/tissue malfunc-

tion which aims to maintain sufficient functionality.52 However, if

cell/tissue stress persists and is not removed, then cells are tipped

from a para‐ to a chronic inflammatory state.52 Para‐inflammation

was described in the ageing retina as a stress response aimed at

maintaining tissue integrity which is lost during chronic inflammation,

contributing to the development of AMD.53 Our data highlights the

shifting in expression patterns of NF‐κB effectors as key mediators

of inflammation in RPE cells in response to the age‐related ubiqui-

tous factor, AGE. Interestingly, a recent study showed that RPE cells

exposed to AGE for 24 hours displayed up‐regulation and down‐reg-
ulation of different pro‐ and anti‐inflammatory cytokines.54 This

complex pattern of secretion was said to reflect a “para‐inflamma-

tory” response of RPE cells after 1‐day exposure.54

In the present study RPE cells were exposed to AGE for 2 weeks

in order to create a more “chronic” exposure. However, the dampen-

ing of the NF‐κB pathway at this time‐point may still be reflective of

a “para‐inflammatory” survival response as the in vitro model used is

likely to reflect the initial adaptive response of RPE cells to the pres-

ence of AGE. The RPE cells in situ undergo a slow progression of

insult by experiencing cumulative age‐related changes and damage. It

is conceivable that the RPE cells use the para‐inflammatory response

as an initial protective mechanism, but may eventually succumb to

prolonged or enhanced damage associated with a chronic condition.

It should also be pointed out that although traditionally seen as a

pro‐inflammatory mediator, NF‐κB can also regulate anti‐inflamma-

tory genes which add extra complexity to this signalling pathway.55

From a para‐inflammation state, cells can be tipped in a direction

that overwhelms cellular defences via constant or additional stresses

to cause dysfunction. We therefore also investigated the response

to the pro‐inflammatory stimulus TNFα of RPE cells that had been

cathepsin L‐inhibited or AGE exposed. In addition to being an indu-

cer of the NF‐κB pathway, TNFα presents increased expression with

human ageing and in age‐related degenerative diseases such as Alz-

heimer's disease.56 Importantly in relation to the RPE, TNFα was

shown to increase the production and secretion of the angiogenic

VEGF protein, a known contributor to development of wet (neovas-

cular) AMD,57 and anti‐TNFα injections helped improve vision of wet

AMD patients.58

Our data provides experimental evidence that in cells exposed to

AGE, the phospho‐p65 (Ser536)/total NF‐κB p65 ratio is significantly

higher compared to non‐AGE cells when treated with TNFα. This is

particularly important functionally, as the higher proportion of active

p65 in the total cellular pool in an AGE‐exposed environment trans-

lated into a higher fold increase of the ratio of phospho‐p65
(Ser536)/total p65 induced by TNF‐α in the presence of AGE com-

pared to the ratio in the presence of AGE alone (Figure 7E), hence

revealing that “aged” RPE cells mount an increased response to pro‐
inflammatory stimuli. Interestingly, no significant difference between

fold increase of the ratio of phospho‐p65 (Ser536)/total p65 was

observed in cells treated with TNF‐α and cathepsin L inhibition alone

(Figure 6E). This shows that cathepsin L inhibition, which only seems

to influence total p65 levels, is not sufficient to make cells more

responsive to pro‐inflammatory stimuli on its own.

In conclusion, our data indicate that the presence of AGE

adducts, a characteristic of the ageing process, renders RPE cells

more responsive to pro‐inflammatory stimuli and that cells become

more vulnerable and responsive to an inflammatory stimulus in an

“aged” environment. This may not be an RPE‐specific response

because TNFα−induced apoptosis is also enhanced in T cells from

elderly patients compared to young ones.59 Also, bone marrow‐
derived macrophage from aged rats were more responsive to pro‐
inflammatory stimuli compared to young macrophage.60 Thus, collec-

tively data from different types of cells indicate that age‐related pro-

cesses, of which AGE accumulation is just one, directly affect the

cellular response to inflammatory stimuli.
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