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As mediators of intercellular communication, circulating extracellular vehicles (EVs) can
modulate tissue and cellular pathways by altering transcription profiles in recipient cells,
and their content may reflect the status of their parent cells. However, whether their cargo
is altered in the metabolic syndrome (Mets) remains unclear. We hypothesized that MetS
altered mRNAs and miRNAs packed within circulating-EVs. EVs were collected from
plasma of patients with MetS or age-matched Lean controls (n=4 each). RNA sequencing
was performed to identify dysregulated mRNAs and miRNAs, and analyze genes targeted
by miRNAs, top pathways, and diseases associated with MetS-EVs. MetS patients
showed elevated body weight, blood pressure, glucose, insulin, and liver injury markers
levels. 1,446 mRNAs were downregulated and 32 upregulated in MetS- compared to
Lean-EVs, whereas 40 miRNAs were selectively enriched and 10 downregulated in MetS-
EVs. MetS upregulated in EVs genes involved in apoptosis, mitochondrial regulation,
transport, and lipoproteins, but downregulated vessel and heart development, protein
complex biogenesis, and angiogenesis. MetS also upregulated miRNAs targeting genes
implicated in cellular processes, including oxidation–reduction, and downregulated
miRNAs capable of modulating catalytic activity, as well as heart, blood vessel, and
skeletal development, transcriptional regulation, apoptosis, and cell cycle. Our study,
thus, indicates that human subjects with MetS show modified cargo of circulating EVs,
which in turn may modulate several critical cellular functions and fate. These EVs may
reflect the anomalous status of their parent cells, and potentially serve as important
regulators, biomarkers, and targets in the progression and treatment of MetS.
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BACKGROUND

The metabolic syndrome (MetS) is a collective cluster of disease
risk factors, including dyslipidemia, obesity, inflammation,
insulin resistance, and hypertension, affecting numerous people
worldwide (1). The presence of MetS significantly increases
disease risk for type 2 diabetes, atherosclerosis, cardiovascular,
and chronic kidney disease, and ultimately leads to organ injury
and dysfunction (2). The pathogenesis of MetS involves
activation of a plethora of signaling pathways and potential
damage to cell types, tissues, and target organs (3).

Extracellular vesicles (EVs), membrane-bound nanoparticles,
can be released from almost every cell type and play an essential
role in a wide range of physiological and pathological process in
vivo (4). Besides apoptotic bodies, the two main types of EVs are
exosomes and microvesicles, which are the most studied EVs
populations. Known as carriers for circulating miRNAs, plasma
EVs also contain other nucleotides, lipids, and proteins (5). EVs
function as mediators of intracellular communication by
shuttling bioactive cargo between the parent cells in which
they originate and neighboring or distant recipient cells (6). By
altering transcription profiles in recipient cells, EVs can
modulate tissue metabolism and cellular pathways (7).
Growing evidence indicates that EVs are prevalent in biofluids,
including serum/plasma, saliva, bronchoalveolar lavage fluid,
and urine, and that their composition changes in disease states
(8), positioning EVs as novel circulating biomarkers (9) that
reflect the status of their parental cells.

Our group recently demonstrated that EVs released by pig
adipose tissue-derived mesenchymal stem cells (MSCs) are
selectively packed with micro-RNAs (miRNAs), mRNAs, and
proteins, which possess the capacity to modify selective pathways
in recipient cells (10, 11). miRNAs are small non-coding RNAs
that regulate gene expression post-transcriptionally and may
play a crucial role in the pathophysiology of MetS (12),
suggesting them as a new class of endocrine factors (13).
Importantly, recent studies have revealed that miRNAs are
detectable in the peripheral circulation packed in different
types of EVs (14).

Furthermore, we have also shown that MetS can modify the
cargo and size of porcine adipose tissue-derived MSC, including
mRNAs, miRNAs, and proteins, which might in turn control
some important cellular functions (15, 16). In addition, the
transcriptome and proteome of particularly genes in MSCs
involved in mitochondria, inflammation, and transcription
regulation were found to be altered in MetS (17).

Identifying miRNA and mRNA cargo of circulating EVs, and
elucidating alternations imposed by disease status, could
illuminate their potential as biomarkers of tissue and organ
injury. However, how the presence of MetS affects the overall
transcriptome of circulating EVs in human subjects and which
pathways are primarily altered remains unknown. Therefore, we
Abbreviations: MetS, metabolic syndrome; EVs, extracellular vesicles; miRNA,
micro-RNA; eGFR, estimated glomerular filtration rate; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase;
PRA, plasma renin activity. MSCs: mesenchymal stem cells.
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hypothesized that MetS is associated with altered mRNA and
miRNA content in EVs isolated from systemic human plasma.
To test this, we took advantage of high-throughput mRNA and
miRNA sequencing to compare the gene and miRNAs profile
between Lean- and MetS-human subjects.
MATERIALS AND METHODS

Patient Population
MetS patients and healthy subjects (n=4 each group) were
recruited in the First Hospital Affiliated to Jinan University
(Guangdong, China). Our study followed the Declaration of
Helsinki, was approved by the Institutional Research Ethics
Committee, and written informed consent obtained from all
subjects. All study participants were reviewed for medical history.

Inclusion criteria for MetS patients included older than 18 years
and diagnosis of MetS, based on criteria presented by the
International Diabetes Federation (18). The diagnosis of the MetS
centered on obesity (body mass index[BMI] >30 kg/m2) and two or
moreof the following: abnormal lipidsmetabolism(HDL-cholesterol
<50 mg/dl in females and <40 mg/dl in males, triglycerides
≥150 mg/dl), systolic blood pressure ≥130 mm Hg or diastolic
blood pressure ≥85 mm Hg, previously diagnosed hypertension or
type 2 diabetes or fasting glucose concentration ≥100 mg/dl.
Exclusion criteria included cancer, heavy smoking, drug abuse,
severe cardiac valvular diseases, any severe systemic diseases, or
alcohol consumption in the past 3 months.

Inclusion criteria for healthy controls included overall health
status, older than 18 years. Exclusion criteria for healthy controls
included any significant disease, drug abuse, heavy smoking, or
alcohol consumption in the past 3 months. None of these Lean or
MetS subjects have been taking non-steroidal anti-inflammatory
drugs (NSAIDs) or changed their exercise regimen within 3
months of enrolment.

Blood samples were collected under fasting condition for
assessment of metabolic, renal, and liver functions following
routine procedures in the clinical laboratories of the First
Hospital Affiliated to Jinan University. Estimated glomerular
filtration rate (eGFR) was calculated by the Modification of Diet
in Renal Disease eGFR Equation (19).
Blood EV Harvesting
EVs were isolated using the exoRNeasy Serum/Plasma (Qiagen
cat# 77044) assay, followed by RNA isolation using the
miRNeasy serum/plasma advanced kit (Qiagen cat# 217204),
as per manufacturer’s directions. Briefly, thrombin was added to
the plasma, incubated for 5 minutes at room temperature, and
centrifuged at 2,500g for 15 min. The supernatant was then
mixed with precipitation buffer and incubated for 60 min at 4°C.
Following centrifugation at 13,000g for 5 min, the pellet was
resuspended and served for RNA isolation. The resuspended
pellet was lysed, protein was precipitated and removed,
isopropanol was added to the supernatant, and the sample
loaded onto the column. Following three washes, RNA was
eluted and stored at −80°C.
August 2021 | Volume 12 | Article 687586
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EVs were characterized post-isolation based on transmission
electron microscopy and expression of EV markers (CD9, CD63,
CD81) by Western blot, as previously published (10), and their
concentrations determined using nanoparticle tracking analysis.
In addition, their cargo was compared to typical EV markers
listed in ExoCarta (http://www.exocarta.org), a web-based
resource of exosomal cargo.

mRNA Sequencing Analysis
RNA sequencing was performed and analyzed as described
previously (10). RNA libraries were prepared according to the
manufacturer’s protocol (TruSeq RNA Sample Prep Kit v2,
Illumina, San Diego, USA) and loaded onto flow cells (8–10 pM)
to generate cluster densities of 700,000/mm2 following the standard
protocol. Then cells were sequenced on an Illumina HiSeq 2000
using TruSeq SBS kit version-3 and HCS v2.0.12 data collection
software, with data analyzed using the MAPRSeq v.1.2.1 system and
the Bioinformatics Core standard tool. The mRNA-Seq data were
analyzed using CAP-miRSeq v1.1, normalized, and differential
expression analyzed using edgeR 2.6.2. Gene expression was
normalized to 1 million reads and corrected for gene length
(reads per kilobasepair per million mapped reads). DEseq analysis
was performed and mRNAs showing fold-change >1.4 between the
groups, and p<0.05 were considered upregulated, whereas those
with fold-change <0.7 and p<0.05 were considered downregulated.
Functional annotation clustering analysis was performed using
DAVID 6.7 database (http://david.abcc.ncifcrf.gov/) to obtain a
ranking of primary gene ontology categories for upregulated and
downregulated mRNAs.

miRNA Sequencing and Data Analysis
EVs total RNA libraries were prepared using QIAseq Stranded
Total RNA Kit. MiRNA sequencing libraries prepared with
QIAseq miRNA Library Kit were sequenced with an Illumina
NGS system (MiSeq Personal Sequencer, NextSequence500,
HiSeq-1000, HiSeq-1500, HiSeq- 2000, HiSeq-2500, and
GaIIx). The data were analyzed with CLC (Biomedical)
Genomics Workbench. Starting with unaligned FASTQs, the
workflow generates aligned BAMs and then both raw and
normalized known mature miRNA expression counts. The R-
based tool from Bioconductor, edgeR2.6.2 was used to perform
DEseq analysis to identify miRNAs enriched in MetS-EVs
compared to Lean-EVs (fold-change >2.0 or fold-change <2
and p<0.05). TargetScan 7.1 and miRWalk 2.0 were used to
predict target genes of significantly upregulated and
downregulated miRNAs. Subsequent functional annotation-
clustering analysis utilized the PANTHER (http://www.
pantherdb.org/) and DAVID 6.7 database. Gene targets of
miRNAs enriched in Lean- and MetS-EVs were compared on
different categories, including cellular component, molecular
function, biological process, and biological pathway.

Validation of miRNA and mRNA
Expressions
To validate expression of representative mRNAs and miRNAs in
circulating human EVs, the expression of several candidate RNAs
was confirmed by quantitative polymerase chain reaction (qPCR).
Frontiers in Endocrinology | www.frontiersin.org 3
Total RNA was isolated from plasma-derived EVs, and probed
with primers (Ribobio, Guangzhou, Guangdong Province, China;
GZP2020081200495, GZP2020081200501, GZP2020081200497,
GZP2020081200484, GZP2020081200483, and GZP20200
81200482). All results were adjusted by GAPDH.

Integrated mRNA/miRNA Analysis
Target prediction analysis of dysregulated miRNAs was
performed using miRWalk 3.0 (http://mirwalk.umm.uni-
heidelberg.de/) and target genes that overlapped with those
mRNAs dysregulated in MetS-EVs analyzed using Venny 2.1
(https://bioinfogp.cnb.csic.es/tools/venny/).

Statistical Analysis
Statistical analysis was performed using JMP 14.0 (SAS Institute,
Cary, NC). Data are expressed as mean ± standard deviation. The
Shapiro–Wilk test was used to test for deviation from normality.
Normally distributed data were compared using unpaired
Student’s t-test and ANOVA. Nonparametric tests (Wilcoxon
and Kruskal Wallis) were used when data did not follow a
Gaussian distribution. Statistical significance was accepted if
p ≤ 0.05.
RESULTS

Systemic Characteristics of Lean
and MetS Patients
Table 1 shows the demographic, clinical, and laboratory
characteristics of the study patients. BMI, systolic, and diastolic
blood pressures were all markedly higher in the MetS compared to
TABLE 1 | Clinical, laboratory, and demographic data of Lean and Mets patients
(n = 4 each).

Parameters Lean Mets

Age (years) 24.5 (21–29) 29.3 (24–32)
Sex (female/male) 2/2 2/2
Duration of MetS (years) – 5.25 ± 1.71
Body mass index (Kg/mm2) 19.1 ± 0.9 62.2 ± 14.2*
Systolic blood pressure (mmHg) 113 ± 11.9 150.3 ± 9.7*
Diastolic blood pressure (mmHg) 63.8 ± 5.9 95 ± 4.5*
Hemoglobin A1C (%) 5.4 ± 0.2 7.2 ± 0.8*
Total cholesterol (mmol/l) 4.5 ± 0.4 5.1 ± 0.5
Triglycerides (mmol/l) 1.75 ± 0.2 2.42 ± 0.8
High-density lipoprotein (mmol/l) 0.96 ± 0.1 0.97 ± 0.2
Low-density lipoprotein (mmol/l) 1.6 ± 0.3 3.1 ± 0.6*
Blood urea nitrogen (mmol/l) 3.7 ± 0.5 5.4 ± 1.6*
eGFR (ml/min/1.73m2) 129.3 ± 39.1 193.4 ± 7.4*
Fasting blood sugar (mmol/l) 4.9 ± 0.4 8.2 ± 1.6*
Insulin (mIU/L) 14.0 ± 4.4 42.4 ± 16.1*
C-peptide (ng/ml) 2.5 ± 0.6 6.0 ± 0.8*
Alanine aminotransferase (U/L) 29 ± 7.0 100 ± 23.5*
Aspartate aminotransferase (U/L) 25.5 ± 7.4 86.5 ± 29.4*
Alkaline phosphatase (U/L) 63.5 ± 5.2 85.3 ± 15.4*
White blood cells *10^9/L 4.15 ± 1.1 8.28 ± 2.3*
Plasma renin activity (ng/ml/h) 0.6 ± 0.1 3.5 ± 0.5*
Augus
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Lean subjects, whereas age and sex were similar between the
groups. Low-density lipoprotein, fasting blood sugar, C-peptide,
insulin, and hemoglobin A1C levels were also higher in MetS
compared to Lean, underscoring development of MetS. Elevated
blood urea nitrogen (BUN) and eGFR were consistent with
development of hyperfiltration that characterizes obese individuals,
and plasma renin activity (PRA) was increased. Elevated alanine
aminotransferase (ALT), aspartate aminotransferase (AST), and
alkaline phosphatase (ALP) indicated early liver injury in the MetS
group, whereas a higher white blood cell count was consistent with
systemic inflammation.

Characterization of Lean- and MetS
Circulating EVs
Transmission and scanning electron microscopy demonstrated
that the plasma contained EVs with the traditional “cup-like”
morphology (Figure 1A). Circulating EVs expressed typical EV
(CD9, CD81, and CD63) markers, and NTA demonstrated a
typical size distribution of microparticles and exosomes
(Figures 1B, C). Furthermore, of the top 100 conventional EV
markers listed in ExoCarta, 95 mRNAs were identified in isolated
EVs (Figure 1D), confirming their nature.

EV mRNAs Cargo
Of all annotated genes (n=32,392), mapping of RNA reads
revealed 32 genes (0.1%) upregulated in circulating MetS-
Frontiers in Endocrinology | www.frontiersin.org 4
compared with Lean-EVs (Figures 2A and S1). The genes
encode for metabolite interconversion enzymes with protein
binding and catalytic activity (Figures 2B, C). Functional
analysis revealed that these proteins are primarily implicated in
regulation of apoptosis (RHOB, PPP2R2D, DYNLT3), and
mitochondrial function (MRPL18, MTIF3, UCP2), followed by
transport and lipoproteins (Figure 2D). Contrarily, 1,446 (4.5%)
mRNAs were downregulated in MetS compared to Lean-EVs.
Functional annotation clustering analysis showed that those top
100 genes (Figure 3A) encode for nucleic acid binding and
scaffold-adaptor proteins with binding and catalytic activity
(Figures 3B, C), primarily involved in tube, vascular or heart
development (NEBL, AKAP13, ERBB4), protein complex
biogenesis (TRIOBP, TBCD, SMARCA4), and angiogenesis
(APP, PRKX), followed by hemopoiesis, mitochondria,
cytoskeleton, and regulation of apoptosis (Figure 3D).

EV MicroRNAs Cargo
Of 1,515 annotated miRNAs, 40 (2.6%) distinct miRNAs were
selectively enriched in MetS EVs (Figures 4A and S2).
Functional annotation clustering analysis showed that those
upregulated miRNAs targeted genes encoding for cell junction
proteins with binding activity (Figures 4B, C), primarily
involved in redox regulation and oxidation-reduction (OXA1L,
PNPT1, SDHC), cell structure (DCTN1, EFHC2, RHOA), and
Ras protein signal transduction (BAD, RAF1, RELA), followed
A

B

D

E

C

FIGURE 1 | Characterization of circulating extracellular vesicles (EVs) and validation of dysregulated miRNAs. (A) Transmission electron microscopy (negative
staining) showing EV clusters (arrows) with the classic “cup-like” morphology. (B) Size distribution of isolated EVs revealed a composition of about 2/3 small
microvesicles (~145 nm in size) and 1/3 exosomes (~92 nm). (C) Western blotting analysis showing that isolated EVs expressed common EV markers (CD9, CD63,
and CD81). (D) Venn diagram showing that 95 mRNAs of the top 100 EV markers listed in ExoCarta were found in the isolated EVs. (E) Expression of candidate
mRNAs and miRNAs (qPCR) was concordant with miRNA-seq and mRNA-seq results. *p ≤ 0.05 vs. Lean.
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by regulation of apoptosis and transcription (Figure 4D).
Contrarily, 10 miRNAs (0.7%) were downregulated in MetS-
EVs compared with Lean-EVs (Figure 5A). The downregulated
miRNAs targeted genes encode for gene-specific transcriptional
regulators with binding and catalytic activity (Figures 5B, C),
mostly implicated in heart and skeletal development (HEY2,
SRF, NOTCH1), phosphoprotein (PPM1D, RPL26), and
transcription regulation (RLF, TRIP4, ZNF45), followed by
blood vessel development, apoptosis, and cell cycle
(Figure 5D). qPCR confirmed that the expression pattern of
several candidate mRNAs and miRNAs was similar to RNAseq
results (Figure 1E).
Integrated mRNA/miRNA Analysis
Integrated miRNA/mRNA analysis evaluated the interactions
among dysregulated mRNAs and miRNAs. It revealed that
76.2% of mRNAs dysregulated in MetS-EVs were targets of
miRNAs dysregulated in the same MetS-EVs (Figure 6).
Frontiers in Endocrinology | www.frontiersin.org 5
DISCUSSION

Our study used high-throughput RNA-sequencing to interrogate
mRNA and miRNA content of circulating EVs and explore the
putative function of enriched or excluded genes andmiRNAs within
those EVs obtained from patients with MetS compared to lean
controls. We demonstrated that MetS is associated with altered
content of genes and miRNAs in human circulating EVs.
Specifically, we found in MetS circulating EV upregulated genes
involved in regulation of apoptosis, mitochondria, transport, and
lipoproteins, but downregulated genes responsible for
cardiovascular development and angiogenesis. MetS-EVs also
showed upregulated miRNAs that target genes and proteins
implicated in multiple cellular processes, including redox
regulation and cell structure. Contrarily, miRNAs downregulated
in MetS-EVs are capable of modulating proteins implicated in
several cellular processes including heart, blood vessel, and
skeletal development, transcription regulation, metal ion binding,
apoptosis, and cell cycle. These observations suggest impaired
A

B

DC

FIGURE 2 | Upregulated mRNAs in Lean and MetS plasma-EVs. (A) Heat-map showing 32 upregulated mRNAs in MetS compared with Lean plasma-EVs. Panther
analysis showed protein class (B) and molecular function (C). (D) Enrichment of functional pathways of the 32 upregulated genes using DAVID 6.7.
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cellular structure, function, and fate in MetS, which may blunt
development or repair of blood vessels.

About one third of US adults and over a billion people globally
have MetS (20). MetS fosters development of type 2 diabetes, lipid
disorders, cardiovascular disease, hepatic steatosis, and other
circulatory disorders (1, 2). Fundamental manifestations of MetS
include insulin resistance and adipocyte dysfunction, which promote
oxidative stress and chronic inflammation, and in turn damage in
target tissues such as the kidney, liver, brain, and vasculature. In the
kidney, MetS induces hyperfiltration and contributes to
microvascular remodeling, podocyte injury, and mitochondrial
dysfunction (21), whereas in the liver, non-alcoholic fatty liver
disease is a manifestation of MetS (22). Congruently, we found
that our patients with MetS showed elevated BUN, eGFR, ALT,
AST, and ALP, indicating early renal and liver injury.

Circulating EVs are released from various tissues and organs,
reflect the status of their parental cells, and may also mediate
important processes in target cells (5). We found that several
biological protein functions, including protein complex
biogenesis and transport are targeted by dysregulated miRNAs
within those EVs. In addition, MetS is a proinflammatory state
Frontiers in Endocrinology | www.frontiersin.org 6
associated with oxidative stress and apoptosis (19, 23), as also
reflected in circulating EVs in our study. Biological functions
targeted by upregulated miRNAs included redox regulation,
which might be altered in parent cells that released those EVs
to the systemic circulation. Interestingly, apoptosis and cell cycle
are targeted by dysregulated miRNAs, consistent with our recent
findings showing that MetS dysregulates in MSC-derived EVs
miRNAs that regulate cellular senescence (24). In addition, MetS
may alter angiogenesis and blood vessel development (25), which
we found to be targeted by dysregulated miRNAs, suggesting
that MetS might impair vascular reparative processes in response
to ischemia or wound healing.

Mitochondrial dysfunction plays a role in MetS and advances as
the disease progresses from insulin resistance to type 2 diabetes (26).
Our previous studies have shown that obesity, as observed in our
patients, impairs MSC mitochondrial structure and function,
possibly mediated partly through miRNA-induced mitochondrial
gene regulation, leading to increased oxidative stress (15, 27, 28).
The current study extends our previous observations,
demonstrating that MetS-EVs contain mitochondria-related
mRNAs, which may reflect mitochondrial damage in the parent
A

B

D

C

FIGURE 3 | Downregulated mRNAs in Lean and MetS plasma-EVs. (A) Heat-map showing top 100 downregulated mRNAs in MetS compared with Lean plasma-EVs.
Panther analysis showed protein class (B) and molecular function (C). (D) Enrichment of functional pathways of the top 100 downregulated genes using DAVID 6.7.
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cells that released those EVs to the systemic circulation. Several
mitochondrial genes upregulated in MetS-EVs included
cytochrome oxidase assembly factor-3, a novel regulator of
mitochondrial COX1 translation and cytochrome oxidase
assembly (29), mitochondrial translational initiation factor-3, and
signal transducer and activator of transcription. The product of this
gene is required for recognition and regulation of translation
initiation of mitochondrial mRNAs and for coordinated assembly
of oxidative phosphorylation complexes in vivo (30). Likewise, the
transcription factor signal transducer and activator of transcription
regulates mitochondria-mediated oxidative stress response, PKCd
activation, and autophagy (31). Hence, our observations suggest
mitochondrial dysfunction in MetS detectable in circulating EVs.

We found upregulation of genes linked to lipoprotein
metabolism, consistent with the marked dyslipidemia in our MetS
patients. Similarly, genesupregulated inMetS-EVsare implicated in
apoptosis, including RHOB, PPP2R2D, dynein light chain Tctex-
type 3, and C-X-C motif chemokine receptor-2 genes, which
modulate specific apoptosis pathways (32). Apoptosis is a vital
component of fundamental processes including normal cell
turnover, proper development and functioning of the immune
system, hormone-dependent atrophy, and others (33). RhoB, a
Rho family GTPase, regulates cell cycle progression and is required
for the apoptotic response of transformed fibroblasts to DNA
Frontiers in Endocrinology | www.frontiersin.org 7
damage (34). RhoB also contributes to cancer progression by
regulating cell cycle progression, apoptosis, DNA damage
responses, invasion, and migration. Recently, dynein light chain
Tctex-type 3 has been reported to foster ovarian cancer through
promoting cell proliferation, migration, and invasion (35). C-X-C
motif chemokine receptor-2 has been found to promote anti-
apoptosis, anti-senescence, and epithelial-to-mesenchymal
transition of breast cancer cells, leading to enhanced metastasis
and chemoresistance (36). Therefore, our findings suggest that
MetS might impact cellular fate.

miRNAs play an essential role in regulating gene expression in
several different physiological and pathophysiological conditions
(15, 37), includingmetabolic diseases. In this study,manymiRNAs
were dysregulated in circulating EVs fromMetS patients compared
with healthy individuals. miRNAs upregulated in MetS plasma
could bedelivered to recipient cells andmodulate cellular pathways.
For example, miR-124, which participates in inflammation,
autophagy, mitochondrial function, and neurotransmission (38),
was selectively enriched in MetS EVs. Similarly, mir-149 that
mediates inhibition of cell proliferation, migration, and invasion,
and induces apoptosis, was also enriched in MetS-EVs (39). Taken
together, these observations suggest that dysregulated miRNAs in
circulating MetS-EVs might reflect imbalanced homeostasis and
modulate cellular pathways.
A B

D

C

FIGURE 4 | Upregulated miRNAs in Lean and MetS plasma-EVs. (A) Heat-map showed 40 upregulated miRNAs in MetS compared with Lean plasma-EVs. Panther
analysis illustrated protein class (B) and molecular function (C). (D) Enrichment of functional pathway of the 40 upregulated miRNAs target genes using DAVID 6.7.
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Our study combined and comprehensively analyzed the
mRNAs and miRNAs content in human circulating-EVs, and has
a number of strengths. Using next-generation sequencing analysis,
we identified differential mRNAs and miRNAs expression
signatures in circulating EVs in MetS compared with Lean
human subjects. These observations suggest that the mRNA and
miRNA cargo of circulating EVsmight represent novel biomarkers
in MetS. However, further studies are needed to analyze different
body fluids in chronic metabolic diseases to identify additional EV
biomarkers (mRNAs and miRNAs) that can be used for diagnosis,
prognosis, and therapeutics. In addition, further studies are needed
to determine the relative contributions of the individual
components of MetS (e.g., obesity, hypertension, hyperlipidemia,
etc.), as well as the causal relationship between EV content, MetS,
and the cellular damage that it is known to induce. Our study is
limited by the small sample size, as is often used in mRNA- and
miRNA-seq studies that produce large datasets (15, 24). Our
patients were relatively young, arguing against a major role of
aging in our changes in the cargo of circulating EVs. Lastly, MetS
A

B

DC

FIGURE 5 | Downregulated miRNA profile in Lean and MetS plasma-EVs. (A) Heat-map showed 10 downregulated miRNAs in MetS compared with Lean plasma-
EVs. Panther analysis depicted protein class (B) and molecular function (C). (D) Enrichment of functional pathway of the 10 downregulated miRNAs target genes
using DAVID 6.7.
FIGURE 6 | Representative Venn diagram showing that 76.2% of mRNAs
dysregulated in MetS-EVs could be targeted by miRNAs dysregulated in
MetS-EVs.
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patients were extremely obese, so whether milder forms of obesity
and MetS would lead to comparable alterations remains to be
defined. Further studies are also needed to explore in detail genes
andmolecules that regulate pathogenic pathways inMetS, aswell as
techniques to blunt them.
CONCLUSION

In summary, we found in human MetS modifies cargo of
circulating EVs, which may in turn modulate several important
cellular functions and fate, and potentially serve as key regulators,
biomarkers, and targets in the progression and treatment of MetS.
Genetic message related to mitochondrial function, apoptosis,
angiogenesis, oxidative stress, and inflammatory pathways were
dysregulated. Further studies are needed to determine whether
these changes in circulating EVs could be delivered to recipient
cells and modulate cellular pathways.
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