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Abstract: Introduction: Open tibial fractures are complex injuries with variable outcomes that
significantly impact patients’ lives. Surgical debridement is paramount in preventing detrimental
complications such as infection and non-union; however, the exact timing of debridement remains
a topic of great controversy. The aim of this study is to evaluate the association between timing
of surgical debridement and outcomes such as infection and non-union in open tibial fractures.
Materials and Methods: We performed a systematic review and meta-analysis of the literature
to capture studies evaluating the association between timing of initial surgical debridement and
infection or non-union, or other reported outcomes. We searched the MEDLINE, PubMed Central,
EMBASE, SCOPUS, Cochrane Central and Web of Science electronic databases. Our methodology
was guided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement
and the Cochrane handbook for systematic reviews of interventions. Results: The systematic review
included 20 studies with 10,032 open tibial fractures. The overall infection rate was 14.3% (314 out
of 2193) and the overall non-union rate 14.2% (116 out of 817). We did not find any statistically
significant association between delayed debridement and infection rate (OR = 0.87; 95% CI, 0.68 to
1.11; p = 0.23) or non-union rate (OR = 0.70; 95% CI, 0.42 to 1.15; p = 0.13). These findings did not
change when we accounted for the effect of different time thresholds used for defining early and
late debridement, nor with the Gustilo–Anderson classification or varying study characteristics.
Conclusion: The findings of this meta-analysis support that delayed surgical debridement does not
increase the infection or non-union rates in open tibial fracture injuries. Consequently, we propose
that a reasonable delay in the initial debridement is acceptable to ensure that optimal management
conditions are in place, such that the availability of surgical expertise, skilled staff and equipment are
prioritised over getting to surgery rapidly. We recommend changing the standard guidance around
timing for performing surgical debridement to ‘as soon as reasonably possible, once appropriate
personnel and equipment are available; ideally within 24-h’.

Keywords: open tibial fracture; surgical debridement; timing; open fractures; debridement; infection;
non-union; orthoplastics; BOAST 4; lower limb trauma

1. Introduction

Open tibial fractures are complex injuries with variable outcomes that significantly
impact patients’ lives. The subcutaneous position of the medial border of the tibia and the
paucity of muscle attachments distally cause the bone to be vulnerable to becoming locally
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devascularised after high-energy trauma, which contributes to the increased rates of infec-
tion and non-union. Historically, it has been suggested that timely surgical debridement
can reduce the various complications occurring after treatment [1]. Gustilo and Anderson
stated that ‘adequate debridement is the single most important factor in the attainment
of a good result in the treatment of an open fracture’ [1]. Debridement is derived from the
French word débrider to ‘unbridle’; in surgical terms, ‘to release constrictions and tension
in a wound by incision’ [2]. In modern surgery, it is better described as cleansing a wound
by surgically excising dead or devitalised tissue, removing foreign material and irrigating
to dilute contaminants. However, debridement has evolved to become much more than
just wound cleansing. Surgeons are also mindful to minimise any additional detrimental
effects of debridement that might unnecessarily threaten the viability of otherwise healthy
tissue, such as preserving intact muscle, periosteum and perforator vessels. In addition, the
‘first debridement’ surgery has come to be recognised as an ideal moment for combined
orthopaedic and plastic surgical decision-making, where plans and timeframes can be
agreed between the specialists present.

Infection and non-union are two of the most common complications following man-
agement of open tibial fractures [3]. They significantly impact clinical outcomes, they
burden the healthcare service financially and are associated with chronic pain, opiate and
alcohol misuse and subsequent unemployment and psychological problems [4,5]. Surgi-
cal debridement, along with antibiotic prophylaxis, are paramount in preventing these
catastrophic complications [6]. The latest standards suggested administering intravenous
antibiotics within 1 h following injury, rather than within 3 h as originally proposed [7].
This change has been driven by evidence demonstrating that early antibiotic prophylaxis
significantly reduces post-operative infection in patients with open fractures of the extremi-
ties [8,9]. However, as per surgical debridement, the exact timing of debridement remains
a topic of great controversy.

Until recently in the UK (2009 BOAST-4 guidelines), surgical debridement was pref-
erentially performed within 6 h following injury. This threshold was largely based on an
1898 experimental study on guinea pigs, which demonstrated that open fracture wounds
reach infection threshold at about 6 h after the injury due to the incubation period of
bacteria [10]. The implementation of this ‘6-h rule’ was challenged by new evidence and
geographical constraints around resources [11], which led to sequential revisions of the
guidelines. In 2009, the UK open tibial fracture guidance recommended immediate surgical
debridement for highly contaminated and vascular-compromised wounds, but debride-
ment within 24-h for other open fractures; a move away from the 6-h mandate [12]. In
2017, the guidance was changed again, this time advocating debridement within 12-h
for high-energy injuries (which would include the majority of open tibia fractures); and
within 24-h for low-energy open fractures [13]. This change was also associated with a
paradigm shift from rapid emergency surgery, to urgent transfer to an Orthoplastic service
to facilitate a stepwise and disciplined management approach [14]. There was a move away
from the traditional emphasis of getting to surgery quickly, instead prioritising expertise,
Orthoplastic collaboration and performing debridement to a high level of proficiency.

Surgeons seem to agree on performing debridement at a reasonable time following
injury; however, unnecessarily narrow time frames can hinder optimal management condi-
tions, such as allowing appropriate staff/personnel to be present. Previous meta-analyses
were inconclusive on the effect of delayed surgical debridement and surgical outcomes in
lower-extremity open fractures [15–17]; however, since their publication, new evidence has
emerged. The aim of this study is to evaluate the association between timing of surgical
debridement and outcomes such as infection and fracture non-union, or any other reported
surgical or functional outcome.
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2. Materials and Methods
2.1. Study Design

We performed a systematic review and meta-analysis of the literature in accordance
with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
Statement of 2009 [18] and the Cochrane Handbook for Systematic Reviews of Interven-
tions [19]. Our work was guided by a prospectively developed protocol, registered in the
PROSPERO database (CRD 42020191104).

2.2. Inclusion Criteria

We aimed to capture randomised or quasi-randomised controlled trials, cohort or case-
control studies and case-series, evaluating the association between timing of initial surgical
debridement and infection or non-union, or other reported outcomes, in the management
of open tibial fractures. Studies were included if they reported: (a) Outcome frequency
by time to surgical debridement following injury (i.e., infection rate in group receiving
debridement in <6 h following injury versus >6 h), (b) mean/median time to surgical
debridement in a group with positive outcome versus one without positive outcome and
(c) any association between timing of surgical debridement and the event of infection
or non-union presented in odds ratios or other measurable means. Studies were only
reviewed if the published manuscript was in English. We excluded any studies that did
not meet the above criteria and studies on animals. Furthermore, we excluded studies
that recruited solely participants of less than 16 years of age and studies with less than
25 fractures.

2.3. Study Identification and Selection

We performed a comprehensive search of the literature on 13 May 2020. We searched
the MEDLINE (via Ovid), PubMed Central, EMBASE, SCOPUS, Cochrane Central Register
of Controlled Trials (CENTRAL) and Web of Science Core Collection electronic databases.
Our search strategy included a combination of keyword terms and Medical Subject Head-
ings (MeSH), such as open fractures, tibia and debridement (Supplementary Tables S1–S6).
Our database search was supplemented by screening the bibliographies of previous sys-
tematic reviews and of published studies for relevant titles, searching clinical trial registries
for ongoing trials (Clinical Trials Gov., ISRCTN, EU Clinical Trial Register) and a random
search on Google Scholar.

Captured studies from our electronic database and manual search were exported and
merged into a reference manager library (EndNote X9, Clarivate Analytics, Philadelphia,
PA, USA). Duplicates were removed and screened by three independent reviewers at
two levels: Title–abstract and full-text screening. Any discrepancies during title–abstract
screening stage were resolved by including the article by default, whereas during full-text
screening, they were resolved by discussion and senior author consensus. When both
screening stages were completed, we searched for any relevant retraction statements, errata
and duplicate reports for all included studies.

2.4. Data Collection

All relevant data were extracted using piloted forms and exported to a digital spread-
sheet (Microsoft® Excel). Data extraction was performed by two independent reviewers.
We classified extraction fields into four main categories: Study characteristics and meth-
ods, population demographics, debridement and surgical intervention, and outcomes and
results. Any discrepancies in the extracted data were resolved by thoroughly inspecting
the manuscripts during reviewer meetings. Several studies did not provide data for tibias
only, either because they looked at all lower-extremity fractures or at all open fractures
overall; thus, in such cases, data extraction was deemed unfeasible. For these studies, we
attempted to collect the relevant data by (a) looking at previous systematic reviews and (b)
contacting the corresponding author, or any other author available, via email or through a
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social networking site for scientists and researchers (Research Gate). If no response was
received, the study was excluded.

2.5. Risk of Bias Assessment and Quality of Evidence

Our review did not capture any randomised controlled trials (RCTs), thus the ROBINS-
I tool for assessing risk of bias in non-randomised studies was used [20]. We stratified
the risk in a traffic light configuration for confounding, selection of participants into the
study, classification of interventions, deviations from intended interventions, missing data,
measurement of outcomes, selection of the reported result and overall bias. Overall risk of
bias was considered low risk if all domains were determined as low risk; moderate risk if
at least one of the domains was determined as moderate risk but none as serious; serious
risk if at least one of the domains was determined as serious risk but none as critical; and
critical risk if at least one of the domains was determined as critical risk. The Grading of
Recommendations Assessment, Development and Evaluation (GRADE) tool was used to
rate the quality of evidence and produce a level of certainty for each outcome [21].

2.6. Data Synthesis and Analysis

We summarised the characteristics of each study in the PICO format and described
them using descriptive statistics. Subsequently, we synthesised data quantitatively for
primary outcomes (infection and non-union) and qualitatively for secondary outcomes
(amputation, flap failure, length of hospital stay). A meta-analysis using a DerSimonian
and Laird random effects model was performed to compare infection and non-union rates
between groups that received early or late initial surgical debridement (i.e., group receiving
debridement <6 h following injury versus >6 h) and to compare mean debridement times
between groups positive and negative to the assessed outcome. A Hartung–Knapp adjust-
ment for random effects model was applied to produce more adequate error rates in a small
number of studies analysis [22]. Furthermore, a continuity correction of 0.5 was applied
in studies with zero cell frequencies. If no events were reported in either group, then the
study was not included in the meta-analysis, as such studies do not provide any indication
of either the direction or magnitude of the relative treatment effect [19]. Study, subgroup
and summative odds ratios (OR) and 95% confidence intervals (CI) were calculated and
reported. All means were reported along with their standard deviation (SD).

In regard to overall infection, a subgroup analysis was performed for debridement
time thresholds of 5, 6, 8, 12 and 24 h, calculating the mean effect for each group and
comparing it across each other using the Q-test. For studies reporting multiple thresholds,
we used the 12-h threshold where available—this was based on the latest BOA/BAPRAS
guidance recommending initial surgical debridement in less than 12 h for high-energy
open fractures [7]. Subgroup analyses were also performed for prospective and retrospec-
tive studies, those performed before and after 2010, and studies of different geographical
location. Additionally, sensitivity analyses were performed for all time thresholds inde-
pendently, studies reporting the use of cultures to confirm infection, studies that specified
that they measured deep infection only, studies that specified the use of an Orthoplastic
approach and studies that did not perform any debridement or irrigation on patients prior
to entering the operating theatre.

In regard to overall non-union, subgroup analyses were performed for debridement
time thresholds of 6 and 8 h; prospective and retrospective studies; studies performed
before and after 2010; and of different geographical location. Additionally, sensitivity
analyses were performed for studies that specified the use of an Orthoplastic approach and
for studies that did not perform any debridement or irrigation on patients prior to entering
the operating theatre.

We assessed heterogeneity using the I2 statistic and Cochran’s Q test. For I2 values,
we defined 0% to indicate no heterogeneity, 25% low, 50% moderate and 75% high [23].
Forest plots were plotted to qualitatively assess heterogeneity and to provide summary
estimates. Publication bias was assessed visually by producing contour-enhanced funnel
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plots [24] and statistically using the Egger’s regression test for asymmetry [25]. We looked
for statistical outliers by looking at the studies’ confidence intervals—we considered a study
a statistical outlier when its confidence interval did not overlap with the 95% confidence
interval of the pooled effect. Furthermore, we performed influence analyses tests to identify
studies that exert a very high influence on our overall results. We have set the significance
level for all above statistical tests to be 0.05. We used the R software for all statistical tests
(Version 4.0.2 for Mac, The R Foundation for Statistical Computing).

3. Results
3.1. Search

Our initial database search yielded a total of 3099 records, which were supplemented
with 5 records from the manual search (Figure 1). Following duplicate removal, 1171 records
remained. These were screened in their title and abstract against pre-defined eligibility cri-
teria. We retrieved the full texts of 38 records to screen in their entity, whereas 1133 records
were excluded. Out of the 38 articles, only 20 were deemed appropriate for inclusion. We
excluded a total of 18 studies. The most common reason for exclusion was studies reporting
data on all bones rather than tibial fractures only (n = 12) (Figure 1).
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3.2. Characteristics of Included Studies

The total number of reported open tibial fractures in all studies was 10,032, ranging
from 41 to 7560. Key characteristics of the 20 included studies are summarised in Table 1.
Nineteen out of the 20 studies reported outcomes for infection, out of which 11 narrowed it
down to deep infection. Eight studies reported non-union, one reported flap failure, one
secondary amputation and one length of stay. Sixteen studies reported the Gustilo Ander-
son grading distribution of tibial fractures, however, only eight took it into consideration
when analysing their data. In total, there were 253 Type I, 380 Type II, and 819 Type III
(IIIA = 253, IIIB = 380, IIIC = 32, Unspecified = 154) reported tibial fractures.

Table 1. Summary of characteristics of included studies.

Author Year Country Study Design Fractures
Gustilo Anderson Time

Threshold Outcomes
I II IIIA IIIB IIIC

Al-Hourani et al.
[29] 2019 UK Retrospective 45 0 0 0 45 0 6

Deep infection
Non-union
Flap failure

Ashford et al. [24] 2004 Australia Retrospective 48 3 10 14 21 0 6

Infection
Non-union/delayed

union
Length of stay

Bednar and Parikh
[25] 1993 Canada Retrospective 52 NR 6 Deep infection

Charalambous et al.
[37] 2005 UK Retrospective 383 33 38 64 0 0 6

Infection
Deep infection

Secondary procedure to
promote bone union

David Sears et al.
[32] 2012 US Retrospective 7560 NR 24, 48, 96 and

120 Amputation

Duyos et al. [38] 2017 Puerto Rico Retrospective 227 NR 48, 72 and 96 Deep infection

Enninghorst et al.
[33] 2011 Australia Prospective 89 21 27 18 21 1 6 Deep infection

Non-union

Harley et al. [39] 2002 Canada Retrospective 109 19 53 37 8 Deep infection
Non union

Hendrickson et al.
[30] 2018 UK Retrospective 116 0 0 0 116 0 12 Deep Infection

Kamat et al. [40] 2011 New
Zealand Retrospective 103 49 32 22 6 Infection

Khatod et al. [26] 2003 US Retrospective 101 17 46 23 8 7 6 Infection

Kindsfater and
Jonassen [27] 1995 US Retrospective 47 0 25 13 7 2 5 Deep infection

(osteomyelitis)

Konbaz et al. [41] 2019 Saudi
Arabia Retrospective 113 13 45 20 28 7 6 Infection

Li et al. [28] 2020 China Retrospective 215 62 98 26 25 4 6, 12 and 24 Infection

Mener et al. [34] 2020 Georgia Retrospective 259 NR 24 Infection

Reuss and Cole [42] 2007 US Retrospective 81 14 19 9 34 5 8 Deep infection
Non-union

Singh et al. [31] 2012 UK Retrospective 67 0 0 26 39 2 6 Deep infection
Non-union

Spencer et al. [43] 2004 UK Prospective 41 0 5 14 11 0 6 Deep infection
Non-union

Sungaran et al. [35] 2007 Australia Retrospective 161 28 35 95 6 and 12 Infection

Tripuraneni et al.
[36] 2008 US Retrospective 215 62 98 26 25 4 6, 12 and 24 Infection

Total 10,032 321 531 819

NR = Not Reported; UK = United Kingdom; US = United States. Fractures and Gustilo-Anderson classification are reported as frequency.
Time threshold portrays the time threshold used (in hours) to differentiate between early and late debridement.

Of the 20 included studies, only 5 provided a description of the debridement carried
out [26–30]. Only three studies specified that an Orthoplastic approach was used in
the management of fractures [31–33]. Six studies did not specify the method of skeletal
fixation [32,34–38], whereas the rest used various methods for the management of the
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reported fractures. Furthermore, only two studies specified the method of soft tissue
reconstruction [28,31]. All but one study [34] specified the use of antibiotic prophylaxis.

3.3. Risk of Bias Assessment

Risk of bias assessment was performed using the ROBINS-I tool for non-randomised
controlled trials. Most studies were judged to carry serious bias (n = 13), while the remain-
ing seven studies moderate (Supplementary Figure S1). We did not judge any study of
possessing low or critical bias. The overall bias was determined by the ‘confounding’ and
‘deviation from intended interventions’ domains in all cases.

3.4. Infection

Infection was assessed by 19 studies out of these, 17 reported the frequency of infection
in groups, which received early and late debridement. These reported a total of 2193 open
fractures, 1376 debrided early and 817 late. Different time thresholds were used for dif-
ferentiating between early and late debridement (Table 1). Only three studies [28,29,39]
assessed infection using microbiological samples; the rest diagnosed infection by
clinical signs.

We did not find any association between delayed debridement and infection rate.
Overall, 314 out of 2193 (14.3%) open tibial fractures got infected. The infection rate was
marginally higher in the late debridement group (121 out of 817, 14.8%) compared to the
early debridement group (193 out of 1376, 14.0%) when all 17 studies were included in
the analysis. However, this difference was not statistically significant as per the relative
mean effect (OR = 0.87; 95% CI, 0.68 to 1.11; p = 0.23) (Figure 2) or anticipated absolute
effect (Table 2).
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Table 2. Summary of findings table for primary outcomes (infection and non-union) with relative and anticipated absolute
effects, GRADE quality of evidence assessment and evidence interpretation.

Outcome
No of

Participants
(Studies)

Relative
Effect

(95% CI)
p-Value

Anticipated Absolute Effects (95% CI)
Certainty
(GRADE)

InterpretationEarly
Debridement

Late
Debridement Difference

Infection 2193
(17)

OR 0.87
(0.68 to 1.11) 0.23 14.0% 12.4%

(10 to 15.3)

1.6% fewer
(4 fewer to
1.3 more)

⊕###
VERY LOW

a,b,c

The evidence
suggests that late

debridement
results in little to
no difference in

infection.

Non-
union

817
(7)

OR 0.70
(0.42 to 1.15) 0.13 16.8% 12.4%

(7.8 to 18.8)

4.4% fewer
(9 fewer to

2 more)

⊕###
VERY LOW

a,c,d

The evidence
suggests that late

debridement
results in little to
no difference in

non-union.

The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative
effect of the intervention (and its 95% CI). CI: Confidence interval; OR: Odds ratio. Low certainty: Our confidence in the effect estimate is
limited: The true effect may be substantially different from the estimate of the effect. Explanations: a Serious risk of bias assessment as most
studies were judged to carry serious bias (n = 13), while the rest 7 stuies moderate. b Serious indirectness as most studies did not define
how debridement was carried out. Method of assessing infetion varied and was not standardised. c Serious imprecision as although size
sample is large, the 95% CI overlaps with no effect (OR = 0). d Serious indirectness as most studies did not define how debridement was
carried out. Method of confirming non-union varied and was not standardised.

Two studies reported mean time to debridement in groups with infection compared
to groups without infection [31,35]. The overall effect was not statistically significant (stan-
dardised mean difference = −0.0135; 95% CI, −0.1065 to 0.0795; p = 0.32). No heterogeneity
was observed on the forest plot or on performing the Cochran’s Q test and I2 statistic
(Q = 0; p = 0.9766; I2 = 0%). No publication bias was observed on inspection of a
funnel plot.

Bednar and Parikh [27] and Duyos et al. [40] did not provide raw data on the number
of tibial fractures infected or debrided within each time group and, thus, were not included
in the meta-analysis. However, they reported no statistically significant difference in
infection rate between early and late debridement groups.

3.5. Non-Union

Non-union was assessed by frequency in eight studies; however, one study [31] did
not report non-union events in either debridement group and was, as per our methodology,
excluded from the statistical analysis. The remaining seven studies reported a total of 817 open
fractures, 399 debrided early and 418 late. Included studies used different time thresholds for
differentiating between early and late debridement (Table 1). Five out of eight studies that
reported non-union, specified the use of radiography for diagnosis [31,35,41–43].

We did not find any association between delayed debridement and non-union. An
overall non-union rate of 14.2% (116 out of 817) was noted across all studies. The non-union
rate was higher in the early debridement group (67 out of 399, 16.8%) compared to the late
debridement group (49 out of 418, 11.7%). However, this difference was not statistically
significant as per the relative mean effect (OR = 0.70; 95% CI, 0.42 to 1.15; p = 0.13)
(Figure 3) or anticipated absolute effect (Table 2).
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Figure 3. Forest plot of random effects meta-analysis comparing the incidence of non-union after late surgical debridement
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Only one study assessed the mean time to debridement in groups with non-union
compared to groups with typical union, reporting no statistically significant outcomes
(p = 0.08) [35].

3.6. Subgroup and Sensitivity Analyses

We performed several subgroup and sensitivity analyses. No statistically significant
differences were noted when we looked at the effect of different time thresholds used for
defining early and late debridement, the severity of fracture using the Gustilo–Anderson
classification or the varying study characteristics; such as study design, publication year
and country, use of cultures to confirm infection, use of an Orthoplastic approach, studies
that measured deep infection only and studies that did not perform any debridement or
irrigation on patients prior to entering the operating theatre.

3.7. Heterogeneity, Outliers and Publication Bias

No heterogeneity was observed on the forest plot or on performing the Cochran’s
Q test and I2 statistic (Infection: Q = 10.33, p = 0.85, I2 = 0%; Non-union: Q = 5.45;
p = 0.49; I2 = 0%). No extreme effect sizes (outliers) were detected as all included studies’
95% confidence intervals overlap with the 95% confidence interval of the pooled effect.
No publication bias was observed on inspection of a funnel plot or upon performing the
Egger’s regression test for asymmetry (Infection: p = 0.85; Non-union: p = 0.34).

3.8. Secondary Outcomes

Only one study assessed the effect of delayed surgical debridement on amputa-
tion. [34] Following adjusted analyses for patient and hospital characteristics and clinical
risk factors, they reported that timing of the first surgical debridement after 24 h is associ-
ated with more than three times greater odds of amputation (OR = 3.81; 95% CI, 1.80 to
8.07; p < 0.001) compared to patients having initial procedures before 24 h.

Al Hourani et al. reported that the time to initial debridement was lower in those
who developed infection-associated flap failure, 15.8 h (SD = 8.01), compared to those
who did not, 19.0 h (SD = 12.6) (p = 0.724, not statistically significant). However, they
reported a statistically significant increase in time to initial debridement in one case of
vascular-associated flap failure (p = 0.007).

Ashford et al. reported a longer length of stay in hospital, 51 days (range, 8 to 198) in
the group debrided in less than 6 h, compared to the group debrided in more than 6 h, 49
(range, 3 to 171); not statistically significant.
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4. Discussion
4.1. Main Findings

We performed a systematic review and meta-analysis of 10,032 open tibial fractures
to evaluate the association between the timing of initial surgical debridement and infec-
tion, non-union or other reported outcomes. Our findings support that delayed surgical
debridement results in little to no difference in infection or non-union rates at various time
thresholds of up to 24 h (Table 2). We acknowledge that all included studies were cohort
studies with variation in population demographics, intervention and outcome assessment.
In an attempt to mitigate a number of these biases, we performed several subgroup and sen-
sitivity analyses to demonstrate that our findings are not dependent on arbitrary or unclear
decisions, or varying characteristics of the included studies. We trust that the subgroup
and sensitivity analyses performed were focused and accomplished their purpose; yet
the limited standardisation in the methodology of included studies inevitably lowers the
quality of the evidence, which we judged to be very low (Table 2). The secondary aim of this
study was to evaluate the association between the timing of initial surgical debridement
in open tibial fractures and any other reported outcomes, including amputation, length
of hospital stay and flap failure. Unfortunately, we did not reach a consensus for these
outcomes as they were represented by one study each.

4.2. Findings of Excluded Studies

A recent national cohort study of 661 Gustilo-Anderson Type IIIB and IIIC open
tibial fractures managed at major trauma centres of the UK, demonstrated a mean time
to debridement of 20.93 h (SD = 41.78, Median = 12.12 h, IQR = 5.39–20.92) following
injury [44]. Although they were not eligible for inclusion in our meta-analysis, they
reported that the rate of infection was not statistical significantly different in fractures
debrided within 12-h compared to after 12 h. Furthermore, out of the 12 studies we
excluded for not providing data for tibial fractures, 10 (83%) reported no statistically
significant associations between a delay in debridement and infectious or non-union
complications [45–54]. Although these results are for all open or lower extremity fractures,
they are in alignment with our findings for tibial fractures.

4.3. Comparison with Previous Meta-Analyses

Our findings also come in line with previously published meta-analyses. Prodromidis
and Charalambous reported no statistically significant differences between 184 open tibial
fractures debrided early (<6 h) compared to 199 open tibial fractures debrided late (>6 h),
with regards to overall infection rate (risk ratio = 1.32; 95% CI, 0.54–3.23; p = 0.55), deep infec-
tion rate (risk ratio = 0.99; 95% CI, 0.48–2.07; p = 0.98), and non-union rate (risk ratio = 1.49;
95% CI, 0.64–3.49; p = 0.36) [17]. A previous meta-analysis by Shenker et al. reported
similar findings for all open fractures overall and for tibial fractures only [16]. As in our
review, their included studies used various thresholds to differentiate between early and
late infection. They reported that the weighted cumulative odds ratio of infection after
late debridement for tibial fractures was 0.89 (95% CI, 0.5 to 1.57), whereas for all open
fractures overall was 0.91 (95% CI, 0.70 to 1.18)—both were not statistically significant [16].

4.4. Strengths and Limitations of This Study

To the best of our knowledge, this systematic review and meta-analysis is the largest
to date to look at the effect of late surgical debridement on post-operative infection and
non-union. Although the large number of cases was accompanied by extensive variability,
we validated the overall effect by performing subgroup and sensitivity analyses, demon-
strating that any arbitrary or unclear decisions or varying characteristics of the included
studies were not significant to influence our findings. We have summarised new evidence
concluding that delayed debridement does not lead to increased rates of infection or non-
union. Our findings raise questions for the current UK recommendations for immediate
surgical debridement.
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The main limitations of our meta-analysis lie with those of the included studies. All
studies were prospective and retrospective cohort studies, and not randomised controlled
trials. We found variation in the demographics of the recruited population, intervention
applied and method of assessing infection and non-union, concluding that all studies
demonstrated moderate to serious risk of bias. Furthermore, our subgroup and sensitivity
analyses did not justify the method or timing of skeletal stabilisation and soft tissue recon-
struction used, the varying patient demographics and comorbidities or the various fracture
characteristics (tibial location and mechanism of injury). Finally, the 95% confidence inter-
val of both the relative and absolute effects of our meta-analysis includes the probability of
no effect (i.e., OR = 0). A combination of the above factors deems our results to be of very
low certainty based on the GRADE quality of evidence assessment. Nevertheless, taking
into consideration the existing evidence in the literature on this topic, we are confident that
no other review can yield a higher certainty in their reported results.

4.5. Interpretation of Results and Current Evidence

Even though we should take the findings of this review with caution—considering
that the level of certainty is very low to the best of our knowledge this is the most up-to-date
and comprehensive evidence on the effect of delayed debridement in the management
of open tibial fractures. We have demonstrated that a delay in surgical debridement at
various time thresholds of up to 24 h results in little to no difference in infection and
non-union rates. One would argue that these results are peculiar, as there is evidence that
an open wound colonised with bacteria gets progressively contaminated, as bacteria grow
exponentially and increase the probability of infection [55,56]. Attempting to explain that
a delay in surgical debridement can have beneficial effects would seem unjustified and
irrational. This leaves two possible explanations: (a) There are other factors associated
with infection and non-union, which mask any actual benefits of early debridement, or (b)
timing is indeed of minor importance in relation to the quality of debridement.

It is difficult to argue for the former, as several of the included studies ruled out
variables such as age, sex, laterality, multiple fractures, smoking, fracture location, type
of flap, type of skeletal stabilisation and method of tissue reconstruction [30,31,35,41,42].
However, noteworthily, only four of the included studies adjusted for time to definitive soft
tissue cover [29,31,32,36], an important factor thought to contribute to infection. Thereafter,
it was not possible to adjust for it in our analysis and adds to the limitations of our findings.

The first to argue for the second point was Merrit in 1988, while attempting to identify
factors that increase the risk of infection in patients with open fractures [57]. Interest-
ingly, they found that the infection rate is related to the number of bacteria after wound
debridement, rather than the number of bacteria before debridement [57]. The ‘timing
versus quality’ balance might indeed play a bigger role than just timing. The quality of
debridement is subjective to each surgeon, particularly as per its aggressiveness. We did
not find any recent study in the literature assessing the association between the quality of
surgical debridement, or the team performing it, and surgical outcomes. Furthermore, one
study found that open fracture infections are mostly nosocomial in origin and the wound
bacteria change while the patient is hospitalised [58]. Taking the above into consideration,
we can argue that we should shift our efforts towards how well the patient is managed after
being hospitalised, rather than the length of time from injury to the operating theatre [30].

4.6. Implications of Our Review

There are circumstances in which early surgical debridement might not be optimal or
even possible [16]. Injuries taking place in rural settings or during military conflict might
not have the required resources to manage open tibial fractures appropriately [59–61]. The
transfer of these patients to major Orthoplastic centres seems likely to be beneficial for the
patient, even at the expense of a delay in surgical debridement. In an ideal scenario, both
orthopaedic and plastic surgery teams would work in unison at all patient management
stages: Preoperative planning, intraoperative decision-making and post-operative care
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and follow-up [62]. This approach in limb salvage can improve outcomes such as pain,
function and reduce length of hospital stay, post-operative complications and secondary
procedures [63–67].

Furthermore, many patients present with open fractures outside normal working
hours. Operating after-hours has well-described negative effects, including next-day
fatigue of the personnel, increased workload for decision-making and scheduling, limited
staff and equipment, increased surgical complications and mortality as well as economic
implications [68–72]. Operating on these patients the next day can be justified, in view of
our findings herein.

4.7. Impact on National Recommendations

Current UK recommendations suggest immediate debridement for highly contami-
nated open fractures, within 12 h for high-energy and within 24 h for low-energy open
fractures. Even though the inherent limitations of the included studies in our review hinder
us from invalidating these set-hour rules conclusively, our findings provide grounding for
future reconsideration and revisions. We continue supporting urgent surgical care for all
open tibial fractures; however, we find that a reasonable delay in the initial debridement is
acceptable to ensure optimal management conditions. In light of our findings, we propose
that a reasonable delay in the initial debridement is acceptable to ensure that optimal
management conditions are in place, such that the availability of surgical expertise, skilled
staff and equipment are prioritised immediacy of surgical intervention. We recommend
changing the standard guidance around timing for performing surgical debridement to
‘as soon as reasonably possible, once appropriate personnel and equipment are available;
ideally within 24-h.’

4.8. Future Research and Direction

Our findings have raised several questions around the co-existing factors that con-
tribute to infection and non-union in open tibial fracture injuries. We speculate that factors
such as time to definitive soft tissue coverage might have masked any actual benefits of
early debridement in our data. Future research should focus on identifying these factors in
large, exceptionally designed, prospective trials. We acknowledge that an RCT comparing
early versus delayed debridement would be impractical to run with complex ethical im-
plications. However, we encourage future research to continue evaluating the association
between timing of surgical debridement and infectious or non-union complications, by
standardising for factors such as population demographics, patient comorbidities, technical
aspects of surgical debridement and outcome assessment. We also support that any future
findings should be reported in correlation to the initial injury characteristics. Finally, we
encourage future trials to assess the effect of varying technical factors of debridement
(e.g., aggressiveness of soft tissue excision, surgical team members present and timing of
definitive soft tissue cover) on surgical outcomes, as we identify a lack of these studies and
trust that these factors might play a significant role.

5. Conclusions

The findings of this systematic review and meta-analysis support the proposal that a
delay in surgical debridement does not increase the infection or non-union rate in open
tibial fractures. On the basis of this meta-analysis, the current UK recommendations for
urgent debridement of high-energy fractures have little support in the existing literature;
however, the inherent limitations of the included studies hinder us from invalidating these
set-hour rules conclusively. We continue supporting urgent surgical care for all open tibial
fractures, but we propose that a reasonable delay in the initial debridement is acceptable
to ensure that optimal management conditions are in place, such that the availability
of surgical expertise, skilled staff and equipment are prioritised over getting to surgery
rapidly. We recommend changing the standard guidance around timing for performing
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surgical debridement to ‘as soon as reasonably possible, once appropriate personnel and
equipment are available; ideally within 24-h’.
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