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ABSTRACT

Endothelial cells (ECs) line blood vessels, regulate
homeostatic processes (blood flow, immune cell traf-
ficking), but are also involved in many prevalent dis-
eases. The increasing use of high-throughput tech-
nologies such as gene expression microarrays and
(single cell) RNA sequencing generated a wealth of
data on the molecular basis of EC (dys-)function.
Extracting biological insight from these datasets is
challenging for scientists who are not proficient in
bioinformatics. To facilitate the re-use of publicly
available EC transcriptomics data, we developed the
endothelial database EndoDB, a web-accessible col-
lection of expert curated, quality assured and pre-
analyzed data collected from 360 datasets compris-
ing a total of 4741 bulk and 5847 single cell endothe-
lial transcriptomes from six different organisms. Un-
like other added-value databases, EndoDB allows to
easily retrieve and explore data of specific studies,
determine under which conditions genes and path-
ways of interest are deregulated and assess repro-
gramming of metabolism via principal component
analysis, differential gene expression analysis, gene
set enrichment analysis, heatmaps and metabolic
and transcription factor analysis, while single cell
data are visualized as gene expression color-coded

t-SNE plots. Plots and tables in EndoDB are cus-
tomizable, downloadable and interactive. EndoDB
is freely available at https://vibcancer.be/software-
tools/endodb, and will be updated to include new
studies.

Endothelial cells (ECs) line the lumen of blood vessels,
are metabolically active and orchestrate important pro-
cesses such as vasomotor tone, coagulation, permeability,
tissue vascularization and immune response (1). The inabil-
ity of ECs to fulfill their physiological functions is a key
feature of multiple prevalent diseases including hyperten-
sion, atherosclerosis, diabetes and cancer (2). In the past
three decades, hypothesis-driven studies have started to un-
ravel the molecular mechanisms that underlie EC function
in health and disease, which resulted in clinically approved
EC-targeting drugs such as bevacizumab and ranibizumab
for cancer and age-related wet macular degeneration, re-
spectively (3). Recent technological advances have made
it possible to perform global profiling of transcript (tran-
scriptomics), protein (proteomics) and metabolite levels
(metabolomics), even in single cells. These technologies have
provided unprecedented insight in EC biology and gener-
ated many novel hypotheses (4).

To facilitate the re-use of omics datasets, it is now a stan-
dard requirement of most scientific journals to make pub-
lished data publicly available via repositories such as Ar-
rayExpress (5) and Gene Expression Omnibus (GEO) (6).
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However, the main purpose of these primary archives is
to store raw data in a format that is accessible by bioin-
formaticians, not to enable bench scientists and experi-
mentalists to directly explore and re-use data to answer
biological questions (7). In the cancer field, added-value
databases (databases that are specifically designed to al-
low bench scientists to explore pre-selected, highly curated
and pre-analyzed data) have been transformative and fa-
cilitated several breakthrough discoveries (8–13). A few in-
dependent research groups have made the results of their
EC profiling efforts web-accessible (14,15), but currently no
comprehensive EC-specific added-value databases exist to
facilitate the reuse of gene expression data by the vascu-
lar biology community. Here, we describe the development
of the endothelial cell database (EndoDB), the first freely
available added-value database of EC (single cell) tran-
scriptomics studies, designed to allow vascular biologists
and other bench scientists to unlock the untapped poten-
tial of publicly available data via an easy-to-use interactive
web interface (https://vibcancer.be/software-tools/endodb).
The user-interface and functionality of the EndoDB were
developed in close collaboration between software devel-
opers, bioinformaticians and vascular biologists. The En-
doDB is easy-to-use, allows to interactively explore data us-
ing powerful statistical and bioinformatics approaches, and
has been field-tested and used in several recent publications
(16,17).

MATERIALS AND METHODS

Retrieval of EC transcriptomics data and database content

We first aimed to collect and organize EC transcriptomics
datasets available in the public domain. To do this, we used
a two-step approach (Figure 1 and Supplementary Table
S1). First, we used a broad and sensitive filter (‘endothe-
lial OR endothelium’) to search ArrayExpress and GEO for
EC transcriptomics datasets, which returned 1121 studies
(as of 1 June 2018). We then screened the title, abstract and
if necessary sample information to determine which of these
studies performed gene expression profiling in ECs specif-
ically. We excluded 663 studies based on the title abstract
screen and 113 studies for which data was not made avail-
able in the public domain, resulting in a total of 345 stud-
ies comprising 357 bulk transcriptomics datasets (a single
study can contain multiple independent datasets).

Second, we complemented our search with a PubMed
screen to identify recently published single cell transcrip-
tomics studies of ECs, which retrieved 10 single cell RNA
sequencing (scRNA-seq) studies (as of 1 June 2018). To en-
sure high quality scRNA-seq data in the EndoDB, we only
considered studies that aimed to perform scRNA-seq in
ECs specifically, used isolation protocols optimized for this
purpose and sequenced >1000 ECs because: (i) ECs are a
minority cell type in all tissues, ranging from ∼1–5% in tu-
mor tissue to ∼20% in highly vascularized organs such as
the lung (18,19); (ii) generic dissociation protocols fail to
adequately capture ECs, resulting in a further depletion of
the EC fraction (20); (iii) ECs are sensitive to dissociation-
induced artifacts (20), which biases data interpretation (21),
together indicating that dissociation protocols have to be

specifically optimized to isolate a high number of high qual-
ity ECs; (iv) the reliability of single cell analyses depends on
the number of cells analyzed (22,23); and (v) the number
of ECs that can be sequenced with more advanced technol-
ogy (e.g. droplet-based sequencing) will increase by orders
of magnitude. Based on these criteria, we excluded eight
studies (Supplementary Table S2), and at last included two
studies comprising three datasets.

The final database contains 4741 bulk and 5847 single
cell EC transcriptomes from six different model organ-
isms (Homo sapiens [human], Mus musculus [mouse], Rat-
tus norvegicus [rat], Bos taurus [cow], Danio rerio [zebrafish],
Sus scrofa [pig]), generated using a variety of technologies
(micro-arrays, (single cell) RNA sequencing) and platforms
(Affymetrix, Agilent, Illumina).

Pre-processing and quality control of bulk transcriptomics
data

To maximize the number of datasets included in the En-
doDB, we aimed to include data from all micro-array and
RNA-sequencing platforms. For micro-arrays, we retrieved
raw data files when possible, but included log2-transformed
pre-processed data when raw data was not available. Raw
data from the Affymetrix platform was downloaded as bi-
nary or text CEL files, normalized using the robust multi-
array average using the R-packages affy and oligo, followed
by quantile normalization, log2 transformation and probe-
set summarization (24,25). Raw data files from Illumina
BeadChips were normalized using the normexp algorithm
using control probes (neqc) from the limma package (26).
Raw data from Agilent platforms was normalized using the
normalizeWithinArrays and normalizebetweenArrays func-
tions available from limma package (26). Probe set identi-
fiers were mapped to Entrez identifiers, official gene sym-
bols and gene names using annotation packages for the cor-
responding platform. We applied standard quality controls
using the arrayQualityMetrics R package to identify low-
quality arrays (27). In this approach, samples were scored
on the basis of three metrics, the distances between the ar-
rays, Bland–Altman plots (MA plots) and boxplots. Sam-
ples that were flagged as outliers based on more than one
of these metrics were removed from the analysis in the En-
doDB, but the raw data of all samples can be downloaded
for downstream analyses in independent software pipelines.
At last, we randomly selected 25% of studies and cross-
checked our results for congruency with the original pub-
lication.

For RNA-sequencing, data were retrieved in fastq for-
mat, and alignment to the reference genome and quantifi-
cation of transcript abundances was performed using the
Kallisto software (28). We performed trimmed mean of M-
values (TMM)-normalization using the R-package EdgeR
(29) and VOOM-normalization using limma before down-
stream differential analysis.

Pre-processing and quality control of single cell data

Recent technological breakthroughs have made it possible
to RNA sequence transcriptomes of single cells (scRNA-
seq) (30). These studies have great resource value and are

https://vibcancer.be/software-tools/endodb
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Figure 1. Schematic overview of EndoDB construction and functionalities.

beginning to elucidate EC heterogeneity at the single cell
level. However, so far, no general searchable database of
EC-specific scRNA-seq data exists, which limits the broad
use of these large-scale sequencing efforts. To increase the
resource value of scRNA-seq EC datasets, we have devel-
oped a dedicated scRNA-seq EndoDB module. For each
dataset, we removed low quality and apoptotic cells based
on the number of expressed genes (<200) and the percent-
age of reads assigned to mitochondrial genes (>5%) (31),
and performed library size normalization followed by nat-
ural log transformation using log1p available via the Seu-
rat package (32). To in silico select the ECs in a dataset,
we used an unbiased clustering approach, in which we clus-
tered the cells together based on their expression profile and
then assessed which clusters express canonical EC marker
genes (PECAM1, CDH5). We further excluded clusters
that expressed markers for leukocytes (PTPRC), pericytes
(PDGFRB) and fibroblasts (COL1A1). Using a clustering
approach rather than marker gene gating on a cell per cell

basis is more robust, since it allows to overcome misclassi-
fication of cells as non-EC due to gene drop out.

Metadata curation

Metadata was downloaded from GEO or ArrayExpress and
manually curated by a team of expert vascular biologists.
Repetitive and redundant information was removed, techni-
cal information such as the chip design and library prepara-
tion was standardized, and each array was manually anno-
tated with biological information such as the model organ-
ism, vascular bed, EC type and the experimental conditions
(Tables 1–3, Supplementary Table S4 and 5 and Figure 2).
In a second step, we used the OpenRefine software (33) to
standardize spelling across all arrays and datasets. In addi-
tion, a description of each study, the GEO or ArrayExpress
identifiers and references to the original publication were
included in the metadata.
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Figure 2. Most common experimental conditions in the EndoDB. Relative representation of the 15 most common sample types in the EndoDB grouped
by experimental conditions. Abbreviations––EC: endothelial cell; VEGF: vascular endothelial growth factor.

Table 1. List of species in the EndoDB

Species
Colloquial species

name
Number of datasets in

EndoDB

Homo sapiens Human 270
Mus musculus Mouse 76
Rattus norvegicus Rat 5
Bos taurus Cow 3
Danio rerio Zebrafish 3
Sus scrofa Pig 3

Complete list of species included in the EndoDB, the number of datasets
per species is indicated.

Table 2. Top 10 most common tissue types in the EndoDB

Organ Number of datasets in EndoDB

Umbilical cord 149
Skin 42
Aorta 28
Lung 28
Heart 25
Brain 22
Liver 16
Eye 15
Blood 13
Lymphatic system 13

Top 10 most common tissue types in the EndoDB, the number of datasets
per tissue type is indicated.

Data analysis and visualization

Data visualization greatly facilitates interpretation. For all
bulk transcriptomics datasets independently, we performed:
(i) principal component analysis (PCA) and visualized the
results as 2D plots where individual samples are color-
coded according to the experimental design; (ii) differential
gene expression analysis (DGEA) (34) and visualized the
results as volcano plots, bar plots and browsable tables; (iii)
gene set enrichment analysis (GSEA) (35,36) and visualized
the results as waterfall plots; and (iv) heatmap analysis to
show gene expression changes of a panel of user-selected
genes. Together, these analyses cover some of the most com-
monly used analyses and allow for detailed data interpreta-
tion. EC single cell data are provided as interactive t-SNE
plots using the Rtsne and plotly packages (see Supplemen-
tary Table S3 for scRNA-seq pre-processing and visualiza-
tion parameters). All analytical results are pre-calculated

Table 3. Top 10 most common EC types in the EndoDB

Cell type
Number of datasets

in EndoDB

Umbilical vein ECs 142
Aorta ECs 29
Dermal ECs 23
Lymphatic ECs 21
Coronary artery ECs 17
Pulmonary ECs 16
Brain ECs 11
Retinal ECs 11
Dermal lymphatic ECs 10
Blood outgrowth ECs 9

Top 10 most common EC types in the EndoDB, the number of datasets
per cell type is indicated.

and stored in the EndoDB to reduce computation time and
to allow fast data retrieval.

Website implementation

The EndoDB is implemented as an interactive web applica-
tion using the R/Shiny web framework (37,38). We used the
plotly package for data visualization and the data.table and
DT packages to provide searchable tables (39).

Data availability and downloads

All pre-processed data and curated metadata are available
for download in comma-separated flat file format. Visual-
izations can be downloaded as PNG or HTML files that
preserve the same interactivity as available from the web
application, tables can be downloaded in comma-separated
value format.

Documentation and manual

A detailed user manual and video tutorials are available via
the web application.

EndoDB FUNCTIONALITY

The functionality of the EndoDB is centered on four an-
alytical approaches to extract biologically meaningful in-
formation from (single cell) transcriptomics data. Below,
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we briefly discuss each approach and provide illustrative
examples focused on tumor ECs (TECs). TECs are tar-
gets of clinically approved anti-angiogenic therapy but re-
main poorly characterized. Isolating TECs from human or
murine tumors is notoriously challenging and laborious, re-
use of publicly available data to investigate gene expression
reprogramming in TECs is therefore a potentially favorable
and cost-effective complementary approach. The examples
below are for illustrative purposes only, detailed transcrip-
tome analysis and biological interpretation is beyond the
scope of this manuscript.

Study-centered data exploration

An important purpose of the EndoDB is to facilitate the
re-use of publicly available datasets to address novel and
unresolved questions, and to allow comparative analyses of
similar studies to resolve study-specific biases. The study-
centered data exploration options allow users to retrieve
studies based on the study title, PubMed identifier, GEO
and ArrayExpress identifiers, and manually annotated key-
words. After selecting a study, users can download all data
and metadata or explore the data using the results from
PCA, DGEA, GSEA, heatmap analysis and bar plots.

Example: We used the study-centered data exploration
functionality to re-analyze a previously published dataset
on ECs isolated from normal murine hindbrain, Sonic
hedgehog (Shh)-driven or Wnt-driven medulloblastoma
(40). PCA showed that normal brain ECs (NECs) have a
clearly distinct transcriptional profile compared to Shh- and
Wnt-driven medulloblastoma TECs (Figure 3A). To deter-
mine which pathways are most upregulated in TECs, we
assessed differences in gene expression signatures in NECs
versus Shh-medulloblastoma TECs (Shh-TECs). This anal-
ysis revealed upregulation of cell cycle and DNA replica-
tion (Figure 3B). Consistently, DGEA showed that several
proliferation markers (e.g. Mki67, Top2a) ranked in the top
25 most upregulated genes (Figure 3C–E). Together, these
data suggest that Shh-TECs undergo an angiogenic switch
and adopt a proliferating phenotype.

Metabolism- and transcription factor-centered data explo-
ration

Emerging evidence indicates that EC metabolism can over-
rule fundamental signaling cascades, and several metabolic
enzymes and transporters have been identified as therapeu-
tic targets to inhibit pathological angiogenesis in ocular dis-
ease, inflammation and cancer (41–43). While the impor-
tance of EC metabolism is becoming increasingly clear, still
little is known about how metabolism supports EC func-
tions in health and disease (44). Analyses of the subset of
metabolic genes and gene sets can provide important insight
in metabolic reprograming (45,46). We therefore performed
metabolic gene expression analysis and metabolic GSEA for
all studies in the EndoDB. Similarly, to determine which
transcription factors are deregulated in response to exper-
imental manipulation, we performed analysis in the subset
of genes encoding transcription factors.

Example: Performing metabolic GSEA in Shh-TECs ver-
sus NECs revealed that pyrimidine metabolism is the most

upregulated metabolic pathway. Consistently, metabolic
GSEA and DGEA revealed upregulation of several path-
ways (pyrimidine metabolism) and genes (Rrm2, Uck2) in-
volved in nucleotide biosynthesis (Figure 3F and G). To-
gether, these results may indicate that proliferating Shh-
TECs upregulate metabolic pathways to sustain nucleotide
production required for DNA synthesis. Consistently, the
cell cycle related transcription factor E2f8 was among the
most upregulated transcription factors (Figure 3H).

Gene and pathway-centered data exploration

The EndoDB contains the results of pair-wise DGEA and
GSEA results between all experimental conditions within
all datasets. The gene- and pathway-centered data explo-
ration functionality allows to unbiasedly determine under
which (patho)-physiological and experimental conditions
the expression of a particular gene or pathway of interest
is most deregulated.

Examples: Having identified Mki67 as a gene of interest
in Shh-TECs, we interrogated the EndoDB to determine
under which other conditions this gene is upregulated. To
do this, we performed a gene-centered search, which showed
that Mki67 is highly upregulated in the brain endothelioma
cell line (b.End5) compared with primary cultures of nor-
mal brain ECs (Figure 4A and B). DGEA and GSEA anal-
ysis further showed that Mki67, Uck2 and DNA replica-
tion and pyrimidine metabolism are among the most up-
regulated genes and pathways in b.End5 endothelioma cells
(Figure 4C–E). Together, these findings show that prolifer-
ation is a general phenotype of both TECs and malignant
ECs.

Single cell data exploration

An increasing number of studies investigates EC hetero-
geneity at the single cell level (14,47). scRNA-seq studies are
expensive large-scale sequencing efforts that generate high-
dimensional datasets with high resource value. We included
a specific module in the EndoDB to enable exploration of
transcriptional heterogeneity in scRNA-seq datasets via t-
SNE plots color-coded for the expression of all detected
genes.

Example: Based on the study- and gene-centered analy-
ses described above, we hypothesized that ECs in tumors
adopt a proliferative phenotype. From bulk transcriptomics
analysis alone, it is not possible to determine whether all
TECs, or only a subset, are actively proliferating. To deter-
mine whether the TEC-associated genes Mki67, Top2a and
Rrm2 are upregulated in a specific subset of TECs, we inter-
rogated scRNA-seq data of TECs isolated from a colorec-
tal cancer (COLO205) xenograft model (47). Interestingly,
all three genes marked a specific subset of TECs suggesting
that the observed upregulation of cell cycle-related genes in
bulk transcriptomics data results from increased expression
in a specific subset of TECs (Figure 5).

Together, these illustrative examples demonstrate the
benefit and power of the EndoDB to capitalize on publicly
available data to generate novel testable hypotheses in clin-
ically relevant settings.
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Figure 3. Study-centered data exploration. (A) PCA of normal hindbrain, Shh-medulloblastoma and Wnt-medulloblastoma ECs (study E-GEOD-73753).
(B) Gene set enrichment analysis of normal hindbrain ECs versus Shh-medulloblastoma ECs. The upregulated gene sets are shown in red, the downreg-
ulated gene sets are shown in blue. (C) Differential analysis of normal hindbrain ECs versus Shh-medulloblastoma ECs shown in volcano plot; some
highly deregulated proliferation-associated genes are indicated. (D) Gene expression heatmap of normal hindbrain ECs versus Shh-medulloblastoma and
Wnt-medulloblastoma. The high-gene expression levels are shown in red, the low-expression levels in blue. (E) Expression of the indicated genes in normal
hindbrain ECs and Shh-medulloblastoma ECs. (F) Metabolic gene set enrichment analysis of normal hindbrain ECs versus Shh-medulloblastoma ECs.
The upregulated gene sets are shown in red, the downregulated gene sets are shown in blue. (G and H) Differential analysis of normal hindbrain ECs versus
Shh-medulloblastoma ECs for the subset of metabolic genes (G) and transcription factors (H) shown as a volcano plot. Abbreviations––Ccna2: cyclin A2;
Mki67: marker of proliferation ki67; NES: normalized enrichment score; Rrm2: ribonucleotide reductase regulatory subunit M2; Shh: Sonic Hedgehog;
TEC: tumor endothelial cell; Top2a: topoisomerase 2 alpha; Uck2: uridine-cytidine kinase 2.

DISCUSSION

EndoDB facilitates bench scientists to unlock the untapped
potential of publicly available transcriptomics data but can
also be used by bioinformaticians as a resource of expert cu-
rated data. EndoDB has been constructed using field-tested
methods, is tailored to extract biologically meaningful in-
sight from gene expression profiling efforts, covers emerging

fields such as EC metabolism, and is a first-in-class resource
of EC scRNA-seq data. EndoDB distinguishes itself from
other databases by its flexible user interface, providing an
exceptionally large variety of pre-calculated data and analy-
ses in customizable plots and downloadable tables, allowing
direct generation and implementation of working hypothe-
ses.

The EndoDB was developed anticipating that an increas-
ing number of EC profiling datasets will become available in



D742 Nucleic Acids Research, 2019, Vol. 47, Database issue

A B CMki67 cross-study
meta-analysis plot

Lo
g 

fo
ld

 c
ha

ng
e

0

4

2

-2

-4

E

differential analysis

-L
og

10
 (

p 
va

lu
e)

Log2 (fold change)

1

5

10

08- 844-

Mki67

D metabolic gene set enrichment analysis

pyrimidine metabolism

N
E

S
 

0

2

1

-1

Mki67 gene expression

Lo
g 

ex
pr

es
si

on

en
do

th
eli

om
a 

EC

no
rm

al 
EC

0

12

6

-2

Top2a

comparison between
two experimental

conditions within one study

N
E

S

gene set enrichment analysis

DNA replication 

 

0

2

1

-2

-1

downregulated

upregulated

Gene sets

downregulated

upregulated

Gene sets

Figure 4. Gene and pathway-centered data exploration, example of Mki67 gene search. (A) Dot plot showing log fold change of Mki67 gene expression in
all sample comparisons in EndoDB datasets. The dot indicated by the green arrow head in the enlarged circle represents the pair-wise comparison selected
for further analysis (data from study E-GEOD-14375). (B) Expression of the Mki67 gene in normal hindbrain ECs and endothelioma ECs. (C) Differential
analysis of normal brain ECs versus endothelioma ECs for all genes shown in volcano plot. Mki67 and Top2a genes are indicated. (D and E) Gene set
enrichment analysis of normal brain ECs versus endothelioma ECs for all genes (D) and for the subset of detected metabolic genes (E). The upregulated gene
sets are shown in red, the downregulated gene sets are shown in blue. Abbreviations––Mki67: marker of proliferation ki67; NES: normalized enrichment
score; Top2a: topoisomerase 2 alpha.

Figure 5. Single cell data exploration. t-SNE plots of COLO205 TECs color-coded for the expression of the indicated proliferation-related genes
(GSE110501). Abbreviations––Mki67: marker of proliferation ki67; Rrm2: ribonucleotide reductase regulatory subunit M2; Top2a: topoisomerase 2 alpha.

the near future. The database can be further expanded by
including datasets derived from other vascular cells, such
as vascular smooth muscle cells and pericytes, but also to
include other omics data such as metabolomics and pro-
teomics.

Since ECs have key roles in health and disease, and
(in)directly influence all cells in the body, we expect that
EndoDB will be a useful tool, for both vascular biolo-
gists and the broader biomedical research community, to
derive unprecedented insight in EC heterogeneity, identify
new (metabolic) therapeutic targets and generate novel hy-
potheses. EndoDB is freely available at https://vibcancer.be/
software-tools/endodb, and will be regularly updated.

DATA AVAILABILITY

All pre-processed data and curated metadata are available
for download in comma-separated flat file format.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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