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Abstract

Over 1.4 million people are diagnosed with colorectal cancer (CRC) each year, making it the

third most common cancer in the world. Increased screening and therapeutic modalities

including improved combination treatments have reduced CRC mortality, although inci-

dence and mortality rates are still increasing in some areas. Serum-based biomarkers are

mainly used for follow-up of cancer, and are ideal due to the ease and minimally invasive

nature of sample collection. Unfortunately, CEA and other serum markers have too low sen-

sitivity for screening and preoperative diagnostic purposes. Increasing interest is focused on

the possible use of biomarkers for predicting treatment response and prognosis in cancer.

In this study, we have performed mass spectrometry analysis (UPLC-UDMSE) of serum

samples from 19 CRC patients. Increased levels of C-reactive protein (CRP), which occur

during local inflammation and the presence of a systemic inflammatory response, have

been linked to poor prognosis in CRC patients. We chose to analyze samples according to

CRP values by dividing them into the categories CRP <30 and >30, and, separately, accord-

ing to short and long 5-year survival. The aim was to discover differentially expressed pro-

teins associated with poor prognosis and shorter survival. We quantified 256 proteins and

performed detailed statistical analyses and pathway analysis. We discovered multiple pro-

teins that are up- or downregulated in patients with CRP >30 as compared to CRP <30 and

in patients with short as compared to long 5-year survival. Pathways that were enriched

include LXR/RXR activation, FXR/RXR activation, complement and coagulation cascades

and acute phase signaling response, with some of the proteins we identified having roles in

these pathways. In this study, we have identified multiple proteins, of which a few have been

previously identified as potential biomarkers, and others that have been identified as poten-

tial biomarkers for CRC for the first time, to the best of our knowledge. While these proteins
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still need to be validated in larger patient series, this pilot study will pave the way for future

studies aiming to provide better biomarkers for patients with CRC.

Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide, accounting for almost

10% of the global cancer burden with over 1.4 million new cases and 700 000 deaths each year.

While the 5-year survival rate for CRC is around 60%, only 40% of CRC patients are diagnosed

when the disease occurs locally [1, 2]. This is partly due to limited resources in many countries

as well as a lack of widespread screening programs [3]. Even for patients who undergo curative

resection the prognosis is quite poor, with only 50% of patients surviving 5 years [4]. Progress

has been made to reduce CRC incidence and mortality over the past decade through increased

screening and improved treatments such as the development of new combination therapies [2,

5]. For example, the addition of either bevacizumab or panitumumab to chemotherapy con-

sisting of oxaliplatin, fluorouracil and leucovorin (FOLFOX4) has contributed to better sur-

vival in CRC patients [6, 7]. However, CRC still remains a major cause of cancer death.

Biomarkers are molecules that change upon transition to a pathological state and can be

used to indicate the presence of disease. They can be used for screening and detection of can-

cer, as well as for monitoring of treatment and during follow-up. While the TNM staging sys-

tem provides a standard basis for staging and a prediction of survival, biomarkers can provide

information concerning the subdivision of tumor classes into subgroups that exhibit different

behavior [8, 9]. Proteins detectable in serum are routinely used as biomarkers, such as carcino-

embryonic antigen (CEA), which is the most widely used biomarker for CRC. However, CEA

is not useful for the detection of early CRC due to lack of sensitivity and specificity, which lim-

its its usefulness [10, 11].

Proteomics is the study of the complete proteome of a biological sample, and proteomic

techniques such as mass spectrometry are widely used to search for biomarkers. Due to the

need for new biomarkers with better sensitivity and specificity, searches to identify new poten-

tial proteins that could serve as biomarkers with clinical use are ongoing. Through proteomic

analysis several serum proteins with diagnostic potential for CRC have already been identified,

and there are likely more awaiting discovery [10, 12]. In our study, we decided to analyze

serum samples from CRC patients according to C-reactive protein (CRP) values and, sepa-

rately, according to 5-year survival. Increased levels of CRP, an acute-phase plasma protein

whose concentration increases during both local inflammation and during a systemic inflam-

matory response (SIR), have been linked to poorer survival in CRC patients [13, 14]. There-

fore, it is of interest to identify proteins that are differentially expressed in patients with high

CRP values and a concomitant poorer prognosis, as well as in patients with short 5-year sur-

vival. Identifying patients with a poor prognosis would help select those who would benefit

from more aggressive treatment and assist patients with a good prognosis in avoiding unneces-

sarily harsh treatment.

In this pilot study, we have used Ultra Performance Liquid Chromatography-Ultra Defini-

tion Mass Spectrometry (UPLC-UDMSE)-based proteomics to compare serum samples from

19 CRC patients. The samples were first analyzed after dividing them into two categories based

on CRP, CRP <30 and CRP >30, and the same samples were analyzed again after being

divided into the categories short and long 5-year survival. In this study, we have quantified 256

proteins with two or more unique peptides. Data were further analyzed by ANOVA, principal
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component analysis (PCA), Orthogonal Projections to Latent Structures Discriminant Analy-

sis (OPLS-DA)-modeling and OPLS-DA-associated S-plot. Pathway analysis was performed

using Integrated Molecular Pathway Level Analysis (IMPaLa) and Ingenuity Pathway Analysis

(IPA). In our pilot study, we propose several potential biomarkers, which have good statistical

significance.

Material and methods

Patient samples

The study included preoperative serum samples from 19 patients with colon cancer who under-

went hemicolectomy resection with curative intent at Department of Surgery, Helsinki Univer-

sity Hospital between September 1999 and June 2006. Eight patients had an elevated CRP value,

without any signs or symptoms of infection, but were considered to have a systemic inflamma-

tory response due to their cancer. Eleven patients had an extremely low CRP value of 0. The

patient details are given in S1 Table. The CRP values were measured according to the routine

method of the clinical laboratory, Helsinki University Hospital. The clinical data came from

patient records, the survival data from Population Register Centre of Finland and the cause of

death for all those deceased from Statistics Finland. The study was approved by the Surgical Eth-

ics Committee of Helsinki University Hospital (Dnro HUS 226/E6/06, extension TMK02 §66

17.4.2013). A written informed consent was obtained from all the participants in this study.

Serum sample processing and trypsin digestion

Serum samples were processed essentially as previously described [15] and the protocol was

repeated here. Briefly, serum samples were thawed and TOP 12 proteins were depleted using

the TOP12 protein depletion kit (Pierce, ThermoFisher) according to the manufacturer’s

instructions. Total protein concentration was estimated with Pierce BCA assay kit (Pierce,

ThermoFisher). Total proteins (100 μg) from TOP12 depleted serum were aliquoted and dried

by speedvac (Savant, ThermoFisher). Dried proteins were dissolved in 35 μL of 50 mmol/L

Tris buffer, pH 7.8 containing 6M urea. Further, 1.8 μL of 200 mmol/L DTT was added to the

samples and mixture was incubated at RT for 1 h with shaking. Iodoacetamide (7 μL of 200

mmol/L stock solution) was added to the total protein mixture with shaking at RT for 1 h. To

quench excess iodoacetamide, DTT (7 μL of 200 mmol/L) was added to protein samples with

shaking for 1 h at RT. After diluting the samples with 270 μL of MQ water, trypsin was added

at 1:50 trypsin:protein ratio and protein mixture was digested at 37˚C overnight. 30 μg of tryp-

tic peptides were cleaned with C18 spin columns (Pierce, ThermoFisher). Cleaned peptides

were dissolved to reach final concentration of 1.4μg/4μL in 0.1% formic acid. 12.5 fmol/μL of

Hi3 spike-in standard peptides (Waters, MA, USA) were added to facilitate quantification.

Liquid chromatography-mass spectrometry (LC-MS) and quantification

UPLC-MS. UPLC-MS was performed as described previously [15]. Briefly, four μL

samples (equivalent to ~1.4 μg total protein) were injected to nano Acquity UPLC (Ultra Per-

formance Liquid Chromatography)–system (Waters Corporation, MA, USA). TRIZAIC nano-

Tile 85 μm × 100 mm HSS-T3u wTRAP was used as separation device. Samples were loaded,

trapped and washed for two minutes with 8.0 μL/min with 1% B. The analytical gradient used

is as follows: 0–1 min 1% B, at 2 min 5% B, at 65 min 30% B, at 78 min 50% B, at 80 min 85%

B, at 83 min 85% B, at 84 min 1% B and at 90 min 1% B with 450 nL/min. Buffer A was 0.1%

formic acid in water and buffer B was 0.1% formic acid in acetonitrile. Data were acquired

using HDMSE mode with Synapt G2-S HDMS (Waters Corporation, MA, USA). Data was
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collected in the range of 100–2000 m/z, scan time one-second, IMS wave velocity 650 m/s. Col-

lision energy was ramped from 20 to 60 V. Calibration was performed with Glu1-Fibrinopep-

tide B MS2 fragments. Glu1-Fibrinopeptide B precursor ion was used as a lock mass during

the runs. The samples were run in triplicates.

Data analysis. Data analysis [15, 16] and label-free quantification [17] were performed as

previously described. The information will be repeated here. Briefly, the raw files were

imported to Progenesis QI for proteomics software (Nonlinear Dynamics, Newcastle, UK).

Lock mass of 785.8426 m/z, (doubly charged Glu1-Fibrinopeptide B) was used for mass cor-

rection. Peak picking and alignment were performed with default parameters of the algorithm.

The peptide identification was done against Uniprot human FASTA sequences (UniprotKB

Release 2015_09, 20205 sequence entries) which included ClpB protein sequence (CLPB_E-

COLI (P63285)), which was inserted for label-free quantification. Fixed modification at cyste-

ine (carbamidomethyl) and variable at methionine (oxidation) were used. Trypsin was

specified as digesting enzyme with one missed cleavage allowed. False discovery rate (FDR)

was set to less than 4% and auto error tolerances for fragment and precursor were used. Mini-

mum one ion fragments per peptide, minimum three fragments per protein and minimum

one peptide per protein were marked as “required” for ion matching.

Parsimony principle was used to group the proteins however, peptides unique to the proteins

are also given as output. According to the parsimony principle, protein hits are reported as the

minimum set comprising of all observed peptides. However, Progenesis QI for proteomics does

not follow a strict parsimonious approach because of over-stringency [18]. However, to resolve

conflicts, if two proteins are found with common peptides, protein with fewer peptides is

immersed into the protein with more number of peptides. All relevant proteins are given in the

output as a group under the lead protein having highest coverage or the highest score if the cov-

erages of proteins are equal. Lead identity peptide data is used for quantitation and further

details of this approach are given on the company website (www.nonlinear.com). The ANOVA

relies on assumption that the conditions are independent and the means of the conditions are

equal. Every peptide injection also contained 50 fmol of six CLPB_ECOLI (P63285, ClpB pro-

tein) peptides (Hi3 E. coli Standard, Waters). Peptide abundances were normalized with Hi3

spiked standard and relative quantitation was done with the non-conflicting peptides found.

Signal of the protein is the average of the abundances of the comprised peptides. Details of the

Progenesis software can be found on the software website (www.nonlinear.com) and in pub-

lished literature [19]. Protein-wise differences between controls and cases were tested with

ANOVA. Progenesis QI for proteomics was used for performing principle component analysis.

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consor-

tium via the PRIDE [20] partner repository with the dataset identifier PXD008583.

Results

Metadata

Serum samples from 19 CRC patients were analyzed in this study. The patients’ age ranged

from 41 to 95 years old. CRP values ranged from 0–196 mg/L and were subsequently divided

into the categories CRP <30 or >30 mg/L, based on a previous study [14]. Categories for sur-

vival were determined as long (alive five years post-surgery) or short (deceased within five

years post-surgery) 5-year survival.

Proteomic analysis

In this study we analyzed CRC samples by UPLC-UDMSE and quantified 387 proteins from

serum with a minimum of one unique peptide. When filtered to proteins with two or more
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unique peptides, this number was reduced to 256 proteins, which were subsequently used for

analysis (S2 Table). Confidence score of identification ranged from 3733,5 to 9,1 and fold

changes ranged from 1063,3 to 1,4.

CRP dataset

Altogether, 45 proteins passed the cut-off of ANOVA p-value 0.05 when the highest mean was

set to CRP <30 and 26 proteins when the highest mean was set to CRP >30. The first 20 pro-

teins to pass the cut-off are presented in Table 1, and all 71 proteins are listed in S3 Table. Our

main criterion for identifying proteins different between the classes of samples was ANOVA

p-values and therefore, proteins with p-values greater than 0.05 were not considered to be

different.

Principal component analysis (PCA). PCA was performed using the software Progenesis

QI for Proteomics. It determines the main axes of variations in a dataset and points out outli-

ers. The PCA biplot helps to establish the differences between two or more classes of samples

and visualize them. The PCA biplot of CRP <30 and >30 samples is shown in Fig 1. Only pro-

teins with 2 or more unique peptides and an ANOVA p-value of less than 0.05 were considered

for this PCA. A separation between the two groups can be seen here.

Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA).

OPLS-DA is a modeling technique used to model the data from two classes in order to present

the differences between these classes. Only proteins with 2 or more unique peptides and an

ANOVA p-value of less than 0.05 were used for OPLS-DA modeling. From this model, an S-

plot can be generated, where the x-axis is the measure of change in a particular analyte and the

y-axis is the significance of the analyte in the comparison between two groups. The S-plot can

be used to find the proteins that are most significantly different in the two groups. An S-plot

was generated for the proteins found in the analysis of the CRP <30 and>30 categories. Pro-

teins passing the cut-off value of +0.7 or -0.7 for p(corr) values were considered to be signifi-

cantly different and are presented in Table 2. Insulin-like growth factor-binding protein 2

(IGFBP2), Protocadherin alpha-11 (PCDHA11), Mu-type opioid receptor (OPRM1) and

Serum amyloid A-1 protein (SAA1) were found to be upregulated in the CRP >30 category.

Apolipoprotein C-II (APOC2) and N-acetylmuramoyl-L-alanine amidase (PGLYRP2) were

found to be downregulated in the CRP >30 category.

The proteins passing the cut-off from the samples divided into CRP <30 or >30 are shown

in Fig 2, visualized on an S-plot.

Pathway analysis. In this study, we used two tools for pathway analysis: Integrated Molec-

ular Pathway Level Analysis (IMPaLa) and Ingenuity Pathway Analysis (IPA). IMPaLa was

used for pathway over-representation analysis and the results when data were analyzed

between categories CRP <30 and>30 are given in S4 Table. Complement and coagulation

cascades, as well as vitamin B12 metabolism and the selenium micronutrient network were

found to be enriched. We also performed pathway analysis using IPA and found multiple

canonical pathways, molecular and cellular functions, as well as networks that were enriched

in the CRP >30 dataset. Among the canonical pathways that were enriched were LXR/RXR

activation, FXR/RXR activation, acute phase response signaling and, similar to the results

from the IMPaLa analysis, the complement system. Some of the top canonical pathways are

shown in Fig 3.

IPA also revealed protein networks enriched in the CRP >30 category when compared to

the CRP <30 category, and the top network is presented in Fig 4. As can be seen, several

serum amyloid A (SAA) proteins such as SAA1 and SAA2 are upregulated here. Several mem-

bers of the serpin family, SERPINA3, alpha 1 antitrypsin (encoded by the SERPINA1 gene)
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and SERPINA7, are also upregulated in this network. The top six networks found by IPA anal-

ysis and the full list of proteins involved in these networks are given in S5 Table.

Survival dataset

The serum samples used in this study were also analyzed by comparing long and short 5-year

survival categories. When data were analyzed according to 5-year survival, 19 proteins passed

the cut-off of ANOVA p-value 0.05 when the highest mean was set to long and 12 proteins

when the highest mean was set to short. The first 20 proteins to pass the cut-off are presented

Table 1. The first 20 proteins with 2 or more unique peptides analyzed according to CRP values and passing the cut-off of 0.05 for ANOVA. Accession, peptide

count, unique peptides, confidence score, ANOVA p-value, maximum fold change and highest and lowest mean condition as well as the full protein name are given in the

table.

Accession Peptide

count

Unique

peptides

Confidence

score

Anova

(p)

Max fold

change

Highest mean

condition

Lowest mean

condition

Description

P18065 5 5 33.0 0.000063 2.41 CRP >30 CRP < 30 Insulin-like growth factor-binding protein 2

OS = Homo sapiens GN = IGFBP2 PE = 1 SV = 2

P35372 2 2 11.3 8.94E-05 6.74 CRP >30 CRP < 30 Mu-type opioid receptor OS = Homo sapiens

GN = OPRM1 PE = 1 SV = 2

P02741 3 2 29.3 0.0001 2.85 CRP >30 CRP < 30 C-reactive protein OS = Homo sapiens GN = CRP

PE = 1 SV = 1

P0DJI8 30 19 189.2 0.0003 5.22 CRP >30 CRP < 30 Serum amyloid A-1 protein OS = Homo sapiens

GN = SAA1 PE = 1 SV = 1

Q96PD5 51 46 510.5 0.0006 1.54 CRP < 30 CRP >30 N-acetylmuramoyl-L-alanine amidase OS = Homo

sapiens GN = PGLYRP2 PE = 1 SV = 1

P02655 9 8 116.2 0.0006 3.43 CRP < 30 CRP >30 Apolipoprotein C-II OS = Homo sapiens

GN = APOC2 PE = 1 SV = 1

Q8WVJ2 3 3 30.1 0.0011 2.99 CRP < 30 CRP >30 NudC domain-containing protein 2 OS = Homo

sapiens GN = NUDCD2 PE = 1 SV = 1

P08887 2 2 9.6 0.0013 4.48 CRP >30 CRP < 30 Interleukin-6 receptor subunit alpha OS = Homo

sapiens GN = IL6R PE = 1 SV = 1

Q9Y5I1 2 2 16.0 0.0014 1.56 CRP >30 CRP < 30 Protocadherin alpha-11 OS = Homo sapiens

GN = PCDHA11 PE = 2 SV = 1

P78380 2 2 9.3 0.0015 4.03 CRP >30 CRP < 30 Oxidized low-density lipoprotein receptor 1

OS = Homo sapiens GN = OLR1 PE = 1 SV = 1

Q9Y6K1 5 3 40.8 0.0017 1.35 CRP < 30 CRP >30 DNA (cytosine-5)-methyltransferase 3A

OS = Homo sapiens GN = DNMT3A PE = 1 SV = 4

P42081 3 2 15.3 0.0023 1.66 CRP < 30 CRP >30 T-lymphocyte activation antigen CD86

OS = Homo sapiens GN = CD86 PE = 1 SV = 2

Q6ZSA8 2 2 16.4 0.0029 3.53 CRP >30 CRP < 30 Putative uncharacterized protein FLJ45684

OS = Homo sapiens PE = 5 SV = 2

P07225 61 49 549.2 0.0030 1.28 CRP >30 CRP < 30 Vitamin K-dependent protein S OS = Homo

sapiens GN = PROS1 PE = 1 SV = 1

P37088 5 5 39.7 0.0033 3.29 CRP >30 CRP < 30 Amiloride-sensitive sodium channel subunit alpha

OS = Homo sapiens GN = SCNN1A PE = 1 SV = 1

P04180 9 9 52.5 0.0038 1.45 CRP < 30 CRP >30 Phosphatidylcholine-sterol acyltransferase

OS = Homo sapiens GN = LCAT PE = 1 SV = 1

P00734 103 78 785.3 0.0039 1.24 CRP < 30 CRP >30 Prothrombin OS = Homo sapiens GN = F2 PE = 1

SV = 2

P19823 115 97 858.1 0.0041 1.59 CRP < 30 CRP >30 Inter-alpha-trypsin inhibitor heavy chain H2

OS = Homo sapiens GN = ITIH2 PE = 1 SV = 2

P08294 3 3 21.8 0.0041 2.68 CRP < 30 CRP >30 Extracellular superoxide dismutase [Cu-Zn]

OS = Homo sapiens GN = SOD3 PE = 1 SV = 2

P15169 26 21 248.7 0.0044 1.62 CRP >30 CRP < 30 Carboxypeptidase N catalytic chain OS = Homo

sapiens GN = CPN1 PE = 1 SV = 1

https://doi.org/10.1371/journal.pone.0195354.t001
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in Table 3, and all 31 proteins are listed in S6 Table. Again, our main criterion for identifying

proteins different between the classes of samples was ANOVA p-values and therefore, proteins

with p-values greater than 0.05 were not considered to be different.

PCA. The PCA biplot showing long and short 5-year survival samples is shown in Fig 5.

Only proteins with 2 or more unique peptides and an ANOVA p-value of less than 0.05 were

considered for this PCA. A separation between the two groups can be seen here, with very few

samples overlapping slightly.

OPLS-DA. An S-plot was also generated for the proteins found in the analysis of long and

short 5-year survival. Again, proteins passing the cut-off value of +0.7 or -0.7 for p(corr) values

were considered to be significantly different and are presented in Table 4. Apolipoprotein C-I

(APOC1), Oxidized low-density lipoprotein receptor 1 (OLR1) and CRP were found to be

upregulated in the short 5-year survival category, while tetranectin and V-type proton ATPase

subunit G 1 (ATP6V1G1) were found to be downregulated.

Fig 1. Principal component analysis (PCA). Blue dots are CRC samples with CRP<30 and purple dots are samples

with CRP>30. The PCA was performed on proteins with 2 or more unique peptides that passed the cut-off of 0.05 for

ANOVA.

https://doi.org/10.1371/journal.pone.0195354.g001

Table 2. Proteins significantly different in the S-plot generated by comparing CRP<30 and>30 categories. Peptide count is the total number of peptides found for

the given protein and unique peptides are the number of peptides unique to that protein out of the total peptides. Confidence score, ANOVA p-value, highest and lowest

mean condition, the full name of the protein, covariance (p[1]) and correlation (p(corr)[1]) are shown in the table.

Primary

accession

Peptide

count

Unique

peptides

Confidence

score

Anova (p) Max fold

change

Highest

mean

condition

Lowest mean

condition

Description p[1] p(corr)[1]

P18065 5 5 33.0439 6.31E-05 2.4114 CRP >30 CRP < 30 Insulin-like growth factor-

binding protein 2 OS = Homo

sapiens GN = IGFBP2 PE = 1

SV = 2

0.189875 0.875512

Q9Y5I1 2 2 15.9705 0.001471215 1.5643 CRP >30 CRP < 30 Protocadherin alpha-11

OS = Homo sapiens

GN = PCDHA11 PE = 2 SV = 1

0.0294086 0.75569

Q6ZSA8 2 2 16.4398 0.002917281 3.5307 CRP >30 CRP < 30 Putative uncharacterized protein

FLJ45684 OS = Homo sapiens

PE = 5 SV = 2

0.105306 0.735447

P35372 2 2 11.3036 8.94E-05 6.7394 CRP >30 CRP < 30 Mu-type opioid receptor

OS = Homo sapiens

GN = OPRM1 PE = 1 SV = 2

0.070283 0.724809

P0DJI8 30 19 189.2047 0.000380854 5.2211 CRP >30 CRP < 30 Serum amyloid A-1 protein

OS = Homo sapiens GN = SAA1

PE = 1 SV = 1

0.253761 0.705353

P02655 9 8 116.1691 0.000684848 3.4281 CRP < 30 CRP >30 Apolipoprotein C-II OS = Homo

sapiens GN = APOC2 PE = 1

SV = 1

-0.118406 -0.715632

Q96PD5 51 46 510.5228 0.000633028 1.5371 CRP < 30 CRP >30 N-acetylmuramoyl-L-alanine

amidase OS = Homo sapiens

GN = PGLYRP2 PE = 1 SV = 1

-0.291687 -0.729485

https://doi.org/10.1371/journal.pone.0195354.t002
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Fig 2. S-plot of the CRC samples with CRP<30 and>30 obtained from the OPLS-DA analysis. Only proteins with

an ANOVA p-value of less than 0.05 are shown. The S-plot shows the relationship between the correlation (p(corr))

and the covariance (p), where variables having a p(corr) value higher than 0.7 or lower than -0.7 are considered

significantly different. Data are log10-transformed and mean-centered. The proteins in the upper right section of the

plot are downregulated and the proteins in the lower left section upregulated in the CRP>30 category as compared to

the CRP<30 category.

https://doi.org/10.1371/journal.pone.0195354.g002

Fig 3. Canonical pathways found by core analysis in IPA of the CRP categories. The top canonical pathways

enriched by Ingenuity Pathway Analysis (IPA) are shown above. The straight orange vertical line running through the

bars is the threshold for the p-value for the particular pathway’s enrichment. The horizontal axis is the–log(p-value)

and the vertical axis shows the given pathways.

https://doi.org/10.1371/journal.pone.0195354.g003
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The proteins passing the cut-off from the samples divided into long and short 5-year sur-

vival are shown in Fig 6, visualized on an S-plot.

Pathway analysis. IMPaLa was again used for pathway over-representation analysis and

the results when data were analyzed according to long and short 5-year survival are given in S7

Table. Signaling cascades involving platelet degranulation, activation, signaling and aggrega-

tion were found to be enriched. Complement and coagulation cascades and the statin pathway

were also enriched. We also performed pathway analysis using IPA on this dataset and found

multiple canonical pathways, molecular and cellular functions, as well as networks that were

enriched in the short 5-year survival dataset. The canonical pathways enriched were similar to

those found in the CRP >30 dataset, such as LXR/RXR activation, FXR/RXR activation and

acute phase response signaling. Some of the top canonical pathways are shown in Fig 7.

IPA also revealed protein networks enriched in the short 5-year survival category when

compared to the long 5-year survival category, and the top network is presented in Fig 8. The

top four networks found by IPA analysis and the full list of proteins involved in these networks

are given in S8 Table. As can be seen, high-density lipoprotein (HDL) and low-density lipopro-

tein (LDL) are downregulated here, while OLR1 and CRP are upregulated. Several apolipopro-

teins were also involved in this network: APOC1 is upregulated while APOC2 and APOC3 are

downregulated in the short 5-year survival category as compared to the long 5-year survival

category.

Fig 4. The top network of proteins found to be up- or downregulated by IPA when analyzed according to the CRP

categories. Only proteins passing the cut-off of 0.05 for ANOVA were used. Upregulated proteins are shown in red

and downregulated proteins in green. White proteins are proteins involved in these pathways but not detected in our

dataset.

https://doi.org/10.1371/journal.pone.0195354.g004

Serum proteomics of colorectal cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0195354 April 9, 2018 9 / 18

https://doi.org/10.1371/journal.pone.0195354.g004
https://doi.org/10.1371/journal.pone.0195354


Discussion

In recent years, the incidence of CRC has only significantly decreased in the United States,

while both incidence and death rates are rapidly increasing in other, less-developed countries

[1, 3]. CEA is the most widely used biomarker in CRC but is of little help in detecting early

CRC, which limits its usefulness. Due to a lack of effective, non-invasive biomarkers, new bio-

markers are needed to efficiently diagnose and screen for CRC [11].

Table 3. The first 20 proteins with 2 or more unique peptides analyzed according to 5-year survival and passing the cut-off of 0.05 for ANOVA. Accession, peptide

count, unique peptides, confidence score, ANOVA p-value, maximum fold change and highest and lowest mean condition as well as the full protein name are given in the

table.

Accession Peptide

count

Unique

peptides

Confidence

score

Anova

(p)

Max fold

change

Highest mean

condition

Lowest mean

condition

Description

P02750 42 34 358.9 0.0019 2.23 Survival < 5 a Survival > 5 a Leucine-rich alpha-2-glycoprotein OS = Homo

sapiens GN = LRG1 PE = 1 SV = 2

P00747 148 118 1396.1 0.004178 1.28 Survival > 5 a Survival < 5 a Plasminogen OS = Homo sapiens GN = PLG

PE = 1 SV = 2

P02656 24 21 150.2 0.0049 1.48 Survival > 5 a Survival < 5 a Apolipoprotein C-III OS = Homo sapiens

GN = APOC3 PE = 1 SV = 1

P05452 23 17 245.4 0.0050 1.51 Survival > 5 a Survival < 5 a Tetranectin OS = Homo sapiens GN = CLEC3B

PE = 1 SV = 3

P42081 3 2 15.3 0.0089 1.52 Survival > 5 a Survival < 5 a T-lymphocyte activation antigen CD86

OS = Homo sapiens GN = CD86 PE = 1 SV = 2

Q6ZS52 2 2 10.5 0.0109 2.05 Survival < 5 a Survival > 5 a Putative uncharacterized protein FLJ45825

OS = Homo sapiens PE = 5 SV = 1

P78380 2 2 9.3 0.0115 3.31 Survival < 5 a Survival > 5 a Oxidized low-density lipoprotein receptor 1

OS = Homo sapiens GN = OLR1 PE = 1 SV = 1

Q96BN8 3 2 13.4 0.0129 1.70 Survival > 5 a Survival < 5 a Ubiquitin thioesterase otulin OS = Homo sapiens

GN = OTULIN PE = 1 SV = 3

O14986 7 7 48.0 0.0155 1.48 Survival > 5 a Survival < 5 a Phosphatidylinositol 4-phosphate 5-kinase type-1

beta OS = Homo sapiens GN = PIP5K1B PE = 1

SV = 2

P49908 13 8 95.9 0.0186 1.32 Survival > 5 a Survival < 5 a Selenoprotein P OS = Homo sapiens GN = SEPP1

PE = 1 SV = 3

P00734 103 78 785.3 0.0209 1.19 Survival > 5 a Survival < 5 a Prothrombin OS = Homo sapiens GN = F2 PE = 1

SV = 2

P02655 9 8 116.2 0.0214 2.25 Survival > 5 a Survival < 5 a Apolipoprotein C-II OS = Homo sapiens

GN = APOC2 PE = 1 SV = 1

P35527 15 13 108.1 0.0225 1.67 Survival < 5 a Survival > 5 a Keratin. type I cytoskeletal 9 OS = Homo sapiens

GN = KRT9 PE = 1 SV = 3

P02741 3 2 29.3 0.0233 2.08 Survival < 5 a Survival > 5 a C-reactive protein OS = Homo sapiens GN = CRP

PE = 1 SV = 1

P15169 26 21 248.7 0.0235 1.51 Survival < 5 a Survival > 5 a Carboxypeptidase N catalytic chain OS = Homo

sapiens GN = CPN1 PE = 1 SV = 1

P01042 68 58 697.7 0.0275 1.11 Survival > 5 a Survival < 5 a Kininogen-1 OS = Homo sapiens GN = KNG1

PE = 1 SV = 2

P24385 2 2 18.9 0.0302 1.47 Survival > 5 a Survival < 5 a G1/S-specific cyclin-D1 OS = Homo sapiens

GN = CCND1 PE = 1 SV = 1

P29622 2 2 13.3 0.0324 1.77 Survival > 5 a Survival < 5 a Kallistatin OS = Homo sapiens GN = SERPINA4

PE = 1 SV = 3

Q02410 4 2 18.5 0.0330 1.68 Survival > 5 a Survival < 5 a Amyloid beta A4 precursor protein-binding family

A member 1 OS = Homo sapiens GN = APBA1

PE = 1 SV = 3

P10909 61 45 556.9 0.0345 1.19 Survival > 5 a Survival < 5 a Clusterin OS = Homo sapiens GN = CLU PE = 1

SV = 1

https://doi.org/10.1371/journal.pone.0195354.t003

Serum proteomics of colorectal cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0195354 April 9, 2018 10 / 18

https://doi.org/10.1371/journal.pone.0195354.t003
https://doi.org/10.1371/journal.pone.0195354


In this study, we retrospectively recruited 19 CRC patients and studied preoperative serum

samples by UPLC-UDMSE. We quantified 256 proteins with 2 or more unique peptides, which

were used for analysis. An elevated concentration of CRP is linked to poor prognosis in CRC

patients [14], and we therefore decided to analyze data according to CRP values to find differ-

entially expressed proteins. We also analyzed the same samples according to long and short

5-year survival in order to discover proteins that could potentially be of use in predicting

outcome.

By using proteomic methods, serum proteins can be studied to discover new potential bio-

markers. The discovery of a biomarker that could be measured from blood samples is ideal

due to the minimal invasiveness and ease of obtaining such samples. Abundant proteins such

as albumin represent more than 99% of the proteins found in serum. This complicates the dis-

covery of novel protein biomarkers, and the abundant proteins were removed to reduce the

complexity of serum samples. This enables the discovery of low-abundance proteins, some of

which may be of clinical importance [21, 22].

PCA analysis of the samples divided into categories according to CRP (CRP <30 and>30)

and 5-year survival (short and long), showed a separation on the PCA biplot. We continued

with OPLS-DA modeling and generation of an S-plot. Proteins passing the cut-off value of

Fig 5. PCA where blue dots are CRC samples with a long 5-year survival and purple dots are CRC samples with a

short 5-year survival. The PCA was performed on proteins with 2 or more unique peptides that passed the cut-off of

0.05 for ANOVA.

https://doi.org/10.1371/journal.pone.0195354.g005

Table 4. Proteins significantly different in the S-plot generated by comparing long and short 5-year survival. Peptide count is the total number of peptides found for

the given protein and unique peptides are the number of peptides unique to that protein out of the total peptides. Confidence score, ANOVA p-value, highest and lowest

mean condition, the full name of the protein, covariance (p[1]) and correlation (p(corr)[1]) are shown in the table.

Primary

accession

Peptide

count

Unique

peptides

Confidence

score

Anova

(p)

Max fold

change

Highest

mean

condition

Lowest mean

condition

Description p[1] p(corr)[1]

P02654 9 5 60.50 0.0345 2.0448 SHORT LONG Apolipoprotein C-I OS = Homo

sapiens GN = APOC1 PE = 1

SV = 1

0.0528039 0.759156

Q6ZSA8 2 2 16.43 0.0484 2.5360 SHORT LONG Putative uncharacterized protein

FLJ45684 OS = Homo sapiens

PE = 5 SV = 2

0.12572 0.729375

P78380 2 2 9.25 0.0115 3.3056 SHORT LONG Oxidized low-density lipoprotein

receptor 1 OS = Homo sapiens

GN = OLR1 PE = 1 SV = 1

0.122362 0.720305

P02741 3 2 29.30 0.0233 2.0843 SHORT LONG C-reactive protein OS = Homo

sapiens GN = CRP PE = 1 SV = 1

0.0936024 0.712781

P05452 23 17 245.35 0.0050 1.5138 LONG SHORT Tetranectin OS = Homo sapiens

GN = CLEC3B PE = 1 SV = 3

-0.100494 -0.734962

O75348 3 2 21.63 0.0486 1.4632 LONG SHORT V-type proton ATPase subunit G 1

OS = Homo sapiens

GN = ATP6V1G1 PE = 1 SV = 3

-0.0176084 -0.737745

https://doi.org/10.1371/journal.pone.0195354.t004
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+0.7 or -0.7 for p(corr) values were considered to be significantly different (Table 2 and

Table 4). Among the proteins upregulated in the CRP >30 category are IGFBP2 and SAA1

(also abbreviated SAA).

IGFBP2 is one of the six binding proteins that modulate the interactions of Insulin-like

growth factors (IGFs) with their receptor. IGFs have important roles in growth and cell prolif-

eration [23]. IGFBP2 has been identified as a potential biomarker for CRC in previous studies

Fig 6. S-plot of the CRC samples with long or short 5-year survival obtained from the OPLS-DA analysis. Only

proteins with an ANOVA p-value of less than 0.05 are shown. Variables having a p(corr) value higher than 0.7 or lower

than -0.7 are considered significantly different. Data are log10-transformed and mean-centered. The proteins in the

upper right section of the plot are downregulated and the proteins in the lower left section upregulated in the short

5-year survival category as compared to the long 5-year survival category.

https://doi.org/10.1371/journal.pone.0195354.g006

Fig 7. Canonical pathways found by core analysis in IPA of the 5-year survival categories. The top canonical

pathways enriched by Ingenuity Pathway Analysis (IPA) are shown above. The straight orange vertical line running

through the bars is the threshold for the p-value for the particular pathway’s enrichment. The horizontal axis is the–log

(p-value) and the vertical axis shows the given pathways.

https://doi.org/10.1371/journal.pone.0195354.g007
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and elevated levels of IGFBP2 have been shown to be associated with poor survival in CRC

patients [24, 25]. Elevated serum levels of IGFBP2 have also been discovered in patients with

breast [26], ovarian [27] and prostate cancer [28]. Our findings further support the role of

IGFBP2 as a biomarker for CRC, although further validation is required.

SAA is a lipoprotein whose concentration increases during the acute phase of the inflam-

matory response (APR) [29]. SAA has been proposed as a biomarker for CRC, albeit in a small

study [30]. Elevated serum levels of SAA have also been identified in patients with gastric [31],

lung [32], nasopharyngeal [33], renal cell [34] and endometrial cancer [35], where they corre-

lated with poor prognosis. In our study, we also found that PCDHA11 and OPRM1 were upre-

gulated in the CRP >30 category when compared to the CRP <30 category. These proteins

are, to the best of our knowledge, identified here as potential biomarkers for the first time.

Pathway analysis by IPA and IMPaLa mostly found pathways involved in lipid metabolism,

as well as complement and coagulation cascades and acute phase response signaling to be

enriched, implying that these are the main perturbed pathways in CRC patients with high

CRP. IPA pathway analysis showed LXR/RXR activation and FXR/RXR activation as the most

enriched pathways (Fig 3). LXR/RXR activation is suggested to have a role in the absorption of

cholesterol, and LXRs also regulate the biliary excretion of cholesterol [36, 37]. Farnesoid X

receptors (FXRs) also form heterodimers with RXRs, and FXR/RXR activation plays a role in

the regulation of both cholesterol and bile acid metabolism [38, 39]. Deregulation of lipid

metabolism has increasingly been recognized as a feature of cancer cells [40, 41]. SAA has a

Fig 8. The top network of proteins found to be up- or downregulated by IPA when analyzed according to the

survival categories. Only proteins passing the cut-off of 0.05 for ANOVA were used. Upregulated proteins are shown

in red and downregulated proteins in green. White proteins are proteins involved in these pathways but not detected

in our dataset.

https://doi.org/10.1371/journal.pone.0195354.g008
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role in lipid metabolism, linking the results of the IPA pathway analysis to one of the proteins

found by OPLS-DA and S-plot analysis.

Enhanced levels of coagulation markers have been shown to occur in CRC patients and

advanced cancer is also associated with a hypercoagulable state, which is in line with our find-

ings of enriched coagulation cascades in pathway analysis [42, 43]. The enrichment of comple-

ment cascades and acute phase response signaling in the CRP >30 category is logical, due to

the presence of an inflammatory response in these patients.

The same analyses were performed for the short and long 5-year survival categories.

Among the proteins upregulated in the short 5-year survival category are APOC1, OLR1 and

CRP. APOC1 is a lipoprotein that, among other functions, helps to maintain HDL structure

[44]. High preoperative serum levels of APOC1 have been shown to correlate with poor prog-

nosis in pancreatic cancer patients [45]. Serum APOC1 needs to be further investigated to

evaluate its use as a biomarker, especially in CRC, for which there are no studies. OLR1, a

receptor for low-density lipoproteins, has been proposed to function as an oncogene [46],

although the role of OLR1 in CRC is unknown. CRP was also upregulated, which was to be

expected, as we deliberately included patients with elevated CRP levels in this study.

Pathway analysis by IPA found similar pathways to be enriched in the category with short

5-year survival as in the category with high CRP. Pathway analysis by IMPaLa showed path-

ways involving platelets as well as complement and coagulation cascades to be enriched. Plate-

lets have long been implicated in the spread of cancer, and cancer patients often have a high

platelet count and turnover. An elevated platelet count has also been shown to be indicative of

poor prognosis in CRC patients [47, 48].

In this study, we analyzed samples according to CRP (<30 vs.>30) and 5-year survival

(short vs. long) to identify differences in serum proteins within these categories and to find

proteins that are linked to patient outcome and prognosis. These proteins could be used to

select patients with a poor prognosis that would benefit from a more aggressive treatment regi-

men and help those with a good prognosis to avoid it. Here, we have identified multiple poten-

tial biomarkers, although they require further validation.

This study was limited due to its small size, as only 19 patients were included in this study.

CRC is a heterogeneous disease that can be divided into several subtypes characterized by dis-

tinct molecular pathologies and clinical features. For example, microsatellite instability (MSI)

is associated with CRC prognosis, with MSI-high CRC showing better survival than microsat-

ellite stable (MSS) CRC [49, 50]. Lack of tumor molecular data for our dataset therefore leads

to some additional limitations of this study. Due to the small size of this study, it was not feasi-

ble to subdivide our material into subcategories: for example, only around 15% of CRCs are

MSI-high [49], giving us very few patients with MSI-high CRC that could be used for

comparisons.

Another limitation of the study could be that multiple hypothesis testing correction was not

employed. We realize that it might lead to a few results being falsely significant, but it has to be

considered that multiple testing correction is often over-stringent, and significant inferences

are usually missed in trying to control a Type I error. This is called committing a Type II error

and it’s always the trade-off between Type I and II errors that a researcher has to decide

between. Moreover, to establish a useful prognostic biomarker, one usually starts with a num-

ber of lead candidates, and at the validation stage, in a very large cohort, multiple hypothesis

correction can be employed. Also, popular methods of multiple testing corrections, such as

Bonferroni and Sidak methods, are under-powered when variable measurements are corre-

lated [51], which is often the case with proteomic measurements. Some of the proteins we

identified here have been recognized as potential biomarkers previously, whereas some have

been identified as potential biomarkers for the first time, to the best of our knowledge. This
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pilot study will therefore pave the way for further studies, with the aim to provide better bio-

markers for CRC patients.
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