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Abstract

Recent progress in deep learning has greatly improved the prediction of RNA splicing
from DNA sequence. Here, we present Pangolin, a deep learning model to predict
splice site strength in multiple tissues. Pangolin outperforms state-of-the-art methods
for predicting RNA splicing on a variety of prediction tasks. Pangolin improves
prediction of the impact of genetic variants on RNA splicing, including common, rare,
and lineage-specific genetic variation. In addition, Pangolin identifies loss-of-function
mutations with high accuracy and recall, particularly for mutations that are not missense
or nonsense, demonstrating remarkable potential for identifying pathogenic variants.

RNA splicing is an intricate gene regulatory mechanism that removes introns from pre-
mRNAs. How the cell chooses which splice sites are used during RNA splicing remains
unclear, but it is well known that DNA sequence is a key determinant of splice site usage
[4, 26, 29]. Many studies have now shown that both rare and common genetic variants
contribute to human disease by disrupting RNA splicing [1, 22]. Thus, predicting RNA
splicing from DNA sequences can greatly aid the identification and interpretation of
disease-causing mutations.
Due to the complexity of the sequence determinants of RNA splicing, end-to-end deep

neural networks are well-suited to learn features directly from DNA sequence to pre-
dict splicing outcomes of interest. Examples of state-of-the-art deep neural networks
for predicting RNA splicing from DNA sequence include MMSplice [7] and SpliceAI
[14], both of which have been used successfully to predict pathogenic mutations that
impact splicing. Nevertheless, both methods have limitations. For example, MMSplice
predicts usage of cassette exons rather than that of splice sites, and thus is likely to
overlook disease-causing mutations that disrupt complex splicing patterns. Furthermore,
neither MMSplice nor SpliceAI predicts tissue-specific splicing (though a newer version
of MMSplice, MTSplice [6] can predict tissue-specific splicing). Several methods that do
not use deep learning have also been successfully used to study sequence determinants
of splicing, including HAL [25] and MaxEntScan [30], which use an additive linear model
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and a maximum entropy model respectively. However, deep learning based approaches
have been shown to outperform these methods in a variety of prediction tasks [7, 14].
To model splicing in a quantitative, tissue-specific manner, we developed Pangolin, a

deep neural network that predicts splicing in four tissues—heart, liver, brain, and testis—
which represent some of the major mammalian organs (Fig. 1a). This is an improvement
over SpliceAI and MMSplice, which produce the same prediction for any tissue. In addi-
tion, Pangolin can predict the usage of a splice site in addition to the probability that it is
spliced (Fig. 1a). This is an improvement over SpliceAI, which merely reports predictions
for whether a dinucleotide is a splice site or not [14] (Additional file 1: Supplementary
Note 1). Pangolin’s model architecture consists primarily of 16 stacked residual blocks
with skip connections, each of which contains batch normalization, ReLU activation, and
convolutional layers (“Methods” section). Pangolin’s architecture resembles that used in
SpliceAI, which allows modeling of features from up to 5000 base pairs upstream and
downstream each target splice site. An important difference is the addition of multiple
outputs to the final neural network layer of Pangolin, allowing prediction of splice site
usage across different tissues.
To train Pangolin, we used data from four species—human, rhesus macaque, rat, and

mouse—as we reasoned that prediction of splice site usage in multiple tissues may require
a larger training set compared to that used in SpliceAI andMMSplice, which were trained
using human sequences only. Using sequences frommultiple species [18] and quantitative
over binary labels [2, 19] have been shown to substantially improve prediction in some
applications but have not yet been tested, to the best of our knowledge, in the context of
RNA splicing. Specifically, we processed sequence and RNA splicing measurements from
the four aforementioned species (Fig. 1a, Additional file 2: Table S1), by using SpliSER
[10] to quantify the usage of all splice sites after mapping RNA-seq data from heart, liver,
brain, and testis from up to 8 samples per species per tissue (“Methods” section). Next, we
split genes into a training set and a test set. The training set consists of genomic positions
from genes on human chromosomes 2, 4, 6, 8, 10–22, X, and Y, including splice and non-
splice sites, while the test set consists of positions from genes on human chromosomes
1, 3, 5, 7, and 9. To add training sequences from rhesus macaque, rat, and mouse, we
used genes that are not orthologs or paralogs of genes from the test human chromosomes
(“Methods” section). This limits the possibility that our model learns human patterns of
RNA splicing from orthologous sequences.
We evaluated the performance of Pangolin on predicting splice sites alongside popu-

lar methods including MaxEntScan [30], SpliceAI [14], MMSplice [7], and HAL [25]. We
first compared all methods in terms of their splice site predictions on test chromosomes
using the top-1 and top-0.5 metric (“Methods” section). The top-1 (resp. top-0.5) metric
measures the fraction of correctly predicted splice sites at the score threshold where the
number of predictions equals the total number (resp. half the number) of labeled splice
sites. We also used the area under the precision-recall curve (AUPRC) to assess per-
formance on predicting splice site locations. Across all tissues tested, Pangolin achieved
an average top-1 accuracy of 79% and AUPRC of 0.85—an improvement over SpliceAI,
which achieved an average top-1 accuracy of 75% and AUPRC of 0.77. Both Pangolin and
SpliceAI substantially outperformed the other three tested methods—MMSplice, HAL,
and MaxEntScan—which achieved average top-1 accuracies and AUPRC lower than 37%
and 0.30, respectively (Fig. 1b). When considering only the top half most confident splice
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Fig. 1 Overview of Pangolin and evaluation. a Schematic and architecture of Pangolin. b Heatmap
summarizing the performance of Pangolin, SpliceAI, HAL, MMSplice, and MaxEntScan with respect to three
metrics including top-1 accuracy. c Precision-recall curves representing the precision and recall from multiple
methods for the prediction of splice-disrupting variants as identified in Cheung et al. [8] (1050 splice-
disrupting variants out of 27,733 total). d Scatter plots showing measured versus predicted effects of single
genetic variants (left) or a combination of genetic variants (right) on RNA splicing. Measured effects of single
genetic variants and combinations of variants were obtained from Julien et al. [15] and Baeza-Centurion et al.
[3] respectively. e In silico mutagenesis of 6416 exons from human chromosomes 7 and 8. Barplots show for
each base the percent of mutations (square root) predicted to increase or decrease usage by at least 0.2

site predictions, Pangolin also outperformed SpliceAI (94% vs 87% top-0.5 accuracy) and
othermethods (Fig. 1b). In addition, we found that the improvements in Pangolin’s perfor-
mance were similar for genes with low identity to training-set genes from other species,
indicating that any orthologous sequences that were not filtered out from our training set
only minimally affect Pangolin’s predictions (Additional file 1: Supplementary Note 2). To
better understand the improved performance of Pangolin over SpliceAI, we trained mul-
tiple intermediate Pangolin models and evaluated improvements in AUPRC separately for
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eachmodel. We found that (i) using splicing data frommultiple tissues instead of just one,
(ii) using data from multiple species instead of just human, and (iii) using quantitative
measurements of splice site usage along with binary classifications all improved AUPRC
(Additional file 1: Supplementary Note 3). These observations indicate that increasing
the number of species and tissues used for training can further improve our model’s
performance.
We next evaluated themethods in terms of their ability to predict the effects of rare vari-

ants on RNA splicing. We used data generated from a Sort-seq assay, MFASS, that tested
the effects of 27,733 exonic and intronic variants from the Exome Aggregation Consor-
tium (ExAC) on exon usage using minigene reporters [8], most of which are extremely
rare in the human population. About 3.8% of tested variants were found to strongly affect
exon usage (�inclusion index ≤ − 0.5) and were therefore defined as splice-disrupting
variants (SDVs) [8]. We tested the ability of Pangolin, SpliceAI, MMSplice, and HAL to
distinguish SDVs from other variants. Pangolin achieved an AUPRC of 0.56, outperform-
ing all other methods (Fig. 1c, “Methods” section), while SpliceAI scored the second best
AUPRC (0.47). In particular, at a precision of 80%, Pangolin achieves a recall of 29%,
indicating that highly confident predictions (>80% precision) from Pangolin capture a
substantial fraction of rare variants that disrupt RNA splicing. Interestingly, we found
that Pangolin’s performance is substantially better for variants near splice sites (AUPRC of
0.75, distance of 0-9 bases) than for farther variants (AUPRC <0.35, distance >9 bases),
which may be attributable to the relative rarity of distant splice-disrupting variants (Addi-
tional file 1: Fig. S1). Further benchmarking of Pangolin, SpliceAI, and MMSplice on in
vivo splicing efficiency data from amassively parallel splicing assay (MAPSy) [28] revealed
that Pangolin’s predictions of genetic effects were most highly correlated with those mea-
sured using MAPSy (Pearson correlations of 0.61, 0.50, 0.37 for Pangolin, SpliceAI, and
MMSplice respectively) (Additional file 1: Fig. S2, “Methods” section).
Pairwise and higher-order epistatic interactions between variants can frequently result

in splicing outcomes that differ from those caused by single variants. To evaluate our
ability to predict the effects of multiple mutations, we used Pangolin to predict percent-
spliced-in (PSI) of exon 6 of the FAS gene with different single-nucleotide substitutions
(n = 189) or with a combination of multiple substitutions (n = 3059) (“Methods” section).
We then compared our predictions to the experimental PSIs determined using minigene
reporter assays [3, 15]. Spearman correlation between predicted and experimental PSI
was high for single substitutions (rsingle = 0.79) and even higher for combinations of
substitutions (rmultiple = 0.80) (Fig. 1d). By contrast, using a linear model of the indi-
vidual variants’ PSIs [3] to predict the PSIs for combinations of variants resulted in a
Spearman correlation of 0.48 (Additional file 1: Fig. S3, “Methods” section). These results
demonstrate Pangolin’s ability to account for epistatic effects when making predictions.
We also tested Pangolin’s performance on predicting tissue-specific splice site usage.

To do this, we calculated the difference between estimated splice site usage in each tis-
sue and the mean usage across tissues for each site in genes on the test chromosomes,
then compared these observed differences to Pangolin’s predicted differences. We limited
this analysis to sites whose usage in at least one tissue differed from the mean by > 0.2.
Across tissues, the Spearman’s r coefficients between the observed and predicted tissue-
specific splice site usage ranged from 0.35 to 0.50 (median of 0.43) (Additional file 1:
Fig. S4). Thus, Pangolin is able to capture tissue-specific splicing effects to some extent.
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Although these correlations are low, we note that these are comparable to or higher than
those of MTSplice [6], which produced predictions for differential exon inclusion with
Spearman’s r coefficients that ranged from 0.09 to 0.40 (median of 0.22) (Additional file 1:
Supplementary Note 4). Additionally, we find that there is highly significant differential
enrichment ofmultiple sequencemotifs near correctly predicted brain- and testis-specific
splice sites relative to non-tissue-specific splice sites; though, to the best of our knowl-
edge, the motifs identified do not correspond to the binding motifs of any well-studied
splice factors (Additional file 1: Fig. S5, Supplementary Note 5). We thus conclude that
predicting differential splicing across tissues from sequence alone is possible but remains
a considerable challenge and requires further investigation.
Next, we applied Pangolin to a variety of prediction tasks as a demonstration of multiple

potential use cases. As a first use case, we performed an in silico mutagenesis on human
exons to visualize the effects of mutations on splice site usage (“Methods” section). We
predicted the effects on splice site usage of all possible mutations near the 3′ and 5′ splice
sites for several thousand exons, and asked about the type and fraction of base changes
that increase or decrease predicted usage by at least 0.2 (“Methods” section). The muta-
tional patterns predicted to impact splicing are highly consistent with known sequence
motifs near splice sites (Fig. 1e). For example, nearly all mutations away from the AG
acceptor and GT donor dinucleotides are predicted to decrease usage of the 3′ and 5′

splice sites respectively. In addition, Pangolin predicts that for a large fraction of 3′ splice
sites, upstream T to G or T to A mutations—and to a lesser extent T to C mutations—
substantially reduce 3’ splice site strength. Conversely, upstreammutations to a T—and to
a lesser extent mutations to a C—increase 3′ splice site strength. These predictions reveal
the importance of polypyrimidine tract strength for the splicing of a substantial fraction
of exons [9]. Overall, we found that many fewer mutations are predicted to increase splice
site usage than decrease it (Fig. 1e). This finding suggests that most (but not all) exons
harbor sequences that allow for near-optimal splicing accuracy. For example, we found
that at the − 3 position relative to the 3′ splice site, mutations away from C and T cause
strong decreases in splice site usage (for another example at position − 1 relative to the
5′ splice site, see Additional file 1: Supplementary Note 6). This is consistent with a pref-
erence of the U2AF1 splicing factor to bind 3′ splice sites with C or T at the − 3 position
[13, 31]. Interestingly, a mutation to C or T at the − 3 position often does not conversely
increase usage, suggesting that 3′ splice sites with an A or G at the− 3 positionmay be less
reliant on U2AF1 binding for splice site recognition. These examples suggest that preva-
lent mutational effects exist which depend on sequence context and cannot be captured
by standard motifs or position weight matrices.
As a second use case, we used Pangolin to aid in the prediction of common genetic

variants that impact RNA splicing. We asked Pangolin to identify single-nucleotide poly-
morphisms (SNPs) that impact intron excision at the top 500 most significant splicing
quantitative trait loci (sQTL) identified from the DGN consortium using Leafcutter
(“Methods” section).We restricted analysis to sQTLs for which the lead sQTLwas atmost
1 kb away from a splice site, and used Pangolin as well as SpliceAI to predict the effects
on intron splice site usage for all SNPs within 1 kb of splice sites (“Methods” section). We
reasoned that the p value of the causal sQTL SNP should be generally of similar mag-
nitude to that of the lead sQTL SNP. Thus, we compared the sQTL p value of the SNP
predicted to have the largest effect on splicing to the lead sQTL p value. We found that
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SNPs predicted to be causal by Pangolin have sQTL p values that are smaller than those
predicted by SpliceAI, which in turn are much smaller than those of randomly chosen
SNPs (Fig. 2a).
As a third use case, we used Pangolin to study the genetic basis of inter-species variation

in splice site usage—specifically, variation between human and chimp (note that Pangolin
was not trained on chimp data). To this end, we first identified splice sites that are dif-
ferentially used between human and chimp in brain tissue, focusing on splice sites with a
large (≥0.5) difference in usage (“Methods” section, Additional file 2: Table S2). We then
asked Pangolin to predict these differences in usage, and found that a cutoff of 0.14 for
the predicted differences resulted in a false sign rate of about 5% (Additional file 1: Sup-
plementary Note 7, Fig. S6). Using this cutoff, we were able to identify 35% (550 out of
1560) of the splice sites estimated to have differences in usage greater than 0.5, indicating
that sequence divergence proximal (<5 kb) to the splice site contributes to a large frac-
tion of human-chimp differences in RNA splicing. The remaining 65% of the splice sites
with large differences in usage may be explained by the effects of mutations more than
5 kb from the splice site or changes in the trans-cellular environment, or may represent
false negatives that were not detected using Pangolin. Limiting further analysis to substi-
tutions, we found that 47% (97 out of 206) of predicted differences can be explained by a
single variant (“Methods” section). A large fraction of these variants create or disrupt a
canonical splice site (Fig. 2b,c), as expected, but we also predict that many impact nearby
sequences (Fig. 2c). Thus, Pangolin can be used to pinpoint DNA variants responsible for
the evolution of splice site usage.
As a last use case, we deployed Pangolin to predict the functional effects of muta-

tions in known disease genes. We reasoned that mutations that are predicted to alter
gene splicing are likely to impair function by decreasing functional isoform expression.
Thus, accurate identification of mutations that impact splicing may aid in the func-
tional interpretation of variants in disease genes, many of which would otherwise be of
uncertain significance. To test this possibility, we first focused our analysis on BRCA1
single-nucleotide variants whose functional impacts had previously been determined
using saturation genome editing (3893 variants in and around 13 exons of BRCA1) [12].
We compared the effects of these variants on splicing as predicted using Pangolin to the
functional impact of the variants as measured [12]. Strikingly, we found that variants
determined to be loss-of-function (LOF) variants were highly enriched among variants
predicted to impact RNA splicing (χ2 p = 6.3 × 10−119, Pangolin cutoff of 0.2), suggest-
ing that impact on splicing is indeed informative for understanding functional impact. To
identify the types of variants that drive this enrichment, we classified variants into four
categories: non-synonymous, synonymous, splice region (8 intronic bases and 3 exonic
bases flanking exon-intron boundaries, excluding non-synonymous and variants in anno-
tated splice sites), or intronic. We found that LOF variants were enriched among variants
predicted to affect RNA splicing for all categories, including non-synonymous variants
(χ2 p = 4.4 × 10−26, 2.5× enrichment, Additional file 1: Fig. S7), but particularly for
variants in splice regions (χ2 p = 1.5 × 10−25, 3.1× enrichment, Fig. 2d). Our findings
indicate that although LOF variants in splice regions are the most likely to impact splic-
ing, 5–10% of LOF missense variants may impact function through splicing effects rather
than by altering protein sequence.
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Fig. 2 Application of Pangolin to a variety of prediction tasks. a Cumulative density plot of the log10 sQTL
p-value fold difference between the SNP predicted to affect splicing and that of the lead sQTL SNP for the top
500 sQTLs identified in DGN (All predictions), or for the 100 predictions with the largest predicted effects
(inset). b Example of a splice site that shows a large inter-species difference in usage. A single-nucleotide
difference between chimp (T) and human (C) is predicted to strongly decrease (resp. increase) usage of a
chimp (resp. human) splice site (dashed vertical line indicates the human site). The T (resp. C) difference likely
disrupts (resp. creates) a 3’ canonical splice site in chimp (resp. human). c Locations and effects of SNVs
±50bp from a splice site predicted to underlie inter-species differences in splice site usage for 71 3’ and 74 5’
sites. A large fraction—but not all—of splice-altering variants are located near the canonical splice sites. d
Survival function plots of BRCA1 variants in splice regions as a function of their predicted effects on splicing.
The variants are separated by their classification as loss-of-function (LOF, blue), intermediate effect (INT,
orange), or functional (FUNC, green). We observe a huge enrichment of LOF variants among variants with
large predicted splicing effects. e Precision-recall curves for different variant types representing the precision
and recall for distinguishing LOF variants from functional variants. Pangolin achieves a remarkable AUPRC for
variants in extended splice regions (note that this excludes canonical splice variants). See Additional file 1: Fig.
S8 for variants from additional annotation bins. f Predicted splicing effects of mutations in or flanking 4 BRCA1
exons from Findlay et al. [12]. Mutations identified to be LOF or to have intermediate phenotypes, as well as
missense, nonsense, and canonical splice site mutations are annotated. See Additional file 1: Fig. S9 for all 13
exons with predictions. g Precision-recall curves representing the precision and recall for distinguishing
variants annotated as pathogenic from variants annotated as benign in ClinVar. The blue (resp. orange) line
represents the PRC for variants excluding (resp. including) variants in annotated splice sites. Missense and
nonsense variants are excluded
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We next sought to directly evaluate Pangolin’s ability to predict LOF variants. This is
a difficult task because only a small fraction (823 out of 3893 tested BRCA1 SNVs) of all
possible variants are LOF, and this imbalance generally results in low precision for pre-
diction tasks. Furthermore, many variants, including missense and nonsense variants, are
expected to be LOF without affecting RNA splicing. Indeed, using Pangolin’s predicted
splicing effects to distinguish LOF variants from functional variants results in a very low
AUPRC for missense variants (AUPRC = 0.31). However, when excluding missense and
nonsense variants, Pangolin achieves an AUPRC of 0.95 on the remaining 1591 variants,
and an AUPRC of 0.90 for the 861 variants in the extended splice region (±15 bp from
an exon-intron boundary excluding canonical splice variants, Fig. 2e, “Methods” section).
Indeed, mutations predicted to have large impacts on RNA splicing of BRCA1 appear to
correlate particularly well with LOF status throughout the four shown exons (Fig. 2f ).
To generalize these findings, we applied Pangolin to variants in extended splice regions

from the ClinVar database [20], and found that Pangolin had a similar ability to distinguish
the 842 SNVs labeled as pathogenic from the 11,256 SNVs labeled as benign (AUPRC
= 0.90, Fig. 2g, “Methods” section), outperforming SpliceAI (AUPRC = 0.87, Additional
file 1: Fig. S10). As expected, Pangolin’s performance improved when classifying splice
region variants together with variants in annotated splice sites (AUPRC = 0.99, Fig. 2g).
Lastly, using Pangolin on 21,363 ClinVar SNVs labeled to be of unknown significance
(VUS) in splice regions or annotated splice sites revealed that 5766 VUS are likely to
impact splicing and are thus likely pathogenic (Pangolin cutoff of 0.2, Additional file 1:
Fig. S11 for CHEK2 as an example). These results indicate that Pangolin can be used to
identify non-missense and non-nonsense pathogenic variants with remarkable accuracy.
In conclusion, Pangolin outperforms contemporary methods for predicting RNA splic-

ing from nearby DNA sequences, can be used for a variety of applications including
pathogenic variant prediction, and is available freely online on GitHub (https://github.
com/tkzeng/Pangolin).

Methods
Deep neural network architecture

Pangolin’s models are dilated convolutional neural networks with an architecture allow-
ing features to be extracted from up to 5000 bases upstream and downstream each target
position in the genome. Each model takes as input a one-hot encoded sequence of N
bases, where N ≥ 10, 001, and predicts—for the middle N − 10, 000 bases—the proba-
bility that these sites are splice sites (probability output model) and the usage of each site
(usage output model) in heart, liver, brain, and testis (see “Generating training and test
sets” section for details on the format of the input/output, and see Additional file 1: Sup-
plementary Note 1 for characterization of the two model types). In particular, N is 10,001
when making predictions for individual sites.
More specifically, the neural networks consist of 16 stacked residual blocks—which are

composed of batch normalization, ReLU activation, and convolutional layers—as well as
skip connections, which add the model outputs before residual blocks 1, 5, 9, and 13 to
the input of the penultimate layer. The convolutional layers of each residual block are
dilated—meaning the convolution filter sees every kth base, k > 1, rather than every
single base—allowing the receptive field width of themodel to increase exponentially with
the number of layers. Besides the residual blocks, the networks only contains three other

https://github.com/tkzeng/Pangolin
https://github.com/tkzeng/Pangolin
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layers—the first and penultimate layers, which are convolutional layers that transform
their inputs into the proper dimensions for later layers; and the final activation layer that
applies either a softmax or sigmoid activation to produce Pangolin’s probability or usage
predictions respectively. In comparison to SpliceAI’s architecture, the last two layers are
the primary points of difference—SpliceAI does not make probability/usage predictions
for multiple tissues, but rather makes a prediction for the probability that a site is a splice
donor, splice acceptor, or not a splice site which is invariable across tissues.

Generating training and test sets

To identify splice sites and quantify their usages, we processed RNA-seq data from four
tissues—heart, liver, brain, and testis—across four species—human, rhesus macaque,
mouse, and rat [5]. For heart, liver, and brain, we analyzed 8 samples for each species,
while for testis, we analyzed 8 samples for human and 4 for rhesus macaque, mouse, and
rat. Samples were chosen from developmental periods subsequent to all periods of large
transcriptional changes (Extended Data Fig. 5 from Cardoso-Moreira et al. [5]). RNA-
seq reads were mapped to their respective genomes with annotations using STAR 2.7.5
[11] using its multi-sample 2-pass mode (genomes and annotations used: GRCh38 with
GENCODE release 34 comprehensive annotations for human; Mmul_10 with ENSEMBL
release 100 for rhesus macaque; GRCm38 with GENCODE release M25 for mouse; and
Rnor_6.0 with ENSEMBL release 101 for rat). We then assigned multimapped reads to a
single location using the multi-mapper resolution (MMR) tool [16].
To create training and test datasets for Pangolin for each tissue, we labeled every

position within a gene body as spliced or not spliced and quantified the usage of each
splice site. While the first label is binary, the second label—splice site usage—is a contin-
uous value between 0 and 1 representing the proportion of a gene’s transcripts that use a
given splice site. Specifically, we labeled all sites within gene bodies supported by 1 split
read in at least 2 samples each as spliced, and we labeled all other sites as unspliced. Then,
to estimate a splice site’s usage level, we used SpliSER 1.3 [10] to calculate a per-tissue
Splice-Site Strength Estimate (SSE). SpliSER considers four types of reads to estimate
usage for a target site: α and β1 reads, which are split and non-split reads respectively
that map to or across the target site; and β2−SIMPLE and β2−CRYPTIC reads, which are split
reads that provide direct and indirect evidence against usage respectively [10]. Then, SSE
is calculated as:

α

/⎛
⎝α + β1 + β2−SIMPLE + 1

α

∑
p∈{partners of the target site}

αpβ2−CRYPTIC,p

⎞
⎠

We used the SSEmetric to estimate the usage of all sites for which α+β1+β2−SIMPLE ≥ 5
in at least 2 samples. Some sites that we labeled as spliced (1 split read in at least 2 samples)
did not meet these criteria and were excluded from both training and testing sets. All sites
labeled as not spliced were assigned 0 usage.
For the test set, we set aside genes from human chromosomes 1, 3, 5, 7, and 9, and for

the training set, we used all genes from the remaining human chromosomes 2, 4, 6, 8, 10-
22, X, and Y that do not show orthology or paralogy to test set genes. We also excluded
genes in rhesus macaque, mouse, and rat that show orthology to human test set genes
from our training data set. More specifically, we used annotations from Ensembl BioMart
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(accessed 11/14/2020) to exclude all genes with either low or high “orthology confidence”
to a test set gene from the training set.
Next, we prepared the training set as follows. For the model inputs, we extracted the

sequence between the annotated 5′ most transcription start and 3′ most transcription
end sites for each gene; padded them with Ns (representing unknown bases) so that each
site is surrounded by at least 5000 bases on either side; and split the resulting sequence
into overlapping blocks of 15,000 base pairs such that the first block contained positions
0 to 15,000, the second positions 5000 to 20,000, and the ith block positions 5000(i −
1) − 5000 to 5000(i − 1) + 5000. We chose such a block size because it allows many
predictions to be made for a single input block (specifically, predictions for the middle
5000 positions), greatly reducing the training time required in comparison to predicting
one base at a time, which would require 5000 blocks of 10,001 bases each. We then one-
hot encoded each input sequence, representing A, C, G, T/U, and—for unknown bases—
N by [ 1, 0, 0, 0] , [ 0, 1, 0, 0] , [ 0, 0, 1, 0] , [ 0, 0, 0, 1] , and [ 0, 0, 0, 0] respectively.
For the output labels, we assigned each target site a vector of length 12, with posi-

tions 0–3, 4–6, 7–9, and 10–12 corresponding to labels for heart, liver, brain, and testis
respectively. For each tissue, the first two positions represent whether or not a site is
spliced—unspliced sites were labeled as [ 1, 0], spliced sites as [ 0, 1], and padding or
unknown sites as [ 0, 0]. The third position is a number between 0 and 1 representing the
estimated usage level of the site. For each target site, Pangolin outputs an identically-sized
vector of numbers, with each position representing the predicted values.

Training Pangolin

During training, we randomly held out 10% of the 15,000 base-pair blocks to determine
an early-stopping point, which was the epoch when the average training loss stopped
decreasing.We first trained the network using the AdamWoptimizer and a warm-restarts
learning-rate schedule with cycle lengths of 2 and 4 epochs (total training time of 6
epochs) [23]. With this schedule, we initialized the learning rate to 5 × 10−4 at the start
of each cycle and decayed it to 0 using a cosine annealing by the end of each cycle. For
each input, we computed losses for the model’s probability predictions with a categori-
cal cross-entropy loss function and losses for the model’s usage predictions with a binary
cross-entropy loss function; then summed over the losses across all tissues to calculate
a total loss. Total losses for the inputs were used to update the model’s weights through
backpropagation.
We further trained themodel on each tissue and label type (spliced/unspliced and splice

site usage) separately so that the loss for each input was computed using only one tissue
and label type at a time (we trained each tissue and label type combination for 4 epochs,
initializing the learning rate to 5× 10−4 and decaying it to 0 using a cosine annealing). In
addition, we ran the training procedure 5 times, resulting in 5 models per tissue and label
type combination (heart-spliced, heart-usage, liver-spliced, liver-usage, etc. for 40 total
models). For all predictions of splicing probabilities or splice site usage for a tissue, unless
otherwise specified, we took the mean prediction across the 5 models.
Finally, we trained a version of Pangolin by fine-tuning on human data after removing,

for each tissue, sequences containing no splice sites; and with the use of label smoothing,
a regularization technique wherein unspliced and spliced sites are labeled using the vec-
tors [0.95, 0.05] and [0.05, 0.95] respectively rather than the one-hot encodings [1, 0] and
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[0, 1] (4 epochs; learning rate was initialized to 5 × 10−5 and decayed to 0 with a cosine
annealing). We repeated this training process 3 times to obtain 3 models per tissue. We
found that this fine-tuned version of Pangolin generally performed better at predicting
splice variants, and use it for the analyses in Figs. 1c, d and 2a, d–g.

Evaluation on held-out test set

For each tissue, we evaluated Pangolin’s ability to predict splice sites in genes from human
chromosomes 1, 3, 5, 7, and 9, excluding genes with low expression levels (mean tran-
scripts per million (TPM) across samples <2.5 as determined using RSEM 1.3.3 [21]). For
this evaluation, we used Pangolin’s predictions of tissue-specific splice site probabilities.
We first computed, for each tissue, the average top-1 and top-0.5 accuracy over all genes
from these chromosomes. The top-1 accuracy is defined as the fraction of sites within
the top N predicted splice sites that are labeled as splice sites, where N is the number of
labeled splice sites in the test dataset (i.e., the fraction of the top N predicted splice sites
that are correct). Similarly, the top-0.5 accuracy is defined as the same fraction but for the
top �N/2� predicted splice sites. We also computed the area under the precision-recall
curve (AUPRC) for each tissue. For SpliceAI (version 1.3.1), we computed the probability
that a site is spliced as themaximum of SpliceAI’s 5′ and 3′ scores. Similarly, forMMSplice
(version 2.2.0), we scored each site as the maximum of MMSplice’s 5′ and 3′ scores fol-
lowing a logit transformation, where the input for each 5′ site was the sequence 13 bp into
the intron and 5 bp into the exon, and where the input for each 3′ site the sequence 50
bp into the intron and 3 bp into the exon. For HAL, we scored each site used the func-
tion score_seq_pos (from Cell2015_N8_HAL_Genome_Predictions.ipynb

in the GitHub repository https://github.com/Alex-Rosenberg/cell-2015) to obtain 5’
splice site scores, using the sequence 80 bp into the intron and 80 bp into the exon as
input. Since HAL does not score 3′ splice sites, we excluded 3′ splice sites when evaluating
HAL’s predictions. Finally, for MaxEntScan, we scored each site as the maximum of Max-
EntScan’s 5′ and 3′ splice scores following the transformation 2s/ (2s + 1) for each score s,
where the input for the 5′ model was the sequence 6 bp into the intron and 3 bp into the
exon, and where the input for the 3′ model was the sequence 20 bp into the intron and 3
bp into the exon. When running MMSplice, HAL, and MaxEntScan, we excluded inputs
that contained “N” bases (unknown bases or padding).

Definition of maximum difference in probability scores

For some applications of Pangolin, we calculated the splice score of a variant as the max-
imum difference in probability scores across tissues between the reference and mutated
sequence. Here, we define this difference. Let Pref,tissue be the predicted probability that
a splice site in the reference sequence context is spliced in a tissue, and Palt,tissue be this
probability for a splice site in the mutated sequence context. Let �scores be the vector
[Palt,heart − Pref,heart,Palt,liver − Pref,liver,Palt,brain − Pref,brain,Palt,testis − Pref,testis]. Then, we
definemaximum difference in probability scores as the element in�scores corresponding
to max |�scores|, i.e. �scoresargmax|�scores|.

MFASS andMaPSy evaluation

Cheung et al. [8] used a Sort-seq assay (MFASS) to quantify the effects of 27,733 exonic
and intronic variants from the Exome Aggregation Consortium (ExAC) on exon recog-
nition. More specifically, the effects of these variants on splicing were assayed using

https://github.com/Alex-Rosenberg/cell-2015


Zeng and Li Genome Biology          (2022) 23:103 Page 12 of 18

minigene reporters each containing an exon and its surrounding intronic sequences. Vari-
ants with a �inclusion index of ≤ − 0.5 were classified as splice-disrupting variants
(SDVs), where �inclusion index is defined as the difference in percent-spliced-in, the
ratio of transcripts containing an exon, between the alternative and reference alleles. To
predict the effect of a variant on exon splicing using Pangolin, we took the mean over
Pangolin’s scores for the 5′ and 3′ splice sites of each exon, where each site was scored
using the maximum difference in probability scores across tissues between the alterna-
tive and reference sequences. Specifically, we used sequences ±5000 bp of the 5′ and 3′

sites—obtained from the GRCh37 human reference assembly—as the reference sequence
inputs to the model, and we used their mutated versions as the alternative sequence
inputs. For SpliceAI, we scored each variant as the mean of SpliceAI’s scores for the
exon’s 5′ and 3′ sites, where each site was scored as the difference in score between the
alternative and reference alleles. As before, we used the maximum of SpliceAI’s 5′ and 3′

scores as the score for each site. Variant scores for MMSplice and HAL were previously
computed [7]. For Pangolin and SpliceAI, we then computed precision and recall using
the precision_recall_curve function from the Python package scikit-learn, and
AUPRC using the auc function. For MMSplice, we computed precision and recall using
scripts from the MMSplice paper [7] (https://github.com/gagneurlab/MMSplice_paper),
and for HAL, we used the precision and recall statistics provided in the MFASS paper [8]
(https://github.com/KosuriLab/MFASS).
We further compared the performance of Pangolin, SpliceAI, and MMSplice on the

MaPSy dataset [28], obtained from the MMSplice GitHub repository (https://github.
com/gagneurlab/MMSplice_paper). Soemedi et al. [28] used a splicing reporter system
(MaPSy) to test the effects of 4964 variants from the Human Gene Mutation Database
(HGMD) on splicing efficiency, i.e., the proportion of spliced RNAs in the set of total
RNAs. They tested the effects of variants both in vitro (cell nuclear extract) and in
vivo (HEK293T cells). The effect of a variant on splicing efficiency is calculated as
log2

(
mo/mi
wo/wi

)
, where mo and wo are the mutant and wild-type spliced-RNA read counts,

respectively, and mi and wi are the mutant and wild-type unspliced-RNA read counts
respectively. For Pangolin and SpliceAI, we scored each variant as the mean of the score
for the 5′ splice site and the score for the 3’ splice site, following the procedure described
above for scoring MFASS variants. We excluded sites for which the measured effect of a
variant was undefined (for example, if mo/mi

wo/wi
= 0). We then calculated the Pearson corre-

lations between Pangolin’s and SpliceAI’s predicted scores and the measured effects from
MaPSy. For MMSplice, we report the Pearson correlations provided in the MMSplice
paper, which were calculated for a smaller test set of variants as MMSplice was trained to
predict splicing efficiency using a subset of the variants.

FAS exon 6 evaluation

Julien et al. [15] quantified the effects of all possible single mutations (189 total) in FAS
exon 6 using a minigene reporter covering FAS exons 5–7. In a subsequent study, Baeza-
Centurion et al. [3] quantified the effects of several single, double, and higher-order
combinations of 12 single mutations (3072 total) in FAS exon 6 using the same minigene
reporter assay. We used the first dataset to evaluate Pangolin’s performance on single
mutations; and used sequences with > 1 mutation from the second dataset (3059 out of
3072) to evaluate Pangolin’s performance on multiple mutations. For the first dataset, we

https://github.com/gagneurlab/MMSplice_paper
https://github.com/KosuriLab/MFASS
https://github.com/gagneurlab/MMSplice_paper
https://github.com/gagneurlab/MMSplice_paper
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converted enrichment scores to PSI estimates by fitting an exponential calibration curve
using 24mutants with experimentally determined inclusion levels. For the second dataset,
PSI estimates for each variant were provided in Baeza-Centurion et al. [3].We scored each
variant by computing max(Pheart,Pliver,Pbrain,Ptestis) for the 5′ and 3′ splice sites, where
Ptissue is the predicted probability that a site is spliced in the specified tissue. We then
used the mean of the scores for the 5′ and 3′ splice sites to predict exon inclusion levels
for each variant. As inputs to Pangolin, we extracted sequences from the GRCh38 refer-
ence assembly. To understand the effects of epistatic interactions, Baeza-Centurion et al.
[3] developed a linear model with 12 parameters, one for each single base-pair mutation,
to predict the PSIs of all exons in the library. For Additional file 1: Fig. S3, we used this
model to predict the PSIs for all exons with > 1 mutation, and calculated the Spearman’s
r correlation coefficient between the predicted and observed PSIs.

Tissue-specific splicing

To evaluate Pangolin’s ability to predict tissue-specific splicing differences, we considered
a subset of splice sites in the test genes with higher confidence usage estimates: sites with
at least 10 α + β1 + β2 reads per sample (see “Generating training and test sets” section
for definitions of the read types) for at least three samples and with standard deviations
of < 0.1 for the usage estimates. We also required that sites be expressed in all tissues
(mean TPM across samples for each tissue≥ 2.5) and that for at least one tissue, the splice
site usage differs from the mean splice site usage across tissues by > 0.2. For each tissue,
we computed—for each splice site meeting the above criteria—the observed difference
in usage from the mean usage across all tissues. Similarly, we computed each predicted
difference as the difference between a splice site’s predicted usage in a tissue and the
mean predicted usage across tissues. Then, we computed the Spearman’s r correlation
coefficient between these predicted and measured differences.

In silico mutagenesis

We performed in silico mutagenesis by predicting the splicing effects of all possible single
base mutations for positions 8 bp into the intron and 4 bp into the exon for 5′ splice sites,
and for positions 15 bp into the intron and 3 bp into the exon for 3′ splice sites. For each
splice site, we predicted the effect of each mutation on splice site usage by computing the
mean predicted difference across tissues between the reference and mutated sequences.
We performed this analysis for the splice sites of protein-coding genes in human chro-
mosomes 7 and 8, limiting our analysis to the most representative transcript per gene
as determined by the presence of an Ensembl_canonical tag in the annotation file.
Furthermore, we excluded the start of the first exon and end of the last exon of each
transcript.

Splicing QTLs evaluation

To evaluate Pangolin’s ability to predict the effects of common variants in their extant
biological contexts, we used Pangolin to distinguish SNPs that are putatively causal for
splicing differences—as determined from a splicing QTL (sQTL) analysis—from other
nearby SNPs tested in our sQTL analysis. We used a previously analyzed set of sQTLs
generated using RNA-seq data fromwhole blood samples from 922 genotyped individuals
in the Depression Genes and Networks (DGN) cohort [24]. For each sQTL, we defined



Zeng and Li Genome Biology          (2022) 23:103 Page 14 of 18

the putatively causal SNP as the SNPwith themost significant association (lowest p value)
with the splicing phenotype out of all tested SNPs. Next, we considered sQTLs whose
causal SNPs were within 1000 bp of the intron’s 5′ or 3′ sites, and analyzed the 500 sQTLs
that had themost significant causal SNPs. For each of these sQTLs, we used both Pangolin
and SpliceAI to predict the splicing effects of the causal SNP as well as all other SNPs
within 1000 bp of the 5′ and 3′ sites. Specifically, we predicted the effect of each SNP on
the nearest splice site by taking the absolute value of the predicted change in splice score.
If both the 5′ and 3′ splice site were within 1000 bp of the SNP, we took the mean over
the predictions for both sites; otherwise, we used the prediction for the nearest splice site.
For Pangolin, we used the absolute value of the maximum difference in probability score
(defined earlier in the “Methods” section) as the prediction for each site.
Next, for Pangolin and SpliceAI, we generated empirical cumulative distribution func-

tion (eCDF) plots for the ratio (predicted p value)/(putative p value), where predicted p
value for a given QTL is the p value of the SNP with the largest predicted effect on splicing
as determined by Pangolin or SpliceAI, and putative p value is the p value of the puta-
tively causal SNP. As baselines (100 in total), we repeatedly selected a random SNP for
each QTL and generated eCDF profile for the ratio (random p value)/(putative p value),
where random p value is the p value of the randomly-chosen SNP.

Splice site evolution

To predict variants responsible for differences in splice site usage between species, we
analyzed RNA-seq data from human, chimpanzee, and rhesus macaque prefrontal cor-
tex [17]. Kanton et al. [17] performed bulk RNA sequencing separately on sliced sections
of prefrontal cortex samples. We analyzed two samples per species (one sample per
individual), and after combining RNA-seq reads from cortex sections for each sam-
ple, mapped reads to their respective genome assemblies with annotations using STAR
2.7.5 in its multi-sample 2-pass mode (assemblies and annotations: GRCh38 with GEN-
CODE release 34 for human; Mmul_10 with ENSEMBL release 100 for rhesus macaque;
and Pan_tro_3.0 with ENSEMBL release 101 for chimpanzee). To convert coordinates
between genomes, we again used Liftoff [27] to map genomic features from the human
genome assembly to the chimpanzee and rhesus macaque genome assemblies, and vice
versa. For further analysis, we calculated usage for splice sites with at least 50 α + β1 + β2
reads in each sample and with standard deviations of < 0.05 for the usage estimates. We
also considered sites that had no reads at all as having 0 usage, and required that sites
be in expressed genes (mean TPM across samples ≥ 2.5). For comparisons of splice site
usage between human and chimpanzee, we considered annotated human (resp. chim-
panzee) sites that mapped to the chimpanzee (resp. human) genome with alignment
coverage ≥ 0.75 and exon/CDS sequence identity ≥ 0.75 as determined by Liftoff; were
on genes of the same strand; mapped to a single location on the target genome; and
were one-to-one orthologs. Next, we considered the differentially used splice sites with
|usage in human − usage in rhesus| ≥ 0.5. To score each differentially spliced site using
Pangolin and SpliceAI, we computed the maximum difference in predicted splice score
between chimp and human using the sequence contexts surrounding the splice site and
its lifted-over coordinates as inputs. With these predictions, we then calculated false
sign rates (FSR) for a range of predicted score cutoffs (Additional file 1: Supplementary
Note 7).
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To identify sites where a single mutation is sufficient to explain the difference in splice
scores, we first limited analysis to sites predicted to be differentially used (5% FSR,
score cutoff = 0.14) for which chimpanzee and human sequences showed at most 10%
divergence in regions near the splice site (20 differences within 100 bp upstream and
downstream of the splice site). By visualizing the positional distributions of divergent
bases, we found that this cutoff kept only sequence differences that are likely to be sub-
stitutions (differences were generally isolated to single bases). Next, we kept sites where
the predicted difference in usage is explained mostly by these nearby differences rather
than by more distal ones (>100 bases from the splice site), and furthermore, where a sin-
gle nearby mutation is sufficient to explain the difference in splice scores (see Additional
file 1: Fig. S12). Examples of such sites are shown in Fig. 2b and c.

BRCA1 evaluation and ClinVar prediction

Findlay et al. [12] performed saturation genome editing to test the effects of 3893 SNVs
in 13 exons and nearby intronic regions of the BRCA1 gene (96.5% of all possible SNVs)
to determine their functional consequences. Specifically, they performed editing in the
HAP1 cell line, where BRCA1 is essential for cell survival, and calculated variant func-
tion scores using depletion of each variant over time from the plasmid library, a metric
for cell survival (negative function scores correspond to a decline in BRCA1 function).
For each variant, we used Pangolin to compute the largest decrease in splice score (largest
across tissues) at the closest annotated splice site (BRCA1 transcript BRCA1-203). In
addition, if the other splice site for the corresponding exon was within 100 bp, we used
the mean predicted decrease across both splice sites as the predicted effect of the vari-
ant. We used the GRCh37 reference assembly to extract input sequences for Pangolin. To
classify variants as missense, nonsense, intronic, synonymous, splice region, or canonical
splice variants, we used the labels provided by Findlay et al. [12]. In particular, variants in
splice regions are those that are located up to 3 bp into the exon and 8 bp into the intron
that do not disrupt canonical splice sites or alter the amino acid sequence.We define vari-
ants in extended splice regions similarly, but include variants ±15 bp of the exon-intron
boundary. In addition, we classified variants as loss-of-function (LOF), intermediate, or
functional using the function score thresholds determined in Findlay et al. [12]. For all
analyses, such as computing precision-recall curves and AURPC, we considered only LOF
and functional variants.
The ClinVar database contains variants found in patient samples, many of which are

classified as Pathogenic, Likely pathogenic, Likely benign, Benign, or Uncertain Signif-
icance. We applied Pangolin to ClinVar variants downloaded from https://ftp.ncbi.nlm.
nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz on 05/04/2021. Specifically, for all vari-
ants passing certain criteria (listed below), we computed the maximum decrease in splice
score at an annotated splice site within 50 bases of the variant, using the GRCh38 genome
assembly and GENCODE Release 38 gene annotations filtered for themost representative
(Ensembl_canonical tagged) transcripts. These criteria were: the variant is a substi-
tution or simple insertion/deletion (insertion/deletion where either the REF or ALT field
is a single base); is contained in a gene body; is not within 5000 bases of the chromo-
some ends; and is not a deletion larger than 100 bp. We also ran SpliceAI on the same
variants, similarly by computing the maximum decrease in splice score at an annotated
splice site within 50 bases of the variant (same genome and annotations). For further

https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz
https://ftp.ncbi.nlm.nih.gov/pub/clinvar/vcf_GRCh38/clinvar.vcf.gz
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analyses, we considered variants in protein-coding genes that were either classified by
ClinVar as Benign, Pathogenic, Likely Benign, Likely Pathogenic, or Uncertain signifi-
cance; and required that each variant be in only one gene, not be a nonsense or missense
variant as determined using the molecular consequence (MC) field in the ClinVar VCF
(variants with no such field were excluded), and be within 15 bp of an annotated splice site
(excluding the start of the first exon and end of the last exon of each transcript). We also
only considered variants that could be scored by both Pangolin and SpliceAI. To distin-
guish between variants in annotated splice sites and all other variants, we looked for the
presence of the splice_acceptor_variant and splice_donor_variant tags
in the MC field.
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