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Abstract
A recent study of plasma neutralization breadth in HIV-1 infected individuals at nine Interna-

tional AIDS Vaccine Initiative (IAVI) sites reported that viral load, HLA-A*03 genotype, and
subtype C infection were strongly associated with the development of neutralization

breadth. Here, we refine the findings of that study by analyzing the impact of the transmit-

ted/founder (T/F) envelope (Env), early Env diversification, and autologous neutralization

on the development of plasma neutralization breadth in 21 participants identified during

recent infection at two of those sites: Kigali, Rwanda (n = 9) and Lusaka, Zambia (n = 12).

Single-genomeanalysis of full-length T/F Env sequences revealed that all 21 individuals

were infected with a highly homogeneous population of viral variants, which were catego-

rized as subtype C (n = 12), A1 (n = 7), or recombinant AC (n = 2). An extensive amino acid

sequence-based analysis of variable loop lengths and glycosylation patterns in the T/F

Envs revealed that a lower ratio of NXS to NXT-encoded glycan motifs correlatedwith neu-

tralization breadth. Furtheranalysis comparing amino acid sequence changes, insertions/

deletions, and glycan motif alterations between the T/F Env and autologous early Env vari-

ants revealed that extensive diversification focused in the V2, V4, and V5 regions of gp120,

accompanied by contemporaneous viral escape, significantly favored the development of

breadth. These results suggest that more efficient glycosylation of subtype A and C T/F

Envs through fewer NXS-encoded glycan sites is more likely to elicit antibodies that can

transition from autologous to heterologous neutralizing activity following exposure to gp120
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diversification. This initiates an Env-antibody co-evolution cycle that increases neutraliza-

tion breadth, and is furtheraugmented over time by additional viral and host factors. These

findings suggest that understanding how variation in the efficiency of site-specific glycosyla-

tion influences neutralizing antibody elicitation and targeting could advance the design of

immunogens aimed at inducing antibodies that can transition from autologous to heterolo-

gous neutralizing activity.

Author Summary

HIV-1 has proven difficult to vaccinate against due to its ability to generate high levels of
genetic diversity, particularly in the envelope glycoproteins. An ideal prophylactic vaccine
would therefore elicit immune responses capable of blocking the full range of HIV-1 vari-
ants to which a populationmight be exposed.An essential component of protective immu-
nity against HIV-1 is likely to be an antibody response that is capable of neutralizing
genetically diverse HIV-1 viral variants. In an effort to understand how this type of ‘broad’
antibody response develops during natural HIV-1 infection, a large cohort study recently
found that certain factors, such as high viral load, HLA-A�03 genotype, and subtype C
infection, were correlated with the development of greater neutralization breadth. Here we
investigated the viral envelope proteins and antibody responses in early infection in a
small subset of individuals from two of the African sites included in the larger cohort
study. We found that a marker for the efficiencyof envelope glycosylation in the infecting
viral variant was strongly correlated with the development of antibodies with greater neu-
tralization breadth. We also found that extensive viral changes in the V2, V4, and V5
regions of the envelope gp120 protein, were strongly associated with the development of
antibodies with greater neutralization breadth. Based on these results, we propose that
more efficient glycosylation of the envelope protein of the infecting viral variant elicits
neutralizing antibodies that drive early and complex amino acid changes in gp120, which
triggers the development of antibodies whose neutralization breadth can be augmented
over time by additional viral and host factors. These findings suggest that a better under-
standing of the efficiencyof envelope glycosylation in HIV-1 could inform current vaccine
strategies aimed at eliciting antibodies with neutralization breadth.

Introduction
HIV-1 has proven difficult to vaccinate against due, in part, to its ability to generate high levels
of genetic diversity. During error-prone reverse transcription, up to 3.4 x 10−5 mutations per
base pair can be introduced, and recombination can occur between the two viral genomes con-
tained within a single virion [1,2]. Since HIV-1 group M emerged in the human population,
these diversificationmechanisms have led to the evolution of nine genetically distinct subtypes,
as well as numerous circulating recombinant forms (CRFs) [3,4]. An ideal prophylactic vaccine
would therefore elicit immune responses capable of blocking the full range of HIV-1 variants
to which a population might be exposed, which differs based on geography.

The HIV-1 envelope (Env) glycoprotein subunits gp120 and gp41 are the targets of neutral-
izing antibodies, which are perhaps the most important correlate of vaccine-mediated protec-
tion against other viral diseases. HIV-1 Env gp120 exhibits the highest amount of amino acid
variation throughout the entire proteome, creating a formidable obstacle for generating
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neutralizing antibody-based protection [5–7]. This is exemplified by the fact that most HIV-1
infected individuals develop robust neutralizing antibodies within a fewmonths against the
infecting virus, but these antibodies are strain-specific, and lead to viral escape [8–17]. How-
ever, in a substantial fraction of infected individuals, these strain-specific antibodies evolve to
acquire neutralization activity against heterologous HIV-1 Env variants over time [18–22]. To
gain insight into this process, a previous study evaluated whether early Env diversity impacted
neutralization breadth, which was measured at approximately 5 years post-infection in 26
HIV-1 individuals infected predominantly with subtype A [23]. In that study, diversity was
measured in the Env gp120 V1-V5 region using proviral DNA-derived sequences sampled
between 17 to 299 days after infection. Early Env diversity was positively associated with later
development of neutralization breadth, leading the authors to propose a model in which the
process of neutralization breadth begins in early infection. Indeed, others have shown that the
T/F Env and/or early escape variants can trigger the development of a specific broadly neutral-
izing antibody lineage [15,24–26]. However, our inability to reproduce this phenomenon via
vaccination reflects a significant gap in our understanding of this process.

The development of neutralization breadth during HIV-1 infection is best understood as
being a complex and continuous interplay between the host immune response and the evolving
viral quasispecies [15,17,24–32]. Viral replication capacity, Env diversity, super-infection, and
high viral load may all contribute to the antigenic stimulation necessary to augment heterolo-
gous neutralization breadth [21,23,27,31,33–36]. CertainHIV-1 Env characteristics, often
related to subtype or glycans, may also favor the development of neutralization breadth
[9,19,33,36–38]. Host immunologic factors such as T follicular helper cell activity and activa-
tion within the B and T cell compartments could also modulate the development and mainte-
nance of neutralization breadth [39–41]. MHC Class I alleles that target CD8 T cell epitopes
and influenceHIV-1 disease progression could also impact the development of neutralization
breadth [36,42]. On the other hand, despite strong evidence that HIV-1 pathogenesis and
immune activation differs betweenmales and females [43–48], a recent study carried out by
the IAVI Protocol C team of investigators was among the first to report that there was no dif-
ference in the development of neutralization betweenmales and females [36]. In that study,
439 participants from IAVI Protocol C at nine sites across Uganda, Kenya, Rwanda, Zambia,
and South Africa were evaluated for heterologous neutralization potency and breadth starting
at approximately 24 months after infection. These individuals were infected predominantly
with HIV-1 subtypes A1, C, and D, the proportion of which varied depending on the location
of the site. The strongest correlates of neutralization breadth that emerged in the IAVI cohort
study were high viral load, low CD4 T cell count, subtype C HIV-1 infection, and HLA-A�03
genotype. Thus, from a broad perspective, there are viral and host factors that create a more
favorable environment for neutralization breadth to develop during natural infection.How-
ever, none of these factors can fully predict whether an individual will develop strong neutrali-
zation. We therefore investigated early viral and immune events in individuals from this same
cohort to determine their role in priming the development of neutralization breadth within a
natural infection setting.

In the present study, we have examined features of the T/F Envs, patterns of early Env diver-
sification, and the autologous neutralization responses in early HIV-1 infection.Our analysis
revealed that T/F Envs with fewer NXS-encodedglycan motifs, which are associated with less
efficientN-linked glycosylation, were correlated with the development of greater neutralization
breadth. Of note, a previous study reported that the opposite association was found in early
Envs from a clade B cohort, suggesting that Env glycosylation could be a strong determinant of
breadth in a clade-specificmanner [38]. Neutralizing antibody-driven diversification in the
Env gp120 V2, V4, and V5 regions was also a strong contributor to the development of
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heterologous neutralization breadth. Thus, our finding that correlates of neutralization breadth
are present in a panel of individuals in the first weeks to months after infection suggests that
this process must be initiated and perpetuated during early infection by Env and antibody
interactions, but is further amplified over time by a complex constellation of additional viral
and host factors [36].

Results

Patient neutralizing antibody responses exhibit a wide range of breadth
and potency at 3 years post infection
As the first step to understanding the development of neutralization breadth, we characterized
the T/F Env variants, early longitudinal Env variants, and the autologous neutralizing antibody
response in HIV-1 infected individuals from Lusaka, Zambia (n = 12) and Kigali, Rwanda
(n = 9). We have reported that early autologous neutralizing antibody responses that develop
in individuals in these cohorts are often potent but are invariably specific for the infecting
strain [9–12]. Indeed, in the parent IAVI cohort study, heterologous neutralization was
detected in less than 2% of individuals at 24 months post-infection [36]. The ability to neutral-
ize heterologous Env variants that the immune response has not encountered, loosely defined
as neutralization breadth, has been shown to develop in plasma by around 2–4 years after
HIV-1 infection, in anywhere from 10 to 80% of individuals, depending on the nature of the
cohort, timing of sample collection, and the methods used to evaluate and quantify breadth
[18,21,22,33,34,36,41,49,50]. In agreement with these findings, neutralization scores indicative
of breadth in the IAVI study were generally first observed at a mean of 3.5 years [36]. There-
fore, to assess the level of neutralization breadth that developed in our smaller subset of indi-
viduals, we independently evaluated plasma samples collected at a median of 3.0 years (ranging
from 1.1 to 3.5 years) after the first p24 antigen positive test (Fig 1; collectively referred to as
3-year plasma) for their capacity to neutralize a panel of 12 globally representative, tier 2 Env
pseudoviruses, from a parent panel of 219 HIV-1 Env variants, as describedby [51]. Numerous
other studies have characterizedHIV-1 plasma neutralization breadth using similar panels of 6
to 12 genetically diverse Env variants [11,36,40,50–56]. Since neutralization by the plasma sam-
ples at the lowest dilution tested (1:20) did not always achieve 50% inhibition, we calculated
the Area Under the Curve (AUC) for each plasma-Env combination (21 plasma samples x 12
Envs) for a total of 252 infectivity curves each containing a series of 5-fold dilutions. A heatmap
of the neutralization AUC values is shown in S1A Fig. Neutralization IC50 titers were also cal-
culated for each plasma-Env combination, and are provided in a heatmap shown in S1B Fig.
These parameters were highly correlated as expected (Spearman’s r = -0.99, p< 0.0001). Using
this approach, plasma samples with the most potent neutralizing activity yielded the smallest
AUCs, while large AUC values were observed for poor neutralizers, thus inversely related to
the IC50 titer dilution. The median AUC was calculated for each individual’s plasma S1A Fig
and used as a continuous variable to rank neutralization breadth [51,57].

Individual plasma neutralization curves for the subjects with the highest (Z1800M) and low-
est (R1135M) overall neutralization breadth against the 12 reference Envs are shown in Fig 2A
and 2B. Z1800M plasma completely neutralized ten of the reference panel Envs, which
included subtypes C, B, A, G, and recombinant forms CRF01_AE, CRF07_BC, and AC, with
IC50 titers in the 1:100 to 1:1,000 range (Fig 2A). The neutralizing activity against the two
remaining Envs did not reach 100% but was substantial. This participant was also ranked as
the best neutralizer out of 439 individuals tested in the larger IAVI study [36]. In contrast,
plasma from subject R1135M had very limited neutralizing activity against all panel Envs,
including the clade-matched subtype A reference Env, which did not reach 50% neutralization
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(Fig 2B). R1135M was ranked at #372 out of 381 participants whose follow-up extended across
24 to 48 visit months in the IAVI study, and thus exhibited poor neutralization breadth in both
studies [36]. Overall, the median AUC values for the 21 plasma samples ranged from high
(AUC = 0.57) to low (AUC = 4.13) neutralization breadth (Fig 2C).

For the 12 Protocol C participants that were independently analyzed in the present study
and in the larger IAVI study (i.e. had an IAVI breadth score from [36], shown in Fig 1), we
compared the median AUC calculated here to the maximum breadth score (sMAX) assigned
in the larger study, and found that the ranking of these individuals was highly correlated as
expected (S2 Fig; Spearman’s r = -0.79, p = 0.002). Median AUC values were also significantly
correlated to breadth scores at Protocol C visits 36 and 42 (S2 Fig; r = -0.76, p = 0.002; r =
-0.65, p = 0.006, respectively). Thus, despite using a smaller and less diverse population of
HIV-1 infected subjects, a continuous variable ranking system, a different reference Env panel,
and evaluation of a single time point, we detected a quantitatively similar spectrumof neutrali-
zation breadth as that reported in the IAVI study.

A lower ratio of NXS to NXT-encoded glycanmotifs in the T/F Env favor
the development of nAb breadth
Features of HIV-1 Env have been previously associated with the level and type of neutralization
breadth that develops within an individual [9,33,38]. Indeed, in the IAVI study involving mul-
tiple HIV-1 suptypes, subtype C infectionwas a significant correlate of higher neutralization
breadth score [36]. However, depending on the segment of the viral genome used and the tim-
ing of sample collection, subtype determinationmay not fully reflect the Env glycoproteins,
and also may not represent the Env of the T/F virus. Here, we assigned subtypes based on the

Fig 1. Summary of HIV-1 infectedparticipants. The Rwanda-Zambia HIV ResearchGroup (RZHRG) coded identification numbers for all
subjects are shown, along with the associated code assigned in [36]. Individuals are listed in the order of their breadth ranking, based on the
median AUC values, when plasmawas tested against a panel of 12 globally representative tier 2 Envelopes (Fig 2C). The International AIDS
Vaccine Initiative (IAVI) breadth score is taken from [36]. Relevant information is shown in subsequent columns, including the subtype of the T/F
Env: cohort site (Zambia-EmoryHIV Research Project or ZEHRP; Projet San Francisco or PSF): days since most recent common ancestor
(MRCA) calculated using the Los AlamosHIV Database tool Poisson Fitter v2 [58]: days since infection estimatedusingmethods described by
[59]; time point in years post-infection when breadthwas assessed; as well as the 6- and 12-month plasma viral loads (copies per ml) and HLA-A
alleles determined as described in [60]. NA indicates not applicable; ND indicates not determined.

doi:10.1371/journal.ppat.1005989.g001
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full-lengthT/F Env sequences, which are the antigens that initiated the autologous neutralizing
antibody response. We utilized plasma and/or PBMC samples collected at a median of 28 esti-
mated days after infection (range 22 to 65 days; Fig 1) to capture the T/F Env sequences using
single genome PCR amplification (SGA) [9,61–64].We utilized the LANLHighlighter tool
(https://www.hiv.lanl.gov/content/sequence/HIGHLIGHT/highlighter_top.html) and the
LANL Poisson Fitter v2 tool (http://www.hiv.lanl.gov/content/sequence/POISSON_FITTER/
poisson_fitter.html) to characterize the T/F Env sequences (Highlighter plots of all T/F Env
sequences are shown in S3 Fig). Between 5 and 31 T/F Env sequences were analyzed for each
individual, noting that fewer sequences were available for Z185F, Z221M, Z205F, Z153M, and
Z201M, the subjects that were studied prior to the initiation of Protocol C. Two individuals,
R53F and Z1800M, were infected with two distinguishable variants that differed systematically

Fig 2. Evaluation of heterologous neutralization breadth in plasma samples from 21 recentlyHIV-1 infected individuals. Infectivity
curves depicting neutralization activity against a panel of 12 global reference Env pseudoviruses described in [51] in the TZM-bl assay are
shown for subjects Z1800M (A) and R1135M (B). These two subjects were chosen to demonstrate the highest and lowest level of neutralization
breadth. Each curve represents neutralization of one of the 12 reference Envs, and is color coded by the subtype or circulating recombinant form
(CRF) designation, as indicated in the key. Neutralization of VSV-G pseudotyped virus is shown as a negative control with a black curve. The y-
axis indicates percent viral infectivity relative to 100%, which is the amount of luciferase produced in pseudovirus-infected TZM-bl cells in the
absence of test plasma. The x-axis indicates the reciprocal dilution of the individual’s plasma plotted on a log10 scale. The Area Under the Curve
(AUC) was calculated from each infectivity curve to quantify neutralization potency and breadth. Themedian and range for the neutralization
AUC values calculated for each subject’s plasma against the 12 Env reference panel are in shown in (C). High AUC values indicate weak
neutralizationactivity, while low AUC values indicate strong neutralizationactivity. All AUC values are shown in S1A Fig, with the accompanying
IC50 titers shown in S1B Fig.

doi:10.1371/journal.ppat.1005989.g002
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at one or two polymorphisms, respectively. These observations could indicate infection by two
highly similar but distinct variants from the donor quasispecies, or reflect early selection pres-
sure on Env. Since we do not have the donor Env sequences from these individuals, we cannot
distinguish between the two scenarios. Regardless, only the dominant T/F polymorphismwas
observed at subsequent time points for both individuals.

Overall, the analysis of T/F Env sequences suggested infection by a single variant in majority
of individuals (S3 Fig). This predominance of single variant infections is consistent with our
previous study of subtype A and C HIV-1 infected transmission pairs in PSF and ZEHRP,
where 18 out of 20 infections were initiated by a single variant [64]. The subtype of the T/F
Envs was then determined using the LANL Recombinant Identification Program (RIP) (http://
www.hiv.lanl.gov/content/sequence/RIP/RIP.html) [65,66] or the REGAHIV-1 Automated
Subtyping Tool (http://dbpartners.stanford.edu:8080/RegaSubtyping/stanford-hiv/typingtool/)
[67]. Seven of the 9 PSF participants in Kigali were infectedwith an HIV-1 subtype A1 Env var-
iant, and the remaining 2 were each infected with a unique A/C recombinant Env (S4 Fig). All
12 individuals from the ZEHRP site in Lusaka were infected with a subtype C HIV-1 Env vari-
ant. This distribution of subtypes is also consistent with our previous studies in the ZEHRP
and PSF cohorts [9,62,64,68] and with the larger IAVI study [36].

A number of studies have attempted to identify amino acid signatures, glycosylation pat-
terns, and effects of variable loop lengths in Env that are associated with the development of
neutralization breadth, as this could reveal an attractive target for vaccine immunogen design
[38,69,70]. To this end, we sought to identify signatures of breadth in the T/F Envs in our
cohort. Amino acid signatures of neutralization breadth previously identified by others did not
emerge as correlates in our cohort [38,69]. We also examined whether the length of the variable
loops or the total number of N-linked glycosylationmotifs correlated with neutralization
breadth (Fig 3A). Interestingly, the feature that was significantly correlated with breadth in our
cohort was the ratio of NXS to NXT glycosylation sites found within the gp120 region of T/F
Envs(Fig 3B, S5 Fig). N-linked glycosylationmotifs are generally encodedwith the amino acid
motifs NXS or NXT, with X indicating any amino acid except proline; however, glycosylation
at NXT occurs at a higher probability than NXS that can be as much as 40% [71,72]. Interest-
ingly, van den Kerkhof et al previously reported a connection between the NXS/total glycans
ratio in early Envs and the development of breadth in a subtype B HIV-1 infected cohort [38].
However in that study, the authors observed a higher ratio of NXS to total glycosylation sites in
patients who developed breadth, postulating that a lower probability of Env gp120 glycosyla-
tion could favor breadth. We observed a contrasting effect in our mixed subtype, non-B cohort
(Fig 3). While the total number of glycosylation sites in gp120 did not correlate with breadth,
the ratio of NXS to NXT sites was correlated with neutralization breadth AUC (r = 0.56,
p = 0.008). That is, individuals infected with T/F Env variants encoding fewer NXS glycan
motifs (r = 0.50, p = 0.02) and more NXT sites (r = -0.45, p = 0.04) in gp120, and by extension
a higher probability of glycosylation, were more likely to develop greater breadth. The discrep-
ancy between van der Kerkhof et al and our study could reflect differences in the cohorts,
experimentalmethods, Env sampling times, or time frame when neutralization breadth was
measured. Furthermore, numerous biological distinctions have been reported in Env glycosyla-
tion, antigenicity, and immunogenicity, as well as in transmission and disease progression,
based on HIV-1 subtype [6,9,36,46,64,68,73–80]. Indeed striking differences in conservation
and variability of glycosylation sites are seen within and betweenHIV-1 subtypes [76,81,82].
Even the presence of relatively ‘conserved’ glycosylation positions can vary from less than 25%
to over 90%, depending on subtype [76]. It is therefore not surprising that the efficiencyof
early Env glycosylation could impact the development of neutralization breadth in a clade-spe-
cific manner.
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Complex early Env diversification in hyper-variable regions contributes
to neutralization breadth
We next sought to gain insight into whether early Env diversification influenced subsequent
neutralization breadth in our cohort of subjects. To understand the shifts from the T/F Env to
a more diverse quasispecies due to selective pressures, we analyzed SGA derived full-length
‘early’ Env sequences derived from plasma and/or PBMC samples collected after the develop-
ment of potent strain-specific neutralizing antibodies [9,11,12]. Because nucleotide-based

Fig 3. Correlation of T/F Env featureswith neutralization breadth.T/F Env amino acid sequence features
for 21 subjects were defined using the LANLN-GlycoSite and Variable Region Characteristics online tools. A)
Spearman’s correlations were performed between neutralization breadth AUC and variable loop lengths,
number of total, (NXS + NXT), NXS, and NXT glycanmotifs (excluding X = proline) in gp120, and the ratio of
NXSmotifs divided by NXTmotifs. Spearman’s r values and p values are shown for each comparison. P
values < 0.05 are considered significant. B) Scatter plot of median 3-year breadth AUC value vs ratio of NXS:
NXT sites in the transmitted/founder Env. Spearmancorrelation r = 0.56, p = 0.008.

doi:10.1371/journal.ppat.1005989.g003
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dN/dS analyses are problematic when resampling the same population over short periods of
time [83], and do not fully reflect the range of diversity that occurs within Env at the amino
acid level (conservative vs. non-conservative amino acid changes, insertions and deletions,
alterations to glycosylation sites), we developed and implemented a novel approach for statisti-
cally quantifying early Env diversity. First, FASTA amino acid alignments of the T/F Envs and
early Envs from the same patient were subjected to SequenceHarmony analysis to identify
amino acid positions that were significantly different between the two groups of sequences (Z-
score� -3) [38,63,84]. As a proof of concept for this approach, we first analyzed sequences
from subject R880F, whose early neutralizing antibody responses and escape pathways had
been previously mapped in our laboratory in great detail [11]. SequenceHarmony analysis not
only confirmed our previous findings of neutralizing antibody escape mechanisms at 3-months
and 6-months after infection (Fig 4A and 4B, respectively), which were characterized through
extensive Env mutagenesis and neutralization assays, but also identified an additional four
positions where the amino acid composition at 6-months post-infection had significantly
shifted from the T/F Envs (Fig 4B). SequenceHarmony analysis was therefore performed on
Env sequences from 12 subjects who had sufficient numbers of Env sequences available (mini-
mum of 15 total sequences) from an early longitudinal plasma sample, which ranged from 3.7
to 7.7 months after infection.

Next, to take into account the biochemical nature of the identified changes in amino acid
composition, we developed an Immunotype Diversity Index (IDI) that reflected the complexity
of diversification that occurred in Env, particularly in highly variable regions. This approach is
based on the premise that antibodiesmust be exposed to variation within their epitopes, i.e.
immunotypes, to acquire heterologous neutralization breadth [19,27]. The IDI score was calcu-
lated as follows: For amino acid positions with Z-scores< -3, a conservative amino acid change
was given 0.5 points; while a non-conservative change, an insertion or deletion, and a purifying
selection event were each given 1 point. It is important to note, that this approach takes into
account all SGA derived T/F Env sequences, as opposed to using a consensus T/F Env as a
point of comparison. This analysis can therefore factor in the presence of amino acid diversity
near the time of infection, thus allows for the identification of purifying events. Multiple amino
acid changes at a single position (e.g. in R880F, position 338 shifts from E in the T/F Env to G,
A, D, or K in the 6-month Env population, Fig 4B) were given appropriate points for each pos-
sible change (0.5 or 1, depending on the nature of the change), and added together. Further-
more, if the amino acid change resulted in an introduction, deletion, or shift of a glycosylation
site, the significant position was given an additional point. For example, in R880F at position
335 (Fig 4A), there was a non-conservative change from S to N (1 point) that shifted a glycosyl-
ation motif (1 point), giving amino acid position 335 a total of 2 points. The final value for
each identified position was multiplied by the absolute value of the calculated Z-score, to factor
in the statistical significance of the change. That is, a non-conservative amino acid change that
just meets the significance threshold (-3) will have 3 points, but is not weighted equally to the
same change with a highly significant Z-score of -30, which will result in 30 points.

The final IDI score was calculated for each patient by taking the sum of all points for all sig-
nificant positions (Fig 5). Overall, the IDI scores varied over almost 10-fold, ranging from 263
in Z1800M to 28 in R66M, demonstrating broad variation in the amount of early Env diversity
in our cohort (Fig 5). S6A Fig shows an amino acid alignment for Z1800M, with regions that
factored into the IDI score highlighted, as a representative example of high Env diversity that is
concentrated in V2, V4, and V5. The same is shown for R66M in S6B Fig to represent low Env
diversity. When the IDI scores for full-length T/F Env were plotted against median AUC neu-
tralization breadth scores, there was a significant negative correlation (Spearman’s r = -0.60,
p = 0.04; Fig 6A). Thus, complex and dramatic amino acid changes associated with stronger
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selection in Env were correlated with greater breadth. However, much of the significant Env
amino acid diversity was occurring in the V2, V4, and V5 regions of Env gp120 (see S6A Fig
for an example). When IDI scores were calculated using only these three regions, a much stron-
ger correlation was observed (Spearman’s r = -0.80, p = 0.003; Fig 6B). Thus, complex changes

Fig 4. Validation of the Immunotype Diversity Index approach to quantifyEnv diversification using
R880F. Subject R880Fwas chosen to validate the SequenceHarmonyapproach because the earliest
neutralizing antibody responsewas previously mapped to an epitope located at the base of the V3 loop [11].
Positions indicated with an asteriskwere identified and evaluated in the previous study. Thirty-three SGA
derived T/F Env amino acid sequences fromR880F (Group 1) were alignedwith 10 sequences from
3-months post-infection (A), or 12 sequences from 6-months post-infection (B) (Group 2). In (A), Sequence
Harmonyanalysis identified four positions, highlighted yellow, that were significantly different (Z<-3) between
the two populations at 3-months. Two of these positionswere determined to be autologous neutralizing
antibody escapemutations at 3-months via mutagenesis (295 and 338), whereas 456 could not be directly
attributed to neutralizing antibody or cytotoxic T lymphocyte selective pressure. In (B), Sequence Harmony
analysis identified two positions that remained significant from 3months (highlighted yellow), six positions
that became significant at 6 months (highlighted green), and two positions that lost significance at 6 months
(not highlighted). Positions 335, 338, and 341 were all determined to be neutralizing antibody escape
mutations at 6 months.

doi:10.1371/journal.ppat.1005989.g004
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in V2, V4, and V5 of gp120 appear to play a particularly strong role in driving the development
of neutralization breadth in our cohort.

Early Env diversity is linked with selective pressure exerted by
autologous neutralizing antibodies
Sequence diversity within Env during early HIV-1 infection is likely to be the result of pressure
exerted predominantly by replicative capacity, cytotoxic T-cell responses, and autologous neu-
tralizing antibodies [10–12,85–87]. For 11 of the 21 individuals, we had sufficient samples
available to directly evaluate autologous neutralization against the T/F Env and contemporane-
ous Envs at an early time point ranging from 2 to 12 months (median of 5 months). As autolo-
gous neutralizing antibody responses are generally more potent that heterologous responses,
we calculated the neutralization IC50 titers for the T/F Env and contemporaneous Envs for
these 11 individuals. If we were unable to calculate the IC50 titer due to lack of neutralization
activity, we used a value of 20. The autologous neutralization IC50 titers for the T/F Envs ran-
ged from 32 to 2,580, while the titers for neutralization of the contemporaneous Envs were
lower, ranging from 20 to 267 (Figs 7 and 8). As a group, the T/F Envs were significantlymore
sensitive to neutralization by the early autologous plasma than were the contemporaneous
Envs, indicating that escape from autologous neutralizing antibodies had occurred during this
time period (Fig 7, Wilcoxon matched-pairs signed rank test, p = 0.002). The magnitude of
escape was then quantified by dividing the T/F IC50 titer by the contemporaneous titer. The
magnitude of escape ranged from 1 (i.e. Z201M), meaning there was essentially no difference

Fig 5. Immunotype Diversity Index scores for 12 subjects.For each position where Z-scoreswere less
than -3 in SequenceHarmonyanalysis, the nature of the change, in addition to shifts in glycans and the
significance of the difference, was taken into account when calculating the ImmunotypeDiversity Index.
Changes (conservative = 0.5; non-conservative, deletions, purifying selection = 1, glycan shift or deletion = 1)
were multiplied by absolute value of Z-scores to factor in significance, and added together for a final IDI.
These values ranged from 28 to 263.When IDI was restricted to significant positionswithin V2, V4, and V5,
the values ranged from 0 to 232. The number of T/F Env sequences and longitudinal Env sequences from
4–8months included in this analysis are indicated.

doi:10.1371/journal.ppat.1005989.g005
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between neutralization susceptibility of the T/F Env and the contemporaneous Envs, to 112
(Z185F) (Fig 8). We also evaluated the ability of the 3-year ‘late’ plasma (that was used to deter-
mine breadth) to neutralize the T/F Env, and these IC50 titers ranged from 850 to 25,342. We
next performed a non-parametric Spearman’s correlation analysis using these variables, along
with the ratio of NXS:NXT sites in the T/F Env and the 12-month viral load, to examine poten-
tial relationships between these factors and the development of neutralization breadth.

Fig 6. Correlation of ImmunotypeDiversity Index scoreswith neutralization breadth.A) Spearman’s
correlation of IDI scores with median AUC breadth scores (n = 12) revealed a relationship between early Env
diversity and later development of neutralizationbreadth (r = -0.60, p = 0.04).B) This correlationwas stronger
when IDI scores only included diversity found within the V2, V4, and V5 variable loops (r = -0.80, p = 0.003).
Two patients with V2-V4-V5 scores of zero were given a value of 1 for illustrative purposeson the log10
scale.

doi:10.1371/journal.ppat.1005989.g006
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As expected, the neutralization IC50 and AUC values against the global reference panel
were strongly inversely correlated (Fig 9; Spearman’s r = -0.99, p< 0.0001). Interestingly, even
within this smaller subset of subjects, the ratio of NXS to NXT glycan motifs in the T/F Env
gp120 proteins was again significantly correlated with the development of neutralization
breadth using either measurement (Fig 9; Spearman’s r = -0.82, p = 0.003 for IC50; r = 0.80,
p = 0.005 for AUC). The NXS:NXT ratio was also strongly and inversely correlated with the
magnitude of escape (Spearman’s r = -0.83, p = 0.002). Thus, potentially higher efficiencyof
glycosylation in gp120 was associated with a higher magnitude of early escape from autologous
neutralizing antibodies and the development of neutralization breadth. The potency of T/F
Env neutralization was also correlated directly and significantly with the magnitude of escape
(Spearman’s r = 0.76, p = 0.008), underscoring the importance of a dynamic relationship
between the T/F Env, early neutralizing antibodies, and viral escape. The importance of this

Fig 7. Autologous early neutralization of T/F Envs vs. contemporaneousEnvs. For 11 patients,
sampling allowed neutralizationassays to be performedon T/F Envs, and Envs from an early time-point
(range 2 to 12 months, median 5 months), with the early time-point plasma listed in Fig 8. Wilcoxon matched-
pairs signed rank test revealed a significant difference between neutralization IC50 titer of the early plasma
vs. T/F Envs, compared to the same plasma against the contemporaneous Envs (p = 0.002).

doi:10.1371/journal.ppat.1005989.g007

Fig 8. Summary of quantitativefactors that potentially contribute to neutralization breadth.Autologous plasma neutralization IC50 titers for the T/F
Env and contemporaneous Envs from an early time point ranging from 2 to 12 months (median 5 months) is shown for 11 patients, along with the ratio of
NXS to NXT glycan sites in the T/F gp120, the magnitudeof escape (T/F Env IC50 divided by contemporaneous Env IC50), full Env and V2-V4-V5 IDI
values, and the 12-monthplasma viral load. The neutralization IC50 titer of 3-year plasma against the autologousT/F Env and the heterologousglobal
reference Env panel is shown, in addition to the neutralization AUC against the global reference panel.

doi:10.1371/journal.ppat.1005989.g008
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early co-evolutionary process is further substantiated by the fact that both the V2-V4-V5 IDI
and the magnitude of escape were also strongly correlated with the development of greater
breadth (V2-V4-V5 IDI: Spearman’s r = 0.89, p = 0.012 for IC50; r = -0.89, p = 0.012 for AUC;
Escape: Spearman’s r = 0.75, p = 0.010 for IC50; r = -0.77, p = 0.008 for AUC).

Discussion
A major goal for HIV-1 vaccine development is to induce neutralizing antibodies that are capa-
ble of broadly protecting against a globally diverse population of viral variants. To this end, var-
ious studies have attempted to identify signatures within HIV-1 Env or clinical/host factors
that correlate with the development of breadth [10,21,22,31,36,38,69,77,88], on the basis that
they could be targeted by immunization strategies.We postulated that factors present as early
as several weeks after infection could also be determinants for subsequent development of
breadth, as early Env diversity was previously linked with breadth [23]. Using a panel of indi-
viduals exhibiting a spectrumof neutralization breadth that was highly correlated with that
found for the larger parent cohort [36], we analyzed the inter-dependent relationships between
the T/F Env; Env diversification, neutralizing antibodies, and viral escape during the first
months of infection; and development of neutralization breadth several years later. Our focus
on early infection stems partly from the observation that generic correlates (i.e. high viral load,

Fig 9. Spearman’s correlationanalysis of quantitative factors and neutralizationbreadth.A) Spearman’s rho values are shown for each pairwise
correlation analysis between variables.B) p-values are shown for each pairwise correlation analysis between variables. A p value < 0.05 was considered
significant.

doi:10.1371/journal.ppat.1005989.g009

Early HIV-1 Env Features That Drive Heterologous Breadth

PLOS Pathogens | DOI:10.1371/journal.ppat.1005989 November 16, 2016 14 / 29



subtype C infection) cannot fully explain the development of breadth, as there are many indi-
viduals that have these characteristics but fail to develop broad heterologous neutralization
capacity. In addition, understanding which early viral and immune events are associated with
generating desirable antibody responses during infection couldmost directly inform strategies
to transition from vaccine-induced strain-specific autologous neutralizing antibodies, which
have been recently elicited by trimer-based immunogens [89,90], to those with broader neu-
tralizing capacity.

Our observations suggest that the long process of developing neutralization breadth is initi-
ated at least in part by glycosylation of the T/F Env, and is perpetuated by antibody-driven Env
diversification in gp120 hyper-variable regions. Our findings are also consistent with previous
reports that tracked broadening of a neutralizing antibody lineage within single individuals
[24,26,27]. However, further augmentation by factors linked to viral load or disease progres-
sion may also be necessary to develop high levels of neutralization breadth, but are more diffi-
cult to translate into immunization strategies [36]. Currently, it is unknown how parameters
such as viral subtype and HLA-A alleles could contribute to the broadening of the neutralizing
antibody response. One possible explanation is that subtype C HIV-1 infection generates
higher plasma viral loads than subtype A infection [46]. Furthermore, HLA alleles can influ-
ence the immune response to HIV-1 infection and disease progression via both innate and
adaptive immune pathways in the same cohort, and thus could have durable or transient effects
that act at different stages of infection [46].

Regarding the impact of the T/F Env, our finding that fewer NXS glycan motifs favor the
development of neutralization breadth highlights the important and incompletely understood
relationship between Env glycosylation and immunogenicity. Various models of glycan site
occupancy have revealed a strong preference for glycosylation at NXT over NXS [71,72,91–94].
This could result from NXT providing a more optimal conformation of the acceptor sequence,
with increased nucleophilicity of the asparagine amide group [91]. Furthermore, kinetics stud-
ies have demonstrated that the eukaryotic oligosaccharyltransferase enzyme has a higher affin-
ity for NXT sites compared to NXS [95,96]. NXT motifs are also positively selected for in
adjacent sequons, and are more likely than NXS to be glycosylated in this setting [97]. Other
factors, such as the flanking sequences, tertiary protein structure, and proximity to the C-ter-
minus of the protein, as well as the amino acid at the X position, could also influence the proba-
bility and extent of glycosylation at individual sites, but have not systematically been
investigated [98,99].

Although glycosylation is a common protein modification, lentiviral proteins are particu-
larly heavily glycosylated [100], with carbohydrate moieties accounting for about 50% of the
mass of HIV-1 Env [101,102]. Remarkable variation in the number and position of glycan
motifs across variants has long been recognized as a defining feature of HIV-1 Env [76,81,82],
and evasion from neutralizing antibodies has been proposed as a major function of this ‘glycan
shield’ [8]. In the context of the Env trimer, an extensive glycan ‘canopy’ consists of around 90
N-linked carbohydrate moieties that exist in crowded and dispersed configurations, are under-
processed compared to host glycans, and form inter-dependent clusters [103,104]. The oligo-
meric nature and dense packing of glycans of HIV-1 Env restricts its glycan processing in the
golgi such that most glycans are oligomannose, but micro-heterogeneity in carbohydrate forms
is observed at individual glycan addition sites [103–106]. The glycan array is known to have a
strong influence on Env structure and antigenicity, as well as modulating antibody recognition.
Indeed, removal of a single glycan site can influence neutralizing antibody recognition at distal
locations as well as reducing the overall oligomannose content by more than predicted [104].
Glycosylation of gp120 could also influence the mucosal transmissibility of HIV-1, depending
on the clade and cohort examined [64,68,78,79,107,108]. Our findings, combined with those
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from previous studies, suggest that the use of NXS vs. NXT in HIV-1 Env could be an addi-
tional means for the virus to modulate its structure, immunogenicity, and sensitivity to neutral-
izing antibodies [10,38]. Recovery and characterization of numerous bnAbs from chronically
infected individuals has demonstrated that many of these antibodies have the capacity to target
glycans directly [56,109–122]. Even bnAbs that do not target glycans directly, such as VRC01,
have acquired unique adaptations that allow the antibody to avoid glycan clashes and tolerate
Env diversity [123–125]. Further underscoring the importance of Env glycosylation to vaccine
development, Env SOSIP trimer immunogens based on clade B JR-FL and clade A BG505 Envs
elicited tier 2 neutralizing antibodies, but their activity was restricted at least in part by the fact
that the neutralizing antibodies that targeted glycan ‘holes’, where a particular glycan motif is
absent [89,90]. Although we did not find that the absence or presence of a specific glycan(s)
was associated with the development of breadth in our cohort, it is possible that T/F Envs with
fewer NXS sites are less likely to have glycan ‘holes’, and preferentially elicit antibodies with a
greater capacity to acquire breadth in response to Env diversification. Thus, as stated by [126],
glycans have ‘enormous relevance’ to HIV-1 vaccine design. It is therefore notable that a poten-
tial marker for efficiencyof Env glycosylation has emerged in this study, and in a distinct study
by [38], as an early clade-specific signal that may contribute to the development of neutraliza-
tion breadth.

Currently, a substantial effort is being devoted to designing and testing novel HIV-1 Env
immunogens that preserve features of the native trimer and/or are derived from patients who
developed broadly neutralizing antibody activity [89,127–133]. These Env immunogens could
be readily varied in terms of glycosylation and immunotype diversity, and assessed experimen-
tally, whereas it is less clear how to incorporate sustained viral replication, continuing Env
diversity, genotypic host features, and other correlates of breadth via a vaccination protocol.
Our results are encouraging for vaccine design because they suggest that modulating Env gly-
cosylation in a clade-specificmanner could produce immunogens that are even better suited to
elicit neutralizing antibodies with the potential to transition to heterologous breadth. Then, if
one can develop immunotype mimics based on diversification of the hyper-variable domains,
antibody lineages may be able to develop tolerance for diversity and glycans, and acquire heter-
ologous neutralizing activity to relevant targets. On the other hand, Env diversity presented in
the absence of the neutralizing antibody response that provided the selective pressure may be
unable to fully recapitulate the evolution of bnAb in immunized animal models [134,135].
However, the strategic selection and presentation of the priming Env appears to be of vital
importance, as we have shown for SIV vaccination in nonhuman primate studies [136].

It is important to consider that, duringHIV-1 infection, neutralizing antibodies tend to have
limited specificities, including the CD4 binding site, V1V2, and the base of the V3 loop, that dif-
fer between individuals [10–12,15–17,27,137]. It is unclear why some individuals, such as R66M
studied here, produce antibodies with limited neutralizing capacity against the autologous T/F
Env while others, such as Z1800M, produce potent neutralizing antibodies within the same time
frame. It is possible that, in addition to differences in subtype, the higher NXS to NXT ratio of
the R66M T/F Env compared to the Z1800M T/F Env could also have initiated this disparity.
Our findings highlight a void in our understanding of the importance of the immunogenicity
and antigenicity of the T/F Env, and the early anti-Env antibody landscape, in terms of germline
activation, clonality, and binding affinity, on the ability to transition from strain-specific to heter-
ologous neutralization. Broadly neutralizing antibody lineages, such as VRC01 or CAP256, do
not develop in isolation; they stem from autologous neutralizing antibodies in an environment
that includes competition and influence by a milieu of other B cells and antibodies, occurring in
the presence of ongoing viral diversity [27,138]. Current studies have begun to bridge the gap
between strain-specific and broadly neutralizing antibodies by focusing on the longitudinal
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evolution of an individual bnAb lineage [24–27,138]. Others have developed strategies to design
Env antigens that engage specific B-cell germline lineages with known potential to evolve into a
broadly neutralizing antibody [139,140]. However, even this strategically designed Env immuno-
gen engaged other germlines, in addition to the germline of interest, suggesting that the complex-
ity of the human immune system will be a formidable obstacle to reproducing the activation and
maturation of individual bnAb lineages [139]. Taken together, our observations provide new
insight into the importance of T/F Env glycosylation, autologous neutralizing antibodies, diversi-
fication in gp120, and viral escape in setting the course to neutralization breadth.With the suc-
cessful elicitation of tier 2 autologous neutralizing antibodies using trimer-based immunogens
[89,90], additional promising Env immunogens on the horizon, and a more complete under-
standing of glycosylation in the context of several genetically diverse Env trimers [103,104], it
may be possible to optimize the glycosylation of these reagents so that they preferentially elicit
neutralizing antibodies with the potential to acquire heterologous neutralizing capacity. Whether
necessary cycles of antibody-virus co-evolution, and other factors, can then be reproduced in the
absence of infection to augment this process will remain to be determined.

Materials andMethods

Ethics statement
The ZEHRP, PSF, and IAVI Protocol C participants were selected based on rapid screening of
adults with recent history of HIV exposure in Rwanda and Zambia. After obtaining written
informed consent, blood samples were collected fromHIV-1 infected participants longitudi-
nally. The procedures for written informed consent and research activities were approved by
institutional review boards at all collaborating clinical research centers, with further compli-
ance to human experimentation guidelines set forth by the United States Department of Health
and Human Services.The study was reviewed and approved by the Republic of Rwanda
National Ethics Committee, Emory University Institutional ReviewBoard, and the University
of Zambia Research Ethics Committee.

Study population
The 21 HIV-1 infected individuals studied were identified shortly after a transmission event
through their enrollment in two HIV-discordant couple cohorts (see Fig 1). Zambian partici-
pants were from the Zambia-EmoryHIV Research Project (ZEHRP, established in 1994 by Dr.
Susan Allen) in Lusaka and the Rwandan participants were from Projet San Francisco (PSF,
established in 1986 by Dr. Susan Allen) in Kigali. Together, these two sites accounted for
roughly 43% of participants in the larger IAVI study [36]. These projects were originally
designed as ‘couples voluntary counseling and testing’ clinics and have been describedprevi-
ously [64,141]. ZEHRP and PSF are also part of the Rwanda Zambia HIV Research Group at
EmoryUniversity (RZHRG; http://www.rzhrg.org). More recently Protocol C, a uniform vac-
cine-preparedness study developed and implemented by the International AIDS Vaccine Ini-
tiative (IAVI; http://www.iavi.org), was initiated and carried out at multiple sites in Africa,
including ZEHRP and PSF [80].

The 21 individuals studied here were selected prior to the initiation of the larger IAVI study.
The subjects were chosen based on three factors: a p24 antigen positive test (i.e. infection
detected in the early Fiebig stages); the availability of early longitudinal plasma samples; and
for Protocol C participants, the availability of viable PBMC collected during early infection (for
studies that are not included in these analyses). Z185F, Z221M, Z205F, Z153M, and Z201M
were enrolled in ZEHRP prior to Protocol C. The remaining 16 subjects were enrolled in Proto-
col C at the time of sampling. Twelve of 16 the Protocol C participants were analyzed in both
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the present study and in the larger IAVI study (see Fig 1; note that while there are 13 Parent
Study participants with PC codes listed in the second column, Z1022M/PC138 was not ana-
lyzed in the larger study and thus has no breadth score in the fifth column) [36].

The procedures for written informed consent and research activities were approved by insti-
tutional review boards at all collaborating clinical research centers, with further compliance to
human experimentation guidelines set forth by the United States Department of Health and
Human Services.Plasma viral load determinations were underwritten by IAVI and performed
at Contract Lab Services (CLS) in South Africa using an Abbott m2000 system. The typical
range of detectionwas between 160 and 4×107 RNA copies/ml. HLA genotyping was per-
formed using a combination of PCR-based techniques as describedpreviously [60,142].

PCR amplification and cloning of HIV-1 env genes
For 16 of 21 individuals, cDNA synthesis and 384-well single genome PCR amplification
(SGA) was performed essentially as described in [61] S3 Fig. Briefly, RNA was extracted from
cryopreservedpatient plasma samples using the QIAmp viral RNA, and reverse transcription
was performed using the SuperScript III kit (Invitrogen) with reverse primer OFM19 (5’-
GCACTCAAGGCAAGCTTTATTGAGGCTTA-3’). cDNA was diluted to result in<30% pos-
itive wells for SGA. First round PCR was performed in a 15 μL volume using the Phusion Hot-
start II High Fidelity DNA Polymerase (Thermo Scientific)with forward primer Vif1 (5’-
GGGTTTATTACAGGGACAGCAGAG-3’) and OFM19. Cycling conditions were 98°C for 2
min; 10 cycles of 95°C for 15 s, 54°C for 60 s, and 68°C for 4 min; 25 cycles of 95°C for 15 s,
54°C for 60 s, and 68°C for 4 min, adding 5 s to the extension per cycle; 72°C for 30 min; and
4°C hold. Second round PCR was performedwith the same enzyme in a 10 μL volume with
1 μL of the first round of PCR and EnvA-TOPO (5’-CACCGCCTTAGGCATCTCCTATGG
CAGGAAGAA-3’) and EnvN (5’-CTGTCAATCAGGGAAGTAGCCTTGTGT-3’). Cycling
conditions were 95°C for 2 min; 30 cycles of 95°C for 15 s, 54°C for 60 s, and 72°C for 2.5 min;
72°C for 10 min; and 4°C hold. PCR amplicons were purified using Qiagen PCR Clean-Up Kit.
For Z201M, Z205F, Z221M, Z185F, and Z153M, full-length env genes were amplified previ-
ously using 96-well SGA from plasma and PBMC, as described [9]. PCR amplified env genes
plus flanking sequences were T/A-cloned into one of several pCR3.1-based expression vectors
as described [9,11,61].

Sequence analyses of HIV-1 env genes
On average, 13 SGA PCR amplicons per patient (range 5 to 31) per time-point were sequenced
with BeckmanCoulter Genomics using the following primers: For13 (5’- GAGAAAGAGCA
GAAGACAGTGG-3’); For15 (5’-CAGCACAGTACAATGTACACATGGAA-3’); For17 (5’-
AGCAGCAGGAAGCACTATGGGCGC-3’); For19 (5’-GGAACCTGTGCCTCTTCAGC
TACC-3’); and Rev14 (5’-ACCATGTTATTTTTCCACATGTTAAA-3’); Rev16 (5’-ATGG
GAGGGGCATACATTGCT-3’) ; Rev17 (5’- CCTGGAGCTGTTTAATGCCCCAGAC-3’); and
Rev19 (5’-ACTTTTTGACCACTTGCCACCCAT-3’). Sequencher v5 was used to generate
nucleotide sequence contigs, and sequences with evidence of mixed peaks were omitted from
the analysis. Additionally, previously reported sequences were utilized for patients Z205F,
Z185F, Z201M, Z221M, Z153M, and R880F [9–12,143,144]. Geneious v6.1.7 was used to align
and translate nucleotide sequences. Amino acid alignments were exported from Geneious in
FASTA format and used to generate Highlighter plots (http://www.hiv.lanl.gov/content/
sequence/HIGHLIGHT/highlighter_top.html), to define Env features (http://www.hiv.lanl.
gov/content/sequence/GLYCOSITE/glycosite.html) and (http://www.hiv.lanl.gov/content/
sequence/VAR_REG_CHAR/index.html), and perform SequenceHarmony comparisons
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(http://www.ibi.vu.nl/programs/shmrwww/).Subtype reference Env nucleotide sequences were
obtained from the Los Alamos SequenceDatabase (http://www.hiv.lanl.gov/content/sequence/
NEWALIGN/align.html). A Neighbor-joining nucleotide phylogenetic tree was generated in
Geneious v6.1.7. HIV-1 subtyping was performedwith REGAHIV-1 Automated Subtyping
Tool (http://dbpartners.stanford.edu:8080/RegaSubtyping/stanford-hiv/typingtool/) [67]. The
days since the most common recent ancestor (MRCA) are presented in Fig 1, and were deter-
mined by analyzing the T/F Env sequences for each subject in the Poisson Fitter v2 tool from
the Los Alamos HIV Database (http://www.hiv.lanl.gov/content/sequence/POISSON_
FITTER/pfitter.html) [58,145]. The estimated days since infection values, also presented in Fig
1, were calculated using the methods of [59]. The T/F env nucleotide sequences have been sub-
mitted under Genbank accession numbers KX983471-KX983929.

For calculation of IDI scores, SequenceHarmony comparisons were used to identify amino
acid positions significantly different between the T/F and 4–8 month sequences (Z-score< -3).
For significant positions, points were given as follows: 0.5 points: conservative changes; 1
point: non-conservative changes, deletions, insertions, purifying selection; 1 point: shift, dele-
tion, or insertion of glycosylationmotif. Multiple changes at significant positions were given
cumulative points. Sum of points at significant positions were multiplied by the absolute value
of the Z-score at corresponding position to weight scores by statistical significance. Final IDI
for each patient was calculated by adding all points for all positions. For V2-V4-V5 scores, sig-
nificant positions were restricted to these locations, as identified by LANLHIV Variable
Region Characterization tool.

Neutralization assay
A global panel of 12 HIV-1 Env reference clones developed by deCamp et al. was obtained
though the NIH AIDS Reagent Program (Catalog number 12670) [51]. Generation of Env
pseudoviruses and performing the TZM-bl neutralization assay has been describedpreviously
[9–12,40,61,68,136,144,146–150]. Briefly, Env-expressing plasmids were co-transfectedwith
the HIV-1 SG3ΔEnv proviral backbone into 293T cells using Fugene HD (Promega), and pseu-
dovirus stocks were collected 48h post-transfection, clarified by centrifugation, and frozen at
-80°C. In all cases except one, plasma was used to evaluate heterologous and autologous neu-
tralization. Because R66M began antiretroviral therapy approximately 1.25 years post-infec-
tion, IgG antibodies were purified from 36-month plasma using a GE Healthcare Life Sciences
Ab SpinTrap, according to manufacturer instructions (GE 28-4083-47). The concentration of
the purified IgG was determined by ELISA, and was used in place of plasma in neutralization
assays. Five-fold serial dilutions of heat-inactivated plasma samples or purified IgG were
assayed for their inhibitory potential against the Env pseudoviruses using the TZM-bl indicator
cell line, with luciferase as the readout. At 48 hours post-infection, cells were lysed and lucifer-
ase activity was measured using a BioTek Cytation 3 imaging reader with Gen5 v2.07 Software.
The average background luminescence from a series of uninfectedwells was subtracted from
each experimental well. Assays were run in duplicate and repeated independently at least twice.

Statistical analyses
All graphs were generated in Prism v6.0. Virus infectivity curveswere generated and Area
Under the Curve was calculated in Prism and used for comparisons of neutralization activity.
Neutralization IC50 titers were also calculated in Prism from the virus infectivity curve using
log transformation of x-values, normalization of y-values, and linear regression of dose-
response inhibition with variable slope. A Mann-Whitney test or Wilcoxon matched pairs
analysis was used to compare two groups, while a Kruskal-Wallis test was used for to compare
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more than two groups. A non-parametric Spearman’s test was used to assess correlations
between variables in Prism v6.0. P values less than 0.05 were considered to be significant.

Supporting Information
S1 Fig. Neutralization Area Under the Curve (AUC) and IC50 titers heat maps for plasma
from 21 HIV- 1 infected individuals against the 12 Env global reference panel. Five-fold
serial dilutions of plasma samples from each individual (RZHRG coded IDs are shown; see
Fig 1) were assayed for neutralization against a panel of globally representative tier 2 Env
pseudoviruses, as well as a VSV-G pseudotyped negative control. A) The AUC was calcu-
lated from each infectivity curve and color-coded on a continuous relative scale from the
lowest AUC value (0.3, green) to highest (6.3, red) to visualize differences in breadth and
potency of neutralization.B) The neutralization 50% inhibition (IC50) titer was calculated
from each infectivity curve and color-coded on a continuous relative scale from the lowest
IC50 titer (20 indicating that an IC50 could not be calculated, green) to the highest IC50
titer (7424, red) to visualize differences in breadth and potency of neutralization. Note that
on both heat maps green indicates the most potent neutralization, while red indicates the
least potent.
(TIF)

S2 Fig. Neutralization breadth ranking was highly correlated with that determined in the
larger IAVI study. For 12 individuals that were analyzed by [36] and in the present study, a
Spearman Rank correlation test was performed using the maximum breadth score (sMAX,
based on plasma frommultiple time points) and the neutralization breadth AUC determine
here using plasma from approximately 3-years post infection. The rankings were highly
inversely correlated (r = -0.79, p = 0.002), indicating that high sMAX scores corresponded to
low breadth AUC values. The sMAX values were plotted on the y-axis against the neutraliza-
tion breadth AUC on the x-axis. IAVI breadth scores at 36 (red) and 42 (blue) months were
also significantly correlated with neutralization breadth AUC.
(TIF)

S3 Fig. Highligher plots of T/F Env sequences. (A-E) Single genome PCR amplification
(SGA) derived full-length env sequences were isolated from 21 patients near the time of infec-
tion (median 28 estimated days after infection, range 22 to 65 days). Translated amino acid
sequences were aligned, and the LANLHighlighter tool was used to illustrate sequence varia-
tion using ticks colored as indicated in the legend.
(PDF)

S4 Fig. Phylogenetic tree and recombination breakpoints.A selection of 15 Subtype Refer-
ence Sequences was downloaded from the LANL sequence database and were alignedwith the
consensus of each set of patient derived T/F Env sequences. The resulting neighbor-joining
phylogenetic tree, shown in (A), illustrates Zambian derived Envs clustering with the Subtype
C reference sequences, while the majority of Rwandan sequences cluster with Subtype A1. The
exceptions to this, R1142F (B) and R66M (C), were analyzed via the REGAHIV-1 Subtyping
Tool to identify contributing components of these recombinant Envs.
(TIF)

S5 Fig. NXS and NXT glycanmotifs within T/F Env gp120 sequences. (A)An amino acid
alignment of 21 T/F Env gp120 sequences was analyzed for glycosylation sequon and position
using LANLN-GlycoSite (https://www.hiv.lanl.gov/content/sequence/GLYCOSITE/glycosite.
html). Numbering includes amino acid position according to the T/F Env alignment, and
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relative to HXB2 in parentheses. Variable regions are highlighted above the position numbers.
The number of NXS, NXT, and total glycans, and NXS: NXT ratio is included for each
sequence. (B) To determine if NXS:NXT ratios were driven by differences in a specific region
of Env, data was divided into the top 10 neutralizers (#1–10) and bottom 11 neutralizers (#11–
21) based on breadth ranking. NXS:NXT ratios were calculated for V1, V2, C2, V3, C3, V4, C4,
and V5 regions of gp120 by dividing the number of NXS sites in that region by the number of
NXT sites for each group of T/F Envs. The T/F Envs from the bottom 11 neutralizers had
higher NXS:NXT ratios in V1, V2, C2, C3, V4, and C4, highlighted in yellow, but not in V3
and V5.
(TIF)

S6 Fig. Amino acid alignments of Env for Z1800M and R66M. Env amino acid alignments
are shown for Z1800M (A) and R66M (B), including sequences from the first time point after
infection (estimated to be 29 days for Z1800M and 22 days for R66M, Fig 1) and the longitudi-
nal time point used to calculate the Immunotype Diversity Index score (5-months for Z1800M
and R66M). The Env IDI scores for Z1800M and R66M were 263 and 28, respectively (Fig 5).
The V2,V4,V5 IDI scores were 232 and 0, respectively (Fig 5). The sequences from the
5-month time point are shaded gray. Yellow highlighting indicates positions that were identi-
fied by SequenceHarmony as having a Z-score less than -3. gp120 variable domains are indi-
cated above the sequences.
(PDF)
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