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Abstract

Among species, parental behaviors vary in their magnitude, onset relative to reproduction,

and sexual dimorphism. In deer mice (genus Peromyscus), while most species are promis-

cuous with low paternal care, monogamy and biparental care have evolved at least twice

under different ecological conditions. Here, in a common laboratory setting, we monitored

parental behaviors of males and females of two promiscuous (eastern deer mouse P. mani-

culatus and white-footed mouse P. leucopus) and two monogamous (oldfield mouse P.

polionotus and California mouse P. californicus) species from before mating to after giving

birth. In the promiscuous species, females showed parental behaviors largely after parturi-

tion, while males showed little parental care. In contrast, both sexes of monogamous spe-

cies performed parental behaviors. However, while oldfield mice began to display parental

behaviors before mating, California mice showed robust parental care behaviors only post-

partum. These different parental-care trajectories in the two monogamous species align

with their socioecology. Oldfield mice have overlapping home ranges with relatives, so

infants they encounter, even if not their own, are likely to be closely related. By contrast, Cal-

ifornia mice disperse longer distances into exclusive territories with possibly unrelated

neighbors, decreasing the inclusive fitness benefits of caring for unfamiliar pups before par-

enthood. Together, we find that patterns of parental behaviors in Peromyscus are consistent

with predictions from inclusive fitness theory.

Introduction

Parental behaviors are widespread across the animal kingdom, yet they vary greatly in their

type, intensity, and the degree of sexual dimorphism across species [1, 2]. In mammals, females

are intimately associated with their progeny during gestation and lactation, and, in many spe-

cies, continue caring for their young long after lactation ends. In contrast, lack of pregnancy

and lactation allows males to seek additional mating partners instead of caring for their off-

spring. Consistent with these sexually dimorphic biological constraints on the commitments
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to invest in offspring [3], in the majority of mammalian species, only mothers display robust

parental care [4, 5]. However, in approximately 5% of mammalian species, both mothers and

fathers display robust care for infants and nearly all of these species are monogamous [4].

Thus, in mammals, biparental care often co-evolves with monogamy [4–8].

In females, mating, pregnancy, and parturition are associated with profound neuroendo-

crine changes that induce parental care [9]. In males, parental behaviors can be set in motion

by mating, shaped by exposure to the pregnant female, triggered by parturition of the partner,

and later on maintained by pup cues [9–11]. The mechanisms for such behavioral transitions

in males, however, are much less understood than in females. Reproductive events not only

elicit the onset of parental behavior but, in some species, also inhibit infanticidal behavior:

Males and females in many species do not show parental behaviors until they mate and may

remain infanticidal until the birth of their own young [12, 13]. For example, in laboratory

strains of Mus musculus, the suppression of infanticidal behaviors in adult males is triggered

by mating and its onset is synchronized with the typical duration of pregnancy [11, 14, 15].

Although common, this pattern is not universal: the onset of parental behaviors (and the inhi-

bition of infanticide) is subject to substantial variation among species [16]. For example, in

species with alloparental care (i.e., care towards non-descendent young), such as the banded

mongoose, spontaneous care for infants can occur in individuals that are reproductively sup-

pressed and lack previous experience with infants ([17] and citations therein). Inclusive fitness

theory suggests that alloparental care can evolve if the provider and the recipient of such care

are genetically related enough that the indirect-fitness benefits outweigh the costs [18, 19].

However, the socioecological conditions that influence the onset of (allo)parental behavior are

not well understood.

To understand the evolution of parental care and its onset, it is thus important to compare

species that differ in both their mating system—monogamy versus promiscuity—as well as

their socioecology. Here, we investigate the onset of parental behaviors in four species of deer

mouse (genus Peromyscus; Fig 1). Monogamy and biparental care have evolved at least twice

independently within this ancestrally promiscuous clade (Fig 1A; [20]). Previous work has

Fig 1. Monogamy and biparental care have evolved at least twice independently in the genus Peromyscus. (A) Phylogenetic relationships of the four

species under study, relative to other rodent models. Each line denotes one of 100 trees sampled from a pseudo-posterior distribution of birth-death node-

dated completed trees from http://vertlife.org/phylosubsets/ [31]. (B) Representative pictures of breeding pairs of each study species. Left: promiscuous

species, typically with the female inside the nest and the male outside. Right: monogamous species, typically with both parents inside the nest.

https://doi.org/10.1371/journal.pone.0276052.g001
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shown that in both the eastern deer mouse Peromyscus maniculatus bairdii (hereafter deer

mouse) and the white-footed mouse P. leucopus, males and females mate with multiple part-

ners and only the mother maintains a close association with the offspring for several weeks

postpartum [21–27]. By contrast, the oldfield mouse P. polionotus is monogamous and bipa-

rental [21, 26, 28]. It also displays cooperative breeding, in which juveniles often stay in their

natal nest after weaning, contribute to care of subsequent litters, and disperse only short dis-

tances [23, 25, 26, 28]. Finally, the California mouse P. californicus is a territorially aggressive

species in which males and females form lifelong pairs with exclusive territories far from their

natal nest, and males show high levels of parental care [21, 25, 29, 30]. These four species there-

fore represent the two most abundant and widely distributed promiscuous species in the genus

and the only two known monogamous species in the genus.

Here we followed mating pairs of these species throughout their first reproductive cycle

and repeatedly measured four parental behaviors as well as recorded aggression towards pups

before mating, during pregnancy, and after parturition. We then compared the resulting

parental behavior trajectories across sexes and species to understand how they differ between

these monogamous and promiscuous species.

Materials and methods

Animal husbandry

We focused on four species of Peromyscus: P. maniculatus bairdii (eastern deer mouse, strain

BW), P. leucopus (white-footed mouse, strain LL), P. polionotus subgriseus (oldfield mouse,

strain PO), and P. californicus insignis (California mouse, strain IS). These outbred colonies

were originally established from animals of these strains obtained from the Peromyscus Genetic

Stock Center, University of South Carolina, and then maintained at Harvard University. They

were housed under 16 h light: 8 h dark at 22–23˚C. Smaller species (deer mouse, white-footed

mouse, oldfield mouse) were housed in individually-ventilated standard Allentown cages (28.5

cm long x 19 cm wide x 16 cm high; Allentown, Allentown, NJ, USA) with ~1 cm deep Ander-

son’s Bed-o-cob bedding (The Andersons, Inc., Maumee, OH, USA), while the larger species

(California mouse) was housed in large Allentown cages (43 cm long x 22 cm wide x 27 cm

high) with ~3 cm deep of bedding. Unmated animals were housed in social groups of two to

five individuals of the same species and sex, were fed ad libitum with LabDiet Prolab Isopro

RMH 3000 5P75 (LabDiet, St. Louis, MO, USA) and had unlimited access to water. Breeding

pairs were housed together from the moment they were paired until the end of the experimen-

tal period. They were fed irradiated PicoLab Mouse Diet 20 5058 (LabDiet, St Louis, MO,

USA) ad libitum and had free access to water. We provided all cages with 5 g/10 g (for small/

large species, respectively) of compacted cotton (Nestlet, Ancare, Bellmore, NY, USA), ~10 g/

30 g (small/large species, respectively) of paper fiber nesting material (Enviro-Dri, LBS Serving

Biotechnology, UK), and a polycarbonate translucent red hut/tunnel (small/large species,

respectively). All animal protocols were approved by the Harvard FAS Institutional Animal

Care and Use Committee.

Experimental timeframe and pairing

We started with 12 sexually naïve animals of each sex and strain. All experimental animals

were tested for their parental behaviors (see Parental behavior test below) at four reproduc-

tive states: (1) as sexually naïve animals before pairing (“virgin”), (2) after copulation had hap-

pened or was expected to have happened (see below; “mated”), (3) when the female was

expected to be in late pregnancy (“expecting”), and (4) after birth of the pups ("parent").
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The median time between the first test and pairing was 4 days (standard error ± 1 day, no

difference between species), and the median age of animals during the first test was 171 days

(standard error ± 7 days, no difference between species). All animals were tested only once at

each reproductive state because repeated exposure to pups can induce care for infants in some

laboratory rodents such as rats [32]. If a pair’s first litter did not survive more than three days,

we tested the parents after their second litter was born, which occurred for two pairs of deer

mice and one pair of white-footed mice. If a pair did not give birth to a surviving litter during

the experimental period, we excluded it from the statistical analysis of parental behaviors. This

resulted in sample sizes of 9 white-footed mouse pairs, 8 deer mouse pairs, 8 oldfield mouse

pairs, and 7 California mouse pairs. For our measure of adult attacks on pups, we analyzed all

48 breeding pairs.

We monitored mating for three nights after pairing using the procedure described below

(see Mating monitoring below). If we witnessed mating, the second series of tests was per-

formed on days 1–2 post-mating. If we did not see evidence of mating, tests were performed

after 5 nights (smaller species) or 6–7 nights (larger species), as this represents the approximate

duration of an estrous cycle for these species, thus allowing the opportunity for mating during

the receptive phase [33–35]. Of the 10 pairs in which we did not witness copulation, 5 gave

birth to a surviving litter; the others either had no litter at all or dead litters (cause of death

unknown). The third test for each animal was done on day 21 after mating or after the 5th

night post-pairing if mating was not observed (smaller species), or on day 28 after mating or

after the 6th night if mating was not observed (larger species). The final test was performed

2–6 days after the first surviving litter was born.

Mating monitoring

We monitored mating using an in-house camera setup with a Raspberry Pi Zero and a Rasp-

berry Pi NoIR camera (Raspberry Pi Foundation, UK) mounted on the cages and powered by

a battery pack (see S1 File for a mounting tutorial). The Raspberry Pi was programmed to

record 8.25 hours of video from 5 minutes before the light turned off in the room housing the

mice to 10 minutes after the light turned on, as Peromyscus species are most active at night

[36]. The key components used to characterize mating were: chasing (the male runs after the

female), mounting, thrusting (the male’s hips move back and forth), and post-coital licking

(the male, and sometimes the female, lick their genitals after ejaculation). We considered mat-

ing to have occurred either if all the components were observed at least once, or if mounting

and thrusting were observed repeatedly overnight.

Parental behavior test

To characterize parental behavior, we followed a previously established assay [26], illustrated

in Fig 2A. In brief, we tested animals during the light phase of the daily cycle (Peromyscus
show similar levels of parental care in day and night [26]). Behavior testing ended at least 30

minutes before lights turned off. We first moved the animals with their home cage to a testing

room, at least 5 minutes prior to the start of the assay. When we tested virgin mice, we trans-

ferred any existing nest, the red hut/tunnel, food hopper and all animals except the test animal

from the home cage to a new one. When we tested breeding pairs, we carefully moved the

male (and pups if present) out of the home cage to a new cage with the red hut/tunnel, nest,

and part of his home bedding (to minimize the effect of this transfer on the observed behav-

iors), and left to habituate for 30 minutes while we first tested the female alone in her home

cage. After the female test ended, we placed the red hut/tunnel and the nest (and pups if pres-

ent) back with the female in the home cage, and tested the male’s behaviors in the new cage,
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after a further 30 minutes of habituation. This testing method minimizes stress to the male

from transfer back to its cage again before testing. Animals were tested separately because in

biparental species, partners can influence the degree of parental care the other parent provides

[37, 38]. All animals were tested by the same experimenter.

To begin each behavioral assay, we gave the test individual ~0.625 g/2.5 g (small/large spe-

cies, respectively) of compacted cotton (denoted as time 0). After 30 minutes, we placed an

unfamiliar conspecific pup inside the cage, ~20 cm away from both the nest and the test indi-

vidual. Pups were from other litters within the breeding colony and of a median age of 5 days

Fig 2. Parental behaviors in four Peromyscus species and across four reproductive states. (A) Schematic of behavioral assay showing the time and

behaviors measured at each assay step. Male (blue) and female (red) trajectories as measured by (B) time spent huddling (seconds); (C) time spent

licking pups (seconds); (D) fraction of pups retrieved to the nest; (E) nest quality score (from 0 to 4). Bars denote the median. st, main effect of

reproductive state; s, main effect of sex; st × s, interaction between reproductive state and sex by linear mixed models (P< 0.05) see Materials and

methods for details). Sample sizes (in pairs): white-footed mice, n = 9; deer mice, n = 8; oldfield mice, n = 8; California mice, n = 7.

https://doi.org/10.1371/journal.pone.0276052.g002
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(standard error ±0.07 days). This approach allowed us to test in a consistent way the parental

behaviors of animals before and after they have their own pups. Peromyscus parents provide

the same level of parental care towards familiar and unfamiliar infants [26]. For the next 20

minutes, we recorded the total time the test animal huddled the pup (i.e., when the test animal

covered at least 50% of the pup’s body with its own body) and the time spent licking the pup.

We also recorded when the pup was retrieved by the test mouse (i.e., when the test animal

picked up the pup with its mouth and transported it). At minute 50, we scored the nest quality

using the scoring system described below and removed the pup for 10 seconds, then added it

back to the cage for 2 minutes (with the same placement strategy as described above) to deter-

mine whether the pup would be retrieved again. We repeated this procedure twice more for a

total of 4 pup retrieval trials, and then ended the trial.

The observer scored each assay ~100–150 cm away from the cage by observing the cage

directly while video-recording the test from the opposite side of the cage to allow for later veri-

fication if the behavior was not fully clear from the perspective of the observer. When possible,

the same pup was not used for two consecutive tests. When the availability of pups was limited,

we left the pup for 10 minutes in an incubator at 37˚C between two tests. At the end of the

trial, we returned the pup to its parents and ensured that it was cared for (licked and/or

retrieved by a parent). In the event of a pup attack (the test individual bites the pup), we imme-

diately stopped the assay, removed the pup, and did not reuse that pup in subsequent trials.

All attacks were confirmed by the presence of bite marks or blood on the pup. The pup was

returned to its parents and we observed the parents’ behavior to ensure the pup was taken care

of (licked and huddled).

Nest quality score

To quantify nest-building behavior, we used an established scoring system [26]: 0 = nesting

material is untouched; 1 = all of the nesting material is shredded and scattered; 2 = nesting

material is shredded and gathered in a platform; 3 = nesting material is shredded, gathered in

a nest and forms walls that are as high as the test animal; 4 = nest covers the entire animal

including a complete roof. Nests that were between two discrete categories were given an inter-

mediate score. All nests were scored by a single researcher for consistency.

Data analysis

All the raw data is provided in S2 File. Statistical analyses were performed in the R language

and environment [39]. We tested for normality using the Shapiro-Wilk test and visually evalu-

ated the distribution of the data using qq-plots. Because Bendesky et al. [26] found low genetic

correlations between each parental behavior in two of the species we tested, we conducted sep-

arate analyses of each behavior: huddling, licking, pup retrieval, and nest quality. None of the

behaviors were normally distributed, so we log transformed the data for analysis, after adding

a small constant value to avoid taking the log of 0. Each parental behavior was then analyzed

using linear mixed-effects models with a Gaussian distribution using the package lme4 (v1.1–

27.1; [40]) including the main effects of group (mating system or species), sex, and reproduc-

tive state (virgin, mated, expecting, parent), all 2- and 3-way interactions between these vari-

ables, and the random effect of individual. We first ran models with the fixed effect of mating

system, then performed separate analyses within monogamous and promiscuous groups to

test for an effect of species.

We tested for 2-way interactions as follows: (1) significant reproductive state × sex, to test

for an effect of reproductive state and sex within group (mating system or species), (2) signifi-

cant group × state effect, to test for the effect of reproductive state and group within sex, and
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(3) significant group × sex, to test for the effect of group and sex within reproductive state, fol-

lowed by pair-wise comparisons. Wald chi-squared tests were used to generate analysis-of-

deviance summary tables using the car package (3.0–12; [41]). The α level was set at P� 0.05.

Infanticidal behaviors occurred too infrequently for statistical analysis.

Results

Trajectories of parental behavior in promiscuous species

In promiscuous deer mice and white-footed mice, both males and females displayed very little

to no huddling and licking behaviors prior to the birth of pups (Fig 2B and 2C). When pups

were born, only mothers significantly huddled and licked the pups (reproductive state × sex,

P< 0.001 in each species for each behavior). Deer mouse males retrieved a median of zero

pups across reproductive states and females retrieved at high rates only after the birth of their

pups (female reproductive state P< 0.001; Fig 2D). Unexpectedly, pup retrieval in white-

footed mice of both sexes showed a J-shape, with moderate levels before mating followed by a

decrease after mating and highest levels after giving birth to pups (reproductive state

P< 0.001; Fig 2D). Males of both promiscuous species were poor nest-builders (Fig 2E). Deer

mouse females also barely built a nest at any reproductive state, whereas white-footed mouse

females increased their nest building after mating (white-footed female reproductive state

P = 0.003) (Fig 2E). These behavioral patterns are overall consistent with a model of maternally

biased investment in offspring predicted for promiscuous species.

Trajectories of parental behavior in monogamous species

In California mice, huddling increased from a median of zero seconds in both sexes before

parturition to over 1,000 seconds after birth. In this species, licking also increased from a

median of 0 seconds before birth to ~150 seconds after birth (Fig 2C). Unexpectedly, the

increase in huddling in oldfield mice was not a sudden change after birth of their litter, but

rather a gradual increase after mating, especially in males. Before becoming parents, males

huddled with pups less than females (main effect of sex P = 0.01), but after the birth of their

pups, huddling became indistinguishable between the sexes (P = 0.17; Fig 2B). Licking behav-

ior was different in oldfield mouse females and males (P = 0.001; Fig 2C): females decreased

pup licking from a high level of ~400 seconds before birth to ~50 seconds after birth, while

males showed the opposite pattern from ~20 seconds of licking before birth to ~150 seconds

after birth (more similar to the transition observed in California mice). The stage at which

huddling and licking behavior emerged differed significantly by species

(species × reproductive state P< 0.001 for each behavior; Fig 2B and 2C), indicating that these

two monogamous species follow two distinct trajectories towards biparental care.

The trajectories of pup retrieval closely mimicked those of huddling, without overall sex dif-

ferences (sex P = 0.26; reproductive state × sex P = 0.09; Fig 2D): In oldfield mice, the increase

in retrieval in both sexes was gradual following mating, peaking after the birth of pups (repro-

ductive state P< 0.001; sex P = 0.10; sex × reproductive state P = 0.65; Fig 2D), while in Cali-

fornia mice both males and females had an abrupt transition from retrieving no pups before

giving birth to retrieving a median of 80% of pups after birth. We did not observe any post-

parturition differences between males and females in this species in huddling (sex P = 0.70;

sex × reproductive state P = 0.96), licking (sex P = 0.72; sex × reproductive state P = 0.85) or

pup retrieval (sex P = 0.54; sex × reproductive state P = 0.68). Thus, parental investment in

California mice is not exhibited until the birth of pups and does not differ between the sexes.

In oldfield mice, there was a robust increase in nest building in females after giving birth

(reproductive state P = 0.006), which contrasted with the more gradual changes in their other
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parental behaviors, while males had low nest building across all reproductive states (male

reproductive state P = 0.193; sex × state P = 0.001; Fig 2E). In California mice, males and

females built more elaborate nests as parents than before mating (reproductive state P< 0.001;

Fig 2E).

Trajectories of infanticidal behavior

All four species showed some aggression towards pups before the birth of their own pups, but

never after they had a litter (Fig 3). Adult attacks on pups were recorded in up to 25% of male

and female deer mice and white-footed mice before the birth of their pups. Of all four species,

California mice had the highest infanticide rate, with 50% of females and 33% of males attack-

ing pups before the birth of their own young (Fig 3). By comparison, in oldfield mice, only

17% of females and 8% of males attacked pups before parturition.

Fig 3. Infanticidal behaviors in four Peromyscus species and across four reproductive states. Circles denote

behavior of male (blue) and female (red) mice (filled: attacked the pup; empty: no attack). Pairs that did not produce a

litter that survived to at least the third day were not tested as parents (denoted by crosses). The behavior of individual

mice across reproductive states can be tracked horizontally. All experimental pairs are included as virgin, mated and

expecting mice (n = 12 pairs for each species).

https://doi.org/10.1371/journal.pone.0276052.g003
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Discussion

In mammals, parental care strategies can vary tremendously among species, and this variation

has been most tightly correlated with differences in mating system [4]. For example, in species

in which females usually mate with a single male (genetic monogamy), a male has high cer-

tainty of paternity, incentivizing his care of the young. In addition, ecological factors that affect

the relatedness of individuals across space can shape the indirect fitness animals derive by car-

ing for young that are genetically related but not their own [42]. Here, we examined parental

care before and after critical reproductive events across four closely related deer mouse species

that have either a monogamous or promiscuous mating system as well as vary in typical dis-

persal distance and social structure.

Overall, promiscuous deer mice showed the least parental behavior of the four species

under study. Consistent with Bendesky et al. [26], in this species only females spent a substan-

tial amount of time engaging in parental behavior after parturition, while males rarely inter-

acted with pups either before or after mating. In the wild, the home ranges of deer mouse

males usually overlap with those of multiple females [33, 43], and females often have litters

sired by multiple males [43]. Given the low certainty in paternity, coupled to the opportunities

for additional matings, males may benefit from seeking those new mating opportunities rather

than investing in paternal care of their mates’ pups, which may not be their own.

In the second promiscuous species, white-footed mice, fathers also spent little time licking

and huddling their pups. However, the nest building was higher in both sexes of white-footed

mice than in deer mice. The relatively high levels of pup retrieval that some white-footed

mouse males displayed were unexpected, since in two studies conducted in a natural setting,

male white-footed mice provided no care to their litter and were aggressively excluded from

the nest by their mate ([22, 24] and citations therein). This discrepancy might reflect some

behavioral plasticity related to testing conditions, as male white-footed mice have shown

parental care behaviors in other laboratory studies (e.g. [44]). A similar phenomenon has been

described in the promiscuous montane vole (Microtus montanus), in which males provide no

care to their litter in the wild, whereas they often contribute to nest building and to pup

retrieval in captivity [45], suggesting that ecological constraints on these species can shape the

expression of parental behavior. Alternatively, genetic variation among white-footed mouse

populations could contribute to different behavioral outcomes. Indeed, variation in parental

and mating systems has been observed in wild white-footed mice ([33] and citations therein),

in which different populations and subspecies display various levels of biparental care. Thus,

our results support the idea that white-footed mouse males can show paternal behaviors under

some circumstances.

By contrast, monogamous oldfield mice showed relatively high levels of parental care at all

reproductive states, especially by females, uncovering high levels of pre-mating alloparental

care that were not known in this species. These results are consistent with evidence that old-

field mice are cooperative breeders in the wild, where subadults often remain in their natal

burrow alongside their parents and the subsequent litter [28, 46]. Through the rearing of a

younger litter of siblings, juveniles (especially females) become more successful parents while

increasing indirect fitness benefits [46]. Since mice in our experiments were not exposed to

younger siblings in their natal cage, our results suggest that this strong tendency for alloparen-

tal care may have a genetic basis.

An ecological link to the oldfield mice care for pups that are not their own, before parent-

hood, may be the limited dispersal and lack of territoriality of this species in the wild. Two

studies on the Alabama beach mouse (P. polionotus ammobates) described the dispersal of sub-

adults as short movements away from their natal home range, on average less than 200 meters
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[47, 48]. In addition, neighboring home ranges are non-exclusive and therefore overlap with

those of close relatives [47, 48]. Thus, mice might increase their inclusive fitness by caring for

unfamiliar pups they encounter, as they are likely to be close relatives. A similar scenario

occurs in the prairie vole (Microtus ochrogaster): In this species, dispersal is limited, and

unmated individuals display spontaneous alloparental behaviors regardless of prior experience

with pups [49, 50]. As in oldfield mice, philopatry provides indirect fitness benefits to sub-

adults [28, 51, 52].

In contrast to oldfield mice, California mice—the other monogamous species we studied—

were rarely parental before birthing young and were rather aggressive towards pups before

they had their own litter. These results are consistent with the territoriality and spacing pat-

terns of this species in the wild. California mice are an aggressively territorial species, and the

adjacent home ranges of mating pairs are strictly exclusive, ranging from a few hundreds to

several thousands of square meters [33, 53]. Females are particularly territorial and typically

avoid breeding within their natal home range [54]. These characteristics make it likely that

unfamiliar pups found within the home range of an adult are that of unrelated intruders. As a

result, an unmated adult California mouse would not benefit from caring or tolerating unfa-

miliar pups they encounter after they leave their natal nest. This idea is supported by the rela-

tively high rate of infanticidal attacks observed here and reported previously [10].

Part of the behavioral differences between groups may result from variation in stress toler-

ance among sexes, species, and reproductive states. For instance, in California mouse fathers,

replacing a cage’s lid can inhibit paternal behaviors, even after 10 minutes of habituation [55,

but see 56 where virgins do not show that response after 15 minutes of habituation]. We

expect, however, that our 60 minutes of habituation were enough to mitigate the effects of

stress. Sex differences may also have been influenced by our testing protocol, which was

designed to minimize animal stress: While females were tested in their home cage, males were

habituated for 60 minutes in a new cage and then tested in that cage.

Together, our comparative within-subjects study of parental behaviors across Peromyscus
species under common, controlled laboratory conditions confirm that promiscuous species

take little to no care of unfamiliar pups until their own litter is born, and only mothers display

robust care for infants. In addition, we show that two species, which diverged approximately

10 million years ago and evolved monogamy independently, strongly differ in their trajectories

towards high maternal and paternal care. This suggests that the genes and molecular mecha-

nisms underlying the onset of parental care behaviors might differ between these species and

that there is more than one way to make a dedicated father, even within a genus.

Supporting information

S1 File. Mating monitoring with the Raspberry Pi Zero. This tutorial describes how to con-

struct a home-made set up to record up to 9 hours of video of a standard Allentown mouse or

rat cage in the dark (includes S1–S6 Figs).

(DOCX)

S2 File. Raw data. This excel file contains all the raw behavioral data collected for this study

and used for making the figures and statistical analyses.

(XLSX)

S1 Fig. Individual variation in parental behaviors across four reproductive states. Male

(blue) and female (red) trajectories as measured by (A) Time spent huddling (seconds); (B)

time spent licking pups (seconds); (C) fraction of pups retrieved to the nest; (D) nest quality

score (from 0 to 3). Individuals have unique line types. st, main effect of reproductive state; s,
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main effect of sex; st × s, interaction between reproductive state and sex by linear mixed mod-

els (P< 0.05; see Fig 2 and Materials and methods for additional details). Sample sizes (in

pairs): white-footed mouse, n = 9; deer mouse, n = 8; oldfield mouse, n = 8; California mouse,

n = 7.

(TIFF)
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