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Abstract Middle East respiratory syndrome coronavirus (MERS-CoV) is a betacoronavirus which can cause
acute respiratory distress in humans and is associated with a relatively high mortality rate. Since it was first
identified in a patient who died in a Jeddah hospital in 2012, the World Health Organization has been notified of
1735 laboratory-confirmed cases from 27 countries, including 628 deaths. Most cases have occurred in Saudi
Arabia. MERS-CoVancestors may be found in OldWorld bats of the Vespertilionidae family. After a proposed bat
to camel switching event, transmission of MERS-CoV to humans is likely to have been the result of multiple
zoonotic transfers from dromedary camels. Human-to-human transmission appears to require close contact with
infected persons, with outbreaks mainly occurring in hospital environments. Outbreaks have been associated with
inadequate infection prevention and control implementation, resulting in recommendations on basic and more
advanced infection prevention and control measures by the World Health Organization, and issuing of
government guidelines based on these recommendations in affected countries including Saudi Arabia.
Evolutionary changes in the virus, particularly in the viral spike protein which mediates virus-host cell contact
may potentially increase transmission of this virus. Efforts are on-going to identify specific evidence-based
therapies or vaccines. The broad-spectrum antiviral nitazoxanide has been shown to have in vitro activity against
MERS-CoV. Synthetic peptides and candidate vaccines based on regions of the spike protein have shown promise
in rodent and non-human primate models. GLS-5300, a prophylactic DNA-plasmid vaccine encoding S protein, is
the first MERS-CoV vaccine to be tested in humans, while monoclonal antibody, m336 has given promising results
in animal models and has potential for use in outbreak situations.
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MERS-CoV overview

Middle East respiratory syndrome coronavirus (MERS-
CoV) is a betacoronavirus which can cause acute
respiratory illness in humans [1]. Like other coronaviruses,
including the severe acute respiratory syndrome (SARS)-
CoV, it is a positive strand RNA virus. It has a genome of
over 30 000 nucleotides, containing seven predicted open
reading frames (ORFs) and four structural genes for spike
(S), nucleocapsid (N), membrane (M), and envelope (E)
proteins [2–6]. The S protein has been implicated in cross-
species MERS-CoV transmission and host cell infection
[6].

MERS-CoV infection was first observed in Saudi Arabia
in a 60-year-old man who died on June 24, 2012, after
presenting at a Jeddah hospital on June 13, 2012 with acute
pneumonia and subsequent renal failure [7]. The first
human cluster was retrospectively confirmed in a public
hospital in Jordan in April 2012, when 11 people became
ill [8]. To date, WHO has been notified of 1735 laboratory-
confirmed cases from 27 countries, and of 628 deaths,
mostly in Saudi Arabia, and has reported an overall case
fatality rate of 36% [9].
In MERS-CoV infection, acute viral pneumonia is often

present, while gastrointestinal symptoms may also be
experienced. Clinical severity can vary from asymptomatic
to death, usually from acute respiratory distress syndrome
(ARDS) [9–13]. Comorbid illness, older age, and high
viral load have been associated with poor outcomes
[10,11,13]. ICU admission linked to MERS-CoV infection

Received August 16, 2016; accepted January 23, 2017

Correspondence: ali.rabaan@jhah.com; arabaan@gmail.com

REVIEW
Front. Med. 2017, 11(3): 365–377
DOI 10.1007/s11684-017-0521-z



has been associated with a mortality rate of 74.2% in a
hospital in Saudi Arabia [14].
Emergence of human MERS-CoV probably resulted

from multiple zoonotic crossovers, mainly from dromed-
ary camels, however, limited human-to-human transmis-
sion has been observed, for example, in healthcare facility-
associated outbreaks in Saudi Arabia, Korea, and United
Arab Emirates (UAE) [5,15–20]. These were attributed to
inadequacies in infection prevention and control proce-
dures.
The following review of the molecular aspects of

MERS-CoV considers evolution, transmission, genomics,
possible mutations, and potential vaccine/therapeutic
targets.

MERS-CoV evolution

Coronaviridae is a family of viruses which can adapt to
multiple species, including humans. Bats are considered to
be the main mammalian CoVs reservoir [21]. Human
coronaviruses (HCoVs) comprise Alphacoronavirus and
Betacoronavirus genera; MERS-CoV is a betacoronavirus
[22]. Betacoronaviruses are further subdivided into four
clades, a to d; MERS-CoV falls into clade c (lineage 3)
[23]. Closest known coronavirus relatives to MERS-CoV
include the prototypic clade c betacoronaviruses, Tylonyc-
teris bat virus HKU4 and Pipistrellus bat HKU5 virus
[7,22–30]. Another more closely related virus, termed
PML/2011 and later NeoCoV, was isolated from a
Neoromicia zuluensis bat in South Africa. This strengthens
the possibility that ancestors of MERS-CoV may be found
in Old World bats of the Vespertilionidae family, which
includes the Neoromicia and Pipistrellus genera [30,31].
The most recent common ancestor of MERS-CoV and
NeoCoV was estimated at approximately 44 years ago
[32].
Rooting of the phylogenetic tree of MERS-CoV to

NeoCoV suggests that MERS-CoV evolution occurred in
camels prior to that in humans, with the initial bat-to-camel
host switching event occurring in Africa [30]. Current
theory suggests that an exchange of genetic elements
among ancestral viruses led to MERS-CoVemergence; this
may have occurred in bats, or else camels may have acted
as a genetic “mixing vessel” [30]. Molecular clock dating
suggests that for human isolates the evolutionary rate for
epidemiologically unlinked MERS-CoV genomes is
1.12 � 10–3 substitutions per site per year, and time to
most recent common ancestor (tMRCA) is March 2012
[33]. Meanwhile a cluster of isolates identified in the
eastern part of the Arabian Peninsula are estimated to have
diverged toward the end of 2012 [34]. For all MERS-CoV
isolates, including human and camel, tMRCA has been
estimated in late 2010 [32]. Twenty eight potential
recombination sequences have been identified in the

MERS-CoV genome and frequent transmission to and
fro between humans and camels has been observed since
the initial transmission event [7].

MERS-CoV transmission

Multiple zoonotic transfers are considered to have caused
most human MERS-CoV infections, with limited second-
ary human-to-human transmission, particularly in family
and healthcare settings, resulting in hospital-associated
outbreaks in Saudi Arabia, Korea, and UAE [5,15–
20,35,36]. Human-to-human transmission appears to
require close contact, however, adaptations in host-virus
transmission determinants may increase vulnerability to
both cross-species and human-to-human transmission [1].
Mutations in the S protein, particularly the receptor
binding domain (RBD), would be important in alteration
in MERS-CoV transmission properties, similar to observa-
tions in other betacoronaviruses [37–41]. Human dipepti-
dyl peptidase 4 (DPP4; CD26) is a functional MERS-CoV
receptor, with binding mediated by S protein [39,40]. S
protein is the main neutralizing antibody target during
coronavirus infections [42]. The MERS-CoV S has also
been implicated in cross-species transmission. Recent
evolutionary analysis suggested that the S protein was
under strong positive selection pressures during zoonotic
transmission of MERS-CoV to humans [7]. Out of nine
positive selection sites in the S protein, six were found in
the RBD.
Camels are a likely major zoonotic source for human

infection. MERS-CoVantibodies have been detected in the
majority of dromedary camels tested in the Arabian
Peninsula and parts of Africa, including Egypt, Oman,
Jordan, Qatar, Saudi Arabia, Ethiopia, Tunisia, Kenya, and
Nigeria [33,34,43–48]. MERS-CoV has not been identified
in other animals such as sheep, goats, cows, or water
buffalo, although one recent study suggests alpaca may be
another viral reservoir [35,49]. Emergence of the virus in
this New World camelid presents a potential widening of
the zoonotic MERS-CoV range to South America and the
United States, and other areas where alpacas are farmed
[49]. Meanwhile bats are considered to be the main
mammalian reservoir for MERS-CoV [21].
There is a potential risk of transmission from food

products derived from dromedary camels [48]. However,
despite high frequency of consumption of dromedary
camel milk and meat in the countries of the Arabian
Peninsula, and the ritual significance of these camels after
the Hajj pilgrimage, the frequency of MERS-CoV
infection is substantially lower than that of these practices
[5]. There is currently no evidence to suggest increased
transmission of MERS-CoV among Hajj pilgrims despite
the increased circulation of other respiratory pathogens
[50–53]. The extent of the human populations at risk from
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occupational exposure to dromedaries in the Middle East
and Africa may be under-estimated, as direct contact rather
than ingestion of dromedary camel products may be the
more significant risk factor [5,44,54,55]. There is genetic
evidence for direct contact transmission of MERS-CoV
from dromedary camels to humans. For example, in one
case of a MERS-CoV patient in Jeddah who had been
caring for a MERS-CoV-carrying dromedary camel, the
genome sequences from the man and the camel shared a
unique single nucleotide polymorphism (SNP) signature
[56,57].
Factors such as sample type or test employed may

impact on likelihood of detection of human MERS-CoV
infection. WHO recommends sampling from the lower
respiratory tract (LRT) for real time RT-PCR testing, the
gold standard detection method [5,58]. However, in most
studies upper respiratory tract (URT) samples are used, due
mainly to convenience and non-invasiveness [5,58].
Serological testing methods are also available, including
those based on ELISA or immunofluorescence (IFA),
traditional microneutralization tests (MNT), and pseudo
particle neutralisation tests (ppNT) [5,35,59–61]. Further
testing and validation of these tests in the context of mild or
asymptomatic disease should help in development of
accurate assessments of transmission and fine-tuning of
public health policy [5]. More extensive and strategic sero-
surveys among the human population are needed to
understand the extent of levels of MERS-CoV infection,
in particular in the absence of severe symptoms [59–61].
The reason for lack of reported MERS-CoV infection in
humans in Africa is not known, despite confirmed zoonotic
potential of camel-carried viruses [33,35,43]. Studies on
transmission among camels show evidence of circulation
across broad areas including Nigeria, Tunisia, Ethiopia,
and Kenya [33,62]. In one recent study in Kenya, use of
serological tests indicated an apparent absence of human
MERS-CoV infections, suggesting that there are unrec-
orded cases of human MERS-CoV similar to previous
reports in Saudi Arabia [63,64]. There may also be less
virulent strains in circulation in Africa, or different types of
individuals may be more commonly exposed [63].
Extensive screening would help guard against under- or
over-estimation of transmission or mortality rate [5,54].
Human-to-human transmission in healthcare settings has

been linked to lack of or breakdown in infection control
and prevention procedures, and can be successfully limited
by aggressive implementation of effective measures
[4,65,66]. Outside the Middle East, infection has been
spread by travelers from the Middle East, including
the outbreak in South Korea in 2015 [67], as well as
cases in the UK [68], the United States [69], the
Netherlands [70], and Thailand [71]. The first human
case of MERS-CoV infection imported into China in 2015
arose in a South Korean contact of confirmed MERS-CoV
cases in the South Korean outbreak [72]. The emergence of

MERS-CoV in second and third generation contacts in that
outbreak raised concerns that the virus could be mutating
to become more readily transmissible between humans.
To limit healthcare facility-associated human-to-human

transmission, WHO have issued detailed infection preven-
tion and control guidelines for dealing with suspected or
confirmed cases of MERS-CoV [1]. These include both
standard and more advanced precautions for caring for
patients with acute respiratory infections, as well as on-
going training and education of healthcare workers. In
hospital outbreaks in Saudi Arabia, WHO identified
contributory issues including emergency department wait-
ing room overcrowding and inadequate basic infection
prevention and control procedures [17]. Tackling such
deficiencies led to a decline in cases in both Saudi Arabia
and Korea. Guidelines have been issued in these countries,
in line with WHO recommendations [4,65,66].

Genomics and phylogenetic studies

Full understanding of the transmission of MERS-CoV
depends on the underlying viral genetics. Whole-genome
deep sequencing of 32 complete or partial MERS-CoV
genomes from respiratory samples from human MERS-
CoV cases in Saudi Arabia was carried out to help
determine evolution of the virus in Saudi Arabia and
surrounding areas [3]. Phylogenetic analysis of the
sequences alongside 33 previously available sequences
indicated that there were four Saudi Arabia clades, of
which only the Hafr-Al-Batin clade was contributing to
current cases [2,3]. Clade disappearance could indicate
increasing success of improved surveillance and infection
prevention and control measures, and a viral R0 of less than
1, however, undiagnosed asymptomatic spread could also
be a factor [3]. Genomic and phylogenetic analysis
suggested that a uniform evolutionary gradient of
MERS-CoV across Saudi Arabia and surrounding coun-
tries was unlikely, and that transmission was probably due
to movement of infected animals, animal products, or
infected humans [2,3,72,73].
Overall, the 182 MERS-CoV genomes sequenced to

date from humans and camels share greater than 99%
overall identity [74]. However, some variation is evident
between viral genomes from camels in Africa and those
from both humans and camels in the Arabian Peninsula
[43,75]. Results of genomic and phylogenetic analyses
suggest that MERS-CoV viruses fall mainly into two
clades, A and B, with MERS-CoV viruses from dromedary
camels in Egypt falling into a distinct cluster termed clade
C, separate from MERS CoVs detected elsewhere (Fig. 1)
[3,6,72,76,77]. Fig.1 adapted from the study by Zhang
et al. (2016) shows the phylogenetic tree of human and
camel MERS-CoV strains, constructed by the maximum-
likelihood method and rooted on the Egyptian dromedary
sequence (clade C) [6]. Most strains fall into clade B,
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which contains five groups comprising both human- and
camel-derived viral sequences from different regions
(Fig. 1). Group I includes 2014 camel and human
sequences from the United Arab Emirates (UAE), 2013
camel sequences from Saudi Arabia and 2013 human
sequences mainly from Qatar and France, with one from
Saudi Arabia. Group II contains 2013 human sequences
from Saudi Arabia and the UK. Group III includes the
ChinaGD01 strain as well as South Korean and Saudi
Arabian strains from 2015. Group IV is a small group (two
sequences) of 2012 human-derived Saudi Arabia strains.
Finally Group V is the largest group, dominated by human
Saudi Arabia strains from 2014 and 2015, along with an
assortment of other human-derived strains including 2012
strains from Jordan, the UK, and Saudi Arabia, 2014
strains from the USA and Qatar, and one 2013 strain from
UAE, as well as two 2013 camel strains from Saudi Arabia
(Fig. 1) [6,72].
Phylogenetic analyses suggest that recombination has

occurred between members of different clade B groups.
Nucleotides 1‒23722 and nucleotides 23723 to 30126 of
MERS-CoV appear to have independent molecular clock
rates [72,78]. In one study, 28 potential recombination
events were identified, including in three camel MERS-
CoVs and 25 human MERS-CoVs from different clade B
groups [6]. Genomic and phylogenetic analysis indicated
that the S protein codon 1020, in the membrane fusion
activity-related heptad repeat 1 (HR1) region, was under
episodic selection pressure, while there was more modest
positive selection of S codon 509, beside the S-protein/
DPP4 binding interface [3]. Thus while MERS-CoV is not
yet considered capable of a high and sustained human-to-
human transmission rate, possible changes should be
monitored in the S-protein, especially as it has been
previously implicated in expansion of viral host range in
other viruses including SARS-CoV [37,79,80].
Thus, genomic studies indicate that there may be

multiple recombination events in MERS-CoV and that
the S gene is an area of particular note. Keeping track of
mutations arising in MERS-CoV is vital in detecting
changes that may increase human-to-human or animal-
human transmission and in developing therapies and
vaccines.

Potentially important mutations

The major concern is that mutations may arise in MERS-
CoV which would increase viral affinity for human host
cells. Coronaviruses gain entry into host cells by using the
S1 subunit of the S protein to bind a host cell receptor such
as DPP4, then use the S2 subunit for membrane fusion,
with cleavage of the spike at the S1/S2 boundary by host
proteases [41,81] (Fig. 2). Fig.2, from the study by Durai

et al. (2015), shows the replication cycle of MERS-CoV,
including S protein-DPP4 binding [81]. This cleavage
divides the spike into the N-terminal S1 subunit, contain-
ing the RBD, and the C-terminal S2 subunit, containing the
fusion peptide, the HR1 and HR2 domains, and the
transmembrane (TM) domain (Fig. 2) [37,81]. Membrane
fusion also requires conformational rearrangement of S2,
exposing the fusion peptide and causing formation of a six-
helix bundle (6HB) of which HR1 and HR2 are essential
elements [37].
MERS-CoV can enter human cells, whereas the bat

HKU4 virus cannot. Mutational manipulation of the SI/S2
boundary of the HKU4 virus S protein showed that two
single mutations, S746R and N762A, enabled it to enter
human cells [41]. As the MERS-CoV spike contains these
mutations, it is likely that they are critical in the ability of
MERS-CoV to infect human cells and that mutations in
this region of the MERS-CoV S protein would be of
particular interest in enhancing transmissibility [41].
However, it was recently unexpectedly shown that
MERS-CoV with mutant S proteins with reduced affinity
for DPP4 arose during the 2015 South Korea outbreak
[82]. The detected point mutations I529T or D510G both
reduced RBD/DPP4 affinity [82]. A pseudotyped I529T
mutation-bearing virus also had reduced host cell entry.
Thus MERS-CoV adaptation in this outbreak appears to
have been driven by host immunological pressure,
ultimately leading to reduced rather than increased virus-
host affinity [82].
The importance of the HR1 and HR2 regions in

evolution of the S gene in betacoronavirus evolution was
confirmed in a recent study showing that there were many
positively selected sites in this region, including R652 and
V1060, which were associated with expansion of host
range [83]. In recent MERS-CoVevolution, adaptive HR1
mutations at position 1020 (Q/R/H1020) in camels or a
previous host, which mildly reduced HR1 and HR2-
mediated helical stability and bundle formation, have been
implicated in spread to humans [83]. While it may seem
surprising that moderately destabilizing mutations were
positively selected, these types of mutations can increase in
vitro infection efficiency [83].
Following entry into host cells, MERS-CoV non-

structural polyproteins pp1a and pp1ab are made, then
cleaved by two viral proteases, the main protease (Mpro)
and the papain-like protease (Fig. 2) [81,83]. Cleavage of
pp1a and pp1ab is essential in viral maturation. The
MERS-CoV Mpro crystal structure was recently described
and shown to be similar to other coronavirus Mpro
proteases [84]. Also like other Mpro proteases, dimeriza-
tion is essential for catalysis. Mutational analysis showed
that mutation M298R at the dimerization interface yielded
a more stable dimer with greater proteolytic activity,
suggesting potential importance of mutations that could
arise in viral proteins other than the S protein [84].

368 Molecular aspects of MERS-CoV



Therapies and vaccines

There is currently no specific evidence-based therapy or
vaccine for MERS-CoV. Combined antiviral therapies

have been used in patients who develop respiratory illness,
for example, pegylated interferon (IFN)-α, ribavirin, and/
or lopinavir/ritonavir [85,86]. Potential efficacy against
MERS-CoV has been suggested by in vitro and animal

Fig. 1 Phylogenetic tree of human and camel MERS-CoV. Adapted from: Zhang et al., 2016, Evolutionary dynamics of MERS-CoV: potential
recombination, positive selection and transmission; available from: http://www.nature.com/articles/srep25049; licensed under a Creative Commons
Attribution 4.0 International License: https://creativecommons.org/licenses/by/4.0/.
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studies, however, in vivo efficacy is less well-established
[85–88]. Recently the broad-spectrum antiviral nitazox-
anide has been shown to have in vitro activity against
MERS-CoV and other coronaviruses, and has been
suggested to be a possible MERS-CoV therapeutic
candidate [89]. However, development of a targeted anti-
MERS-CoV therapy would be an attractive option.
The importance of the HR regions of the MERS-CoV S

protein in adaptive evolution suggests that they would be
potentially effective targets for antiviral synthetic peptides
[83]. Effectiveness of a peptide named HR2P, spanning
1251–1286 of HR2 domains, has been demonstrated in
vitro, with effective inhibition of viral replication and S
protein mediated cell fusion [90]. Effectiveness of peptides
that interfere with HR-mediated 6HB bundle formation has
also been shown for other viruses including SARS-CoV
[91,92]. A HR2P analog termed HR2P-M2 was recently

shown to be even more effective in blocking S protein-
mediated cell-cell fusion in vitro and in inhibition of
MERS CoV-expressing pseudovirus infection [93]. It
could interact with a HR1 peptide to effectively block
6HB bundle formation. When administered intranasally to
ad-5-human DPP4-transduced mice, it protected the
animals from MERS-CoV infection, with lung viral titers
being decreased more than 1000-fold. Protection was
enhanced by combination with interferon β [93].
Another potential MERS-CoV-specific drug target is the

papain-like protease (PLpro), which is involved in release of
NSPs 1, 2, and 3 from polyproteins 1a and 1ab in
coronaviruses [94]. The X-ray 3-D crystal structure of the
MERS-CoV PLpro was shown to be similar to the
equivalent SARS-CoV enzyme, comprising ubiquitin-like
and catalytic core domains [94]. However, unique aspects
of the MERS-CoV PLpro crystal structure, including the

Fig. 2 Replication cycle of MERS-CoV. From: Durai et al., 2015, Middle East respiratory syndrome coronavirus: transmission, virology and
therapeutic targeting to aid in outbreak control; available from: http://www.nature.com/emm/journal/v47/n8/full/emm201576a.html; licensed under a
Creative Commons Attribution 4.0 International License: https://creativecommons.org/licenses/by/4.0/legalcode.
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oxyanion hole, and S3 and S5 subsites, suggest potential
targets for specifically designed antivirals [94].
Development of a MERS-CoV vaccine would be a

major step forward in stopping spread of this virus. In a
study on viral shedding and antibody response on 37 adult
MERS-CoV patients, all patients who survived infection
produced anti-MERS-CoV IgG and neutralizing antibo-
dies, compared to only about half of those who died [95].
However, antibody levels were only weakly inversely
correlated with LRT viral load and were insufficient to
eliminate LRT virus [95]. Given this apparent inadequacy
of adaptive immune responses to clear MERS-CoV, the
relatively high mortality rate, and the potential for the virus
to recombine and adapt to be more readily transmissible, it
is important that vaccine development be prioritised.
Results of one study using ppNT on a representative
range of serum samples suggested that all currently
circulating human MERS-CoV strains are of one serotype,
thus prototype strain selection is unlikely to be a major
factor in success of vaccine candidates [96]. However,
virus isolation success from respiratory samples correlated
with IgA antibody levels, suggesting that vaccine for-
mulations should be evaluated for IgA production potential
[96].
Unsurprisingly the S protein has been the focus of many

candidate vaccines [97–101]. An RBD fragment fused to
the Fc portion of human IgG could bind human DPP4 and
inhibit MERS-CoV infection in an in vitro cell culture
model, and induce a humoral response in vaccinated mice,
preventing RBD binding to DPP4 and inhibiting MERS-
CoV infection [97]. Intranasal administration induced
superior systemic humoral and cellular immune responses
than subcutaneous injection [99]. Immunisation of rhesus
macaques with an rRBD vaccine resulted in effective and
sustained immune responses to MERS-CoV infection 14
days post-vaccination, including production of neutralising
antibodies, alleviation of pneumonia, and reduction of viral
load in the respiratory tract, further supporting the potential
of RBD for use in human vaccines [102]. However, it is
possible that vaccines based on RBD or on the S1 subunit
may have limited epitope scope, so use of full-length S
protein may be preferable for a broader antibody response
[100]. Immunisation of mice and rhesus macaques with
DNA expression vectors expressing full-length S protein,
then with S1 subunit protein resulted in robust expression
of MERS-CoV neutralising antibodies and protection
against MERS-CoV-induced pneumonia [100]. Difficulties
in achieving abundant expression and stability of full-
length S protein have also been addressed by construction
of S protein nanoparticles in combination with Alum or
Matrix M1 adjuvant, which induce anti-MERS-CoV
neutralizing antibodies in mice [103].
Use of live-attenuated virus-based vaccines or replica-

tion-competent viral vectors could be a risky option, given
the relative vulnerability of older patients and those with

co-morbid diseases such as diabetes [42]. One possible
alternative option is use of replication-deficient vectors.
Examples of possible vectors which have been success-
fully used to express MERS-CoV S protein and induce
neutralizing antibodies in mice include modified vaccinia
virus Ankara (MVA) [104,105] and ad5 or ad41-type
adenoviruses [106,107].
Meanwhile, GLS-5300, a DNA-plasmid vaccine encod-

ing MERS-CoV S protein and co-developed by Inovio,
GeneOne Life Science Inc. and the Walter Reed Army
Institute of Research, has become the first potential MERS-
CoV vaccine to be tested in humans [108]. It has entered a
phase I clinical trial in healthy volunteers to evaluate its
safety and its ability to generate humoral and cellular
immune responses over a one-year period [108]. In pre-
clinical trials in mice, camels, and macaques, the vaccine
was shown to induce robust immune responses which were
effective in preventing viral infection [109]. Given the
status of camels as a likely host reservoir, the results from
camels were particularly significant [109].
While GLS-5300 and other types of vaccines mentioned

above would be intended for prophylactic use, current
relatively low incidence of MERS-CoV infection and the
lack of reliable small animal models means that both
definition of a target population for mass prophylactic
vaccination and sufficient demonstration of vaccine
efficacy are challenging issues [42]. Thus, development
of monoclonal antibodies for use in outbreak situations
would be advantageous. Pre-clinical studies of several
monoclonal antibodies, mainly targeted against the S
protein, are on-going, some of which have been shown to
be protective in animal models, both prophylactically and
post-exposure [110–114]. Analysis of one potent mono-
clonal antibody, m336, which precisely targets the S
protein RBD revealed a very low level of somatic mutation
in the antibody heavy chain, and that V(D)J recombination
and allele-specific residues were critical in generation of
high-affinity binding between antibody and RBD [114].

Summary and perspectives

Thus far, spread of MERS-CoV among humans has been
relatively limited, with Saudi Arabia experiencing the
majority of cases. Human infection is likely to have arisen
from multiple zoonotic transfer events, most likely from
dromedary camels. There is some debate on the importance
of dromedary camels as the most important reservoir of
infection, given the preponderance of the virus among
camels throughout Africa but relatively low reported levels
of human infections, however, the extent of human
infections may be under-estimated. Human-to-human
transmission appears to require relatively close contact,
and outbreaks have been mainly associated with spread
within healthcare institutions, connected to inadequate
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infection control and prevention procedures. While
genomic and phylogenetic analysis suggests that MERS-
CoV is not currently capable of a high and sustained
human-to-human transmission rate, it also indicates that
mutations, for example, in the viral S-protein, could arise
that would increase the viral host range and transmissi-
bility. The relatively high mortality rate associated with the
virus points up the importance of continuing to monitor the
evolution of the virus and to seek targeted therapies and/or
vaccines, bearing in mind the challenges inherent in
identifying a relevant target population for vaccination.
Promising therapies based on S-protein HR-targeted
peptides, as well as potential vaccines based on S-protein
nanoparticles are emerging, while a DNA-plasmid vaccine
encoding MERS-CoV S protein has entered phase I
clinical trials. Continuing to trace the evolution of the
virus will be important in predicting possible increases in
transmission to and among humans. Implementation of
extensive, validated and strategic sero-surveys is vital for a
full understanding of the true levels of human infection
with MERS-CoV, in particular in the absence of severe
symptoms or where symptoms are absent. Meanwhile,
aggressive implementation of infection prevention and
control procedures in healthcare institutions, careful
monitoring of contacts of infected patients and tracing
possible sources of infection, for example, occupational
contact with dromedary camels, appear to be the most
effective ways of keeping control of the transmission of
this dangerous virus.
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