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Melodic intonation therapy (MIT) is a treatment program for the rehabilitation of aphasic 
patients with speech production disorders. We report a case of severe chronic non-fluent 
aphasia unresponsive to several years of conventional therapy that showed a marked 
improvement following intensive 9-day training on the Japanese version of MIT (MIT-J). 
The purpose of this study was to verify the efficacy of MIT-J by functional assessment 
and examine associated changes in neural processing by functional magnetic resonance 
imaging. MIT improved language output and auditory comprehension, and decreased 
the response time for picture naming. Following MIT-J, an area of the right hemisphere 
was less activated on correct naming trials than compared with before training but sim-
ilarly activated on incorrect trials. These results suggest that the aphasic symptoms of 
our patient were improved by increased neural processing efficiency and a concomitant 
decrease in cognitive load.

Keywords: aphasia, neural efficiency theory, functional magnetic resonance imaging, Western aphasia Battery, 
prosody, Japanese version of MIt

INtRoDUCtIoN

It is well known in clinical practice that patients with severe non-fluent aphasia can sing well without 
prompting (1–3). Previous studies have suggested that verbal production, whether sung or spoken, 
originates from the same neural processes. In patients with aphasia, there is a large overlap between 
the neural activation patterns elicited by disyllabic words or phrases when either sung or spoken 
(3, 4). In contrast, in normal individuals, neural activity is higher during singing than speaking, and 
the pattern of neural activation is strong in the anterior to middle portions of the superior temporal 
gyrus, and markedly stronger in the right than the left hemisphere during singing (5). Because of 
these findings, Ozdemir et al. (5) proposed two possible routes for the articulation of words: (i) a 
purely language-based route in the left hemisphere and (ii) a singing-based or melodically intoned 
route that is either right hemispheric or bihemispheric.

Different rehabilitative approaches for aphasia are available (6, 7) based on psycholinguistic 
(8, 9), cognitive (10), and psychosocial or pragmatic (11–13). Melodic intonation therapy (MIT) 
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FIgURe 1 | axial MRI images showing the lesion resulting from a left 
putaminal hemorrhage, which had spread to thalamus and 
subcortical regions of the frontotemporal lobe. Upper and lower images 
show T1- and T2-weighted images, respectively.
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is a hierarchically structured treatment program identified by 
the American Academy of Neurology as an effective form of 
output-focused language therapy (14, 15). The original version 
of MIT has been adapted for various clinical populations, includ-
ing non-English linguistic populations such as Romanian (16), 
Persian (17), Italian (18), and Japanese (19), with comparable 
clinical results. MIT is based on the assumption that the stress, 
intonation, and melodic patterns of language output (prosody) 
are controlled primarily by the right hemisphere and is thus 
preserved in individuals with aphasia because of left hemisphere 
damage (20–24). MIT is intended to engage the right hemisphere 
given its dominant role in processing spectral information, global 
features of music, and prosody, whereas left-hand tapping may 
engage a right-hemisphere sensorimotor network that controls 
both hand and mouth movements (25–27).

Although MIT may induce functional and structural changes 
in the right hemisphere (28–32), it is not yet clear whether 
it is stress, intonation, melodic pattern, or some combina-
tion of these factors that aids in speech production (33, 34). 
Some recent neuroimaging studies support right hemisphere 
involvement in MIT (31, 32), whereas others do not (35). 
Alternatively, some studies have concluded that MIT promotes 
left perilesional activation (36, 37). The different functional 
imaging techniques used across studies may account, at least in 
part, for these inconsistencies (38). Thus, the neural processes 
that participate in MIT and the changes underlying clinical 
improvement remain unclear.

In this study, we report a patient with severe non-fluent apha-
sia who received the Japanese version of MIT (MIT-J) for nine 
consecutive days, 3 years after the onset of aphasia. The purpose 
of this study was to verify the efficacy of MIT-J and to identify 
the underlying neural processes that are altered by MIT using 
functional MRI (fMRI).

Case HIstoRY

A 48-year-old right-handed male developed right hemiparesis 
and aphasia associated with left putaminal hemorrhage. Axial 
MRI images in Figure  1 showing the lesion resulting from a 
left putaminal hemorrhage, which had spread to thalamus and 
subcortical regions of the frontotemporal lobe. He received 
2  months of rehabilitation during hospitalization. Although 
linguistic comprehension was relatively well preserved, he could 
utter words only with great effort and hesitation, symptoms 
consistent with motor aphasia. Therefore, for 2  years after the 
event, he received weekly speech training from a speech therapist 
(Yasuo Shimoji), but his symptoms remained unchanged. Three 
years after onset, he was admitted in our hospital for intensive 
training using MIT-J.

Neurological examination revealed right hemiparesis and 
hypoesthesia on the right side of his body, but there was no 
evidence of unilateral neglect, apraxia, dyscalculia, or visual 
discrimination difficulties. No hearing deficit was found. He was 
able to eat with chopsticks using his left hand and use the toilet 
unaided. He also walked independently with a lower extremity 
orthosis. However, assistance was need for changing clothes and 
getting into the bath. Neuropsychological assessment results 

included a normal score on the Japanese version of Raven’s 
Colored Progressive Matrices (32/36) (39). Memory function was 
also normal as evaluated using the Japanese version of the Benton 
Visual Retention Test (BVRT) (40): Test A correct score  =  10 
(mean = 7), error score = 2; Test B correct score = 6 (mean = 6), 
error score = 6. He could also correctly copy the figure of a cube; 
results of the Trail Making Test (TMT)-A and -B (41) were as 
follows: A = 137 s (normal population, mean ± SD; 119.6 ± 44.5) 
and B = 332 s (mean ± SD; 158.1 ± 53.6). The prolongation of 
TMT-B was attributable to aphasia, so we regarded frontal func-
tion of the patient as normal. Brain MRI revealed a lesion from 
the left putaminal hemorrhage, which had spread to thalamus 
and subcortical regions of the frontotemporal lobe (Figure 1).

All procedures followed the Clinical Study Guidelines of the 
Ethics Committee of Mie University Hospital, Japan and were 
approved by the internal review board. A complete description of 
all procedures was provided to the patient.

MetHoDs

Japanese Version of MIt
The procedure (level and step) of MIT-J was identical to the 
original MIT, consisting of four levels (22). Level I is the hum-
ming the intonation of the target word. The tasks in Level II move 
from requiring the subject to tap the rhythm of the clinician’s 
intoned utterances to repetition of a target sentence. At Level III, 
difficulty is increased by progressively decreased participation 
of the clinician and by first introducing, and finally requiring, 
the subject to give appropriately intoned responses to intoned 
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questions from the clinician regarding elements of presented 
sentences. At Level IV, the latency between stimulus and response 
is increased to produce decay of repetition skill and to increase 
efficiency of retrieval. Transition back to speech prosody is facili-
tated by a technique called “speech-song,” in which the melodic 
line remains the same as the intoned sentence of the preceding 
step, except that the constant pitch of intoned words is replaced 
by the variable pitch of speech. During all levels, tapping of the 
left hand is simultaneously used.

Japanese version of MIT as developed by Seki and Sugishita 
(19) is based on the original, but modified for the unique gram-
matical and phonological characteristics of Japanese (Figure S1 in 
Supplementary Material). The phonological unit in the Japanese 
language is a mora (42), a temporal unit that divides words into 
almost isochronous segments (43). Although a syllable and a 
mora are distinct conceptual units, many syllables in Japanese 
have just one mora (44). Thus, there are two major differences 
in MIT-J compared with the original MIT. First, the MIT-J uses 
two pitches, high and low, whereas the original MIT has several 
pitches. Second, in MIT-J, there are two moras in a single beat 
of left-hand tapping. These modifications may make MIT-J 
easier and more effective for broader aphasic symptoms than the 
original. In the present case, a speech therapist (Chizuru Nakano), 
who is also a licensed music therapist of Japan, administered the 
MIT-J for 45 min/day for nine consecutive days. The target words 
were chosen based on the severity of aphasia and the necessities 
in the daily life of the patient. The patient completed all other 
interventions during the hospitalization period.

assessment of Linguistic Function
We used two tests to assess linguistic function: the Japanese ver-
sion of the Western Aphasia Battery (WAB) (45) and the naming 
of 90 words. The WAB assesses six aspects of language function: 
spontaneous speech, auditory comprehension, repetition, nam-
ing, reading, and writing. The aphasia quotient (AQ) is used 
to express the overall linguistic function of the patient. For the 
naming of 90 words, we chose words with high “imageability” 
(80%), where “imageability” expresses the ease of evoking various 
mental images of the word (46). We presented the figures of these 
words, which were not used in the MIT-J intervention, on the 
screen of a personal computer using Cards for Speech Training 
(ActCard, Escor Co. Ltd.). In addition to the correct response 
score, we measured the response time (RT) from presentation of 
the figure to naming using sound analyzing software (Audacity 
2.0.5., Audacity Team). These assessments were performed before 
and after MIT-J.

Functional MRI assessment
To examine changes in brain activity associated with MIT-J, we 
performed fMRI during the word-naming task before and after 
completion of the intervention. The stimuli were 36 of the 90 
figures used for assessment of naming. Eighteen stimuli were 
correct, and the others were incorrect in the results. Stimuli 
were displayed using magnetic resonance compatible goggles 
(CinemaVision, Resonance Technology Inc., CA, USA), con-
trolled using E-Prime software (Psychology Software Tools, Inc., 

PA, USA) on a personal computer. Following the presentation 
of a fixation point (cross) for 2 s, a figure was presented for 6 s, 
and the patient was required to name it as quickly as possible. 
Thirty-six figures and 12 blanks as baseline were presented 
3  times, so  the total number of performance trials was 144.  
Using a noise-canceling microphone set near the patient’s  
mouth, we were able to monitor his performance through a 
speaker in the operation room.

fMRI Measurements
All images were acquired using a 3.0-T MR scanner (Achieva 
Quasar dual 3.0-Tesla, Koninklijke Philips Electronics). Functional 
images were obtained using a T2*-weighted gradient-echo echo 
planar imaging sequence [repetition time (TR) = 3,000 ms, echo 
time (TE) = 35 ms, flip angle = 90°, slice thickness = 5 mm, gap-
less, field of view (FOV) = 240 mm, 96 × 96 matrix]. The voxel 
size was 2.5 mm × 2.5 mm × 5 mm. In addition, a T1-weighted 
anatomical image was obtained (TR = 7.6 ms, TE = 3.6 ms, flip 
angle = 8°, slice thickness = 0.7 mm, FOV = 250 mm × 250 mm, 
in-plane resolution = 1.04 mm × 1.04 mm).

fMRI Data analysis
Preprocessing and data analysis were performed using SPM8 
software (Wellcome Department of Imaging Neuroscience, 
London, UK). The functional images were temporally corrected 
for acquisition time differences with regard to the middle slice, 
realigned to the first image to correct for movement-related 
effects, coregistered to the anatomical image, and spatially 
smoothed with an isotropic Gaussian kernel (full width at 
half maximum  =  8  mm). We conducted voxel-wise statistical 
analyses based on the general linear model. For the statistical 
model, an event-related design was modeled using the canoni-
cal hemodynamic response function and temporal derivative, 
and low-frequency drifts were removed using a high-pass filter 
(128 s). The onsets were defined as the onset time of the stimulus 
presented. We computed contrasts for “after  >  before (correct 
trial),” “after > before (incorrect trial),” “before > after (correct 
trial),” and “before  >  after (incorrect trial).” We assessed the 
statistical significance at a single-voxel threshold of p  <  0.05, 
family-wise error (FWE)-corrected (voxel-level corrected), 
and activations that involved a contiguous cluster of at least 
10 voxels were reported. MNI coordinates indicating the peak 
activation were converted to Talairach coordinates (47) using 
a non-linear transformation of the MNI brain image to the 
Talairach brain image (http://imaging.mrc-cbu.cam.ac.uk/imag-
ing/MniTalairach). The active cortical areas were found using 
Talairach Client (48).

ResULts

Linguistic assessments
The practice of MIT-J was started from Level I using words as 
stimuli. As the correct answer rate was over 90%, the training was 
moved to the next stage. By the ninth day of training, the patient 
had reached Level III using three syllable sentences (Figure S2 in 
Supplementary Material).
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FIgURe 2 | (a) Specific neural activation pattern on correct trials before 
MIT-J (Pre-MIT-J minus Post-MIT-J). There was substantial activation of the 
middle frontal gyrus, inferior frontal gyrus, the superior temporal gyrus, and 
precentral gyrus of the right hemisphere. (B) Specific neural activation 
pattern on incorrect trials after MIT-J (Post-MIT-J minus Pre-MIT-J) showing 
significant activation of the medial frontal gyrus, inferior frontal gyrus, 
superior temporal gyrus, lentiform nucleus, and lingual gyrus of the right 
hemisphere.

taBLe 1 | Linguistic function before and after MIt-J.

Before after

Western Aphasia Battery (WAB)
Spontaneous speech 12 16
Auditory comprehension 7.95 8.85
Repetition 7.6 8.4
Naming 3.7 5
Reading 7.6 7.5
Writing 3.9 3.65
Aphasia quotient (AQ) 62.5 76.5

Naming of 90 words
Correct 42 48
Response time (RT) (s)

Mean 3.86 2.08
SE 0.74 0.35

MIT-J, Japanese version of Melodic Intonation Therapy.
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The results of the WAB and naming of 90 words are shown 
in Table  1. The spontaneous speech, repetition, and naming 
subscores of the WAB were all improved (higher) after the 
intervention. It is noteworthy that auditory comprehension also 
improved. There was a marked improvement in AQ, from moder-
ate to above the cut-off between moderate and mild. The RT in the 
naming of 90 words task was also significantly shorter after MIT-J 
(p = 0.049, Wilcoxon signed-rank test).

Changes in fMRI activity patterns
The differential activation pattern on correct trials before MIT-J 
minus after MIT-J (i.e., regions exclusively activated on correct 
trials before intervention) showed activation of the middle fron-
tal gyrus, inferior frontal gyrus, superior temporal gyrus, and 
precentral gyrus of the right hemisphere (Figure 2; Table 2). In 
contrast, these regions showed no significant activation on incor-
rect trials before intervention. The differential activation pattern 
on incorrect trials after intervention minus before intervention 
(i.e., regions exclusively activated on incorrect trials after MIT-J) 
showed significant activation of the medial frontal gyrus, inferior 
frontal gyrus, superior temporal gyrus, lentiform nucleus, and 
lingual gyrus of the right hemisphere. In contrast, there was no 
significant activation of these regions on correct trials after MIT-J 
(post-MIT-J minus pre-MIT-J) (Figure  2; Table  2). Thus, the 
patient’s right hemisphere was relatively deactivated on correct 
naming trials after MIT-J.

DIsCUssIoN

The main findings of the present study are as follows: (i) MIT-J 
improved language output (as indicated by the spontaneous 
speech, repetition, and naming subscores of the WAB), consist-
ent with results using the original version of MIT; (ii) auditory 
comprehension improved; (iii) the RT for figure naming was 
significantly shorter after MIT-J; (iv) the right hemisphere was 
relatively less activated on correct naming trials after MIT-J than 
on correct trials before intervention; and (v) the right hemisphere 
was strongly activated on incorrect trials after MIT-J compared 
with before. These results indicate that a relatively brief, but 

intensive, period of MIT-J can improve long-standing chronic 
aphasia, possibly by increasing neural processing efficiency.

Similar to results obtained using the original MIT, language 
production by a patient with chronic aphasia several years in 
duration was improved by MIT-J. It is notable that in addition to 
speak production, auditory comprehension was also improved. 
Although the phonological characteristics of English include 
melody, rhythm, and stress, those of Japanese include only melody 
and rhythm because of mora. Furthermore, four pitches are used 
in the original MIT, whereas MIT-J uses only two. Because of this 
simpler process, MIT-J may be applicable to a broader range of 
aphasia symptoms than the original MIT.

The improvement in figure naming implies that the number of 
words retrievable from memory increased after MIT-J, whereas 
the significant reduction in RT suggests that retrieval became 
faster. Thus, MIT-J appeared to have beneficial effects on both 
access and retrieval of words from memory. Our study is the 
first to demonstrate the efficacy of the RT of MIT by quantitative 
improvement.

Results of fMRI showed that the patient’s right hemisphere 
was relatively deactivated on correct trials after MIT-J. On the 
other hand, we also found substantial activation of the patient’s 
right hemisphere on incorrect trials after the intervention. It 
is generally believed that higher brain activity corresponds to 
enhanced cognitive function. However, brighter individuals dis-
played lower (more efficient) brain activation while performing 
cognitive tasks of lower difficult (49). Alternatively, individuals 
of greater intelligence often show greater activation during diffi-
cult tasks, corresponding to recruitment of additional resources. 
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taBLe 2 | Differential brain activation patterns before and after MIt-J.

talairach coordinates (mm)

Contrast L/R area Brodmann  
area

X Y Z Z value Cluster size 
in voxels

Before > after MIT (correct trials) R Inferior frontal gyrus 47 42 19 −16 6.57 79
R Superior temporal gyrus 22 48 −25 3 5.41 13
R Precentral gyrus 6 36 −6 37 5.28 36
R Precentral gyrus 6 46 −2 39 4.91
R Middle frontal gyrus 6 26 −11 59 5.14 14

After > before MIT (incorrect trials) R Superior temporal gyrus 22 57 −8 2 6.93 128
R Lentiform nucleus 30 4 −2 6.53 56
R Medial frontal gyrus 10 6 56 −8 5.77 28
R Inferior frontal gyrus 47 36 29 0 5.74 26
R Lingual gyrus 18 14 −72 −1 5.19 43
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Such observations have given rise to neural efficiency theory 
(50) that posits that the efficient use of resources decreases 
cognitive load and thus enhances performance. Evidence for 
enhanced neural efficiency has also been reported in some 
aphasia studies (37, 51); Breier et al. (37) showed that a patient 
who responded positively to MIT exhibited decreasing activa-
tion within areas of the right-hemisphere homotopic to the 
left hemisphere language areas in the naming task, whereas 
Abel et al. (51) found that intensive lexical therapy for patients 
with chronic aphasia was associated with decreased cortical 
activation, attributed to higher processing efficiency within the 
naming network. In a similar way, brain activation in our patient 
was decreased compared with pre-intervention during the nam-
ing task because of curtailment of cognitive load. Thus, results 
demonstrate a link between MIT efficacy and neural efficiency 
by showing differences in activation patterns on correct versus 
incorrect trials. That is, relative deactivation on correct trials 
represents improved neural efficiency for effective naming, 
whereas the relatively higher activation on incorrect trials post-
MIT-J represents the engagement of various neural resources for 
mastering the task.

In conclusion, brief, intensive MIT-J improved the language 
output of a chronic aphasia patient who had not responded to 
conventional speech therapy. Auditory comprehension was also 
improved. fMRI showed relative deactivation of the right hemi-
sphere after the intervention, suggesting that MIT may enhanced 
neural efficiency, thereby decreasing cognitive load and improv-
ing language output.
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FIgURe s1 | english (a) and Japanese (B) prosodic patterns and their 
transposition to melodic intonation patterns [from seki and sugishita 
(19)]. MIT-J uses two pitches, high and low (a), whereas original MIT uses 
several pitches (B). H, high; L, low.

FIgURe s2 | Clinical course and MIt-J level of the present case.
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