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Objective: Frontotemporal dementia (FTD) is characterized by behavioral disturbances and language problems.
Familial forms can be caused by genetic defects in microtubule-associated protein tau (MAPT), progranulin
(GRN), and C9orf72. In light of upcoming clinical trials with potential disease-modifying agents, the development
of sensitive biomarkers to evaluate such agents in the earliest stage of FTD is crucial. In the current longitudinal
study we used arterial spin labeling MRI (ASL) in presymptomatic carriers of MAPT and GRN mutations to
investigate early changes in cerebral blood flow (CBF).
Methods: Healthy first-degree relatives of patients with aMAPT or GRNmutation underwent ASL at baseline and
follow-up after two years.We investigated cross-sectional and longitudinal differences in CBF betweenmutation
carriers (n = 34) and controls without a mutation (n = 31).
Results: GRN mutation carriers showed significant frontoparietal hypoperfusion compared with controls at
follow-up, whereaswe foundno cross-sectional group differences in the total study group or theMAPT subgroup.
Longitudinal analyses revealed a significantly stronger decrease in CBF in frontal, temporal, parietal, and
subcortical areas in the total group of mutation carriers and the GRN subgroup, with the strongest decrease in
two mutation carriers who converted to clinical FTD during follow-up.
Interpretation: We demonstrated longitudinal alterations in CBF in presymptomatic FTD independent of grey
matter atrophy, with the strongest decrease in individuals that developed symptoms during follow-up. There-
fore, ASL could have the potential to serve as a sensitive biomarker of disease progression in the presymptomatic
stage of FTD in future clinical trials.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction
Frontotemporal dementia (FTD) is the secondmost common formof
presenile dementia, characterized by behavioral disturbances and
language disorders,which is caused by neurodegeneration of the frontal
and temporal lobes (Rascovsky et al., 2011; Seelaar et al., 2011a). Muta-
tions in microtubule-associated protein tau (MAPT), progranulin (GRN)
and C9orf72, and, less frequently, CHMP2B and VCP can cause an autoso-
mal dominant form of FTD (Renton et al., 2011; DeJesus-Hernandez et
al., 2011; Baker et al., 2006; Hutton et al., 1998; Skibinski et al., 2005;
Watts et al., 2004). There is currently no therapy available to
prevent or cure the disease, but knowledge on the pathophysiological
disease process is rapidly growing. As a result, clinical trials with
disease-modifying agents are upcoming, urging the need for sensitive
biomarkers to evaluate such therapies (Tsai and Boxer, 2014). We
have previously shown changes in neuropsychological performance,
white matter integrity and functional connectivity in the presymptom-
atic stage of FTD (Dopper et al., 2014).

Positron emission tomography with 18F-fluorodeoxyglucose (FDG-
PET) is often suggested as a useful biomarker for the earliest stage of
FTD. Hypometabolism in the frontal and anterior temporal lobes, and
subcortical regions, is consistently seen in FTD patients (Ishii et al.,
1998; Jeong et al., 2005; Diehl et al., 2004; Grimmer et al., 2004), as
well as progression over time (Grimmer et al., 2004). Moreover,
presymptomatic GRN mutation carriers already showed regional
hypometabolism on FDG-PET, supporting its potential to detect
functional brain changes in a very early stage (Jacova et al., 2013).
However, FDG-PET has several serious disadvantages to be used as a
biomarker for FTD, including the high costs, invasiveness, limited
availability of PET-scanners and the need for exposure to a radioactive
tracer (Wolk and Detre, 2012).

Arterial spin labeling MRI (ASL) provides a non-invasive measure of
brain perfusion bymagnetically labelingwater protons in arterial blood,
thereby creating an endogenous tracer of cerebral blood flow (CBF),
which is assumed to be tightly coupled to brain metabolism (Wolk
and Detre, 2012). ASL studies in patients with FTD have provided highly
similar results as FDG-PET studies with hypoperfusion in bilateral fron-
tal lobes, the anterior cingulate cortex, insula, and thalamus compared
with controls (Binnewijzend et al., 2014; Du et al., 2006; Hu et al.,
2010; Shimizu et al., 2010; Zhang et al., 2011; Steketee et al., 2015).
Besides one small study in presymptomatic CHMP2B mutation carriers
showing widespread hypoperfusion in hippocampus, temporal,
parietal, and occipital lobes compared with controls by means of spin
echo contrast agent perfusion MRI (Lunau et al., 2012), CBF has not
been investigated in the presymptomatic stage of FTD thus far.

In the current studywe used longitudinal ASL to study early changes
in CBF in presymptomatic carriers ofMAPT and GRNmutations to inves-
tigatewhether ASL has the potential to serve as a sensitive biomarker to
detect FTD and track disease progression in the earliest disease stage.

2. Materials and methods

2.1. Participants

This study is part of a larger project investigating biomarkers in
individuals at risk for FTD (Dopper et al., 2014). Healthy first-degree rel-
atives (aged 20–70 years) of patients with FTD due to a GRN or MAPT
mutation were included in this study. Subjects were excluded in case
of MRI contraindication (n = 6), history of drug abuse (n = 2), or
other neurologic (n = 1) or psychiatric (n = 1) disorders. The drug
abuse or psychiatric disorders were not related to FTD, since it was ei-
ther associated with non-carriership or there was no progression of
symptoms over time. No subjects from families with the C9orf72 repeat
expansionwere included, since this gene defectwas not yet identified at
the start of this study (2010). DNA of all subjects was screened (Seelaar
et al., 2008), resulting in a group of presymptomatic individuals with a
MAPT or GRN mutation and a group of controls without a mutation. All
participants were studied at baseline and two-years follow-up. In
total, 73 participants underwent baseline and follow-up ASL-MRI
scans, however, eight subjects had to be excluded from the analyses
because of labeling errors or major artefacts at baseline (n = 3) or
follow-up (n = 5), leaving in total 65 participants. We investigated
cross-sectional differences in CBF between mutation carriers and
controls at baseline and follow-up. Moreover, we investigated
between-group differences in longitudinal CBF changes. All analyses
were ran for the entire group of mutation carriers versus controls, and
separately for subjects fromMAPT (n=18) and GRN (n=47) families.
Subsequently, we evaluated single-subject data. Conversion to symp-
tomatic FTD was diagnosed according to established clinical criteria
(Rascovsky et al., 2011; Gorno-Tempini et al., 2011). The local ethics
committee approved the study and all participants provided written
informed consent.

2.2. Neuropsychological assessment

All participants were screened using the Mini-Mental State Exami-
nation (MMSE) (Folstein et al., 1975) the Beck Depression inventory II
(BDI-II) (Beck et al., 1996) and an extensive neuropsychological assess-
ment including the Dutch version of the Rey Auditory Verbal Learning
Test (RAVLT) (Rey, 1958), Visual Association Test (VAT) (Lindeboom
et al., 2002), WAIS III subtests digit span, similarities, and block design
(Wechsler, 1997; Wechsler, 2005), Trailmaking Test (TMT) (Battery,
1994), Stroop color-word test (Stroop, 1935), categorical and letter
fluency (Thurstone and Thurstone, 1962), modified Wisconsin Card
Sorting Test (WCST) (Nelson, 1976), Letter Digit Substitution Test
(LDST) (Jolles et al., 1995), Boston Naming Test (BNT) (Kaplan et al.,
1978), Semantic Association Test (SAT) (Visch-Brink et al., 2005),
ScreeLing phonology (Doesborgh et al., 2003), clock drawing (Royall)
(Royall et al., 1998), Ekman faces (Ekman and Friesen, 1976), and
Happé Cartoons (Happe et al., 1999).

2.3. Image acquisition

MRI scans were acquired using a Philips 3.0 Tesla Achieve MRI
scanner (Philips Medical Systems, Best, The Netherlands) using an
eight-channel SENSE head coil. We obtained pseudo-continuous ASL
scans using single-shot echo-planar imaging (EPI) with a background
suppression scheme, consisting of a saturation pulse directly before
labeling and inversion pulses at 1680 and 2830 ms after the saturation
pulse. The following acquisition parameters were applied: repetition
time = 4020 ms, echo time = 14 ms, label duration = 1650 ms,
postlabeling delay = 1525 ms, 17 slices, voxel size = 3 × 3 × 7 mm,
40 pairs of label and control images, total scan duration = 5.5 min.
The labeling plane was oriented perpendicular to the carotid arteries.
Furthermore,we acquiredwhole brain T1-weighted images for registra-
tion purposes as described previously (Dopper et al., 2014).

2.4. Image analyses

We used in-house developed MATLAB (Matrix laboratory http://
www.mathworks.nl/products/matlab/) scripts to convert the raw scan-
ner data to NIfTI files. The remaining analyses were carried out in FSL
(FMRIB's Software Library, www.fmrib.ox.ac.uk) (Smith et al., 2004).
First the raw ASL images were motion corrected and brain-extracted.
Then the perfusion weighted maps, i.e. CBF images, were calculated by
pairwise subtraction of control from label images and averaging these
images across time. These CBF maps were then registered to the
anatomical scans and to MNI-152 (T1 standard brain averaged over
152 subjects; Montreal Neurological Institute, Montreal, QC, Canada)
standard space, and smoothed with an isotropic Gaussian kernel of
3.4 mm. The derived CBF images were divided by the mean perfusion
in the occipital pole, a region typically spared in FTD (Ishii et al., 1998;
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Table 1
Demographic features.

Controls (n= 31) Carriers (n= 34) p-value

Age t1, y 51.0 (10.3) 50.1 (9.7) 0.696
Years till mean onset age onset in
affected family members, y

–7.4 (8.9) –7.4 (8.4) 0.988

Interval t1–t2, y 2.3 (0.1) 2.2 (0.1) 0.460
Females 52% 62% 0.409
GRN mutationa – 68% –
Level of educationb 5.3 (1.0) 5.7 (0.8) 0.064
MMSE score t2 29.2 (1.3) 28.7 (1.9) 0.231
MMSE Δt1–t2 0.0 (1.3) 0.6 (1.6) 0.109
BDI score t2 3.5 (3.7) 2.9 (4.0) 0.592
BDI Δt1-t2 0.1 (2.8) 0.1 (3.2) 0.943

GRN = progranulin; MMSE = Mini-Mental State Examination; BDI = Beck Depression
Inventory.
Values denote mean (SD) or percentage of subjects.

a Remaining mutation carriers have a microtubule-associated protein tau (MAPT)
mutation.

b Level of educationwas determined on a Dutch 7-point scale ranging from 1 (less than
elementary school) to 7 (university or technical college) (Verhage, 1964).
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Du et al., 2006), to account for global variations in CBF independent of
the disease process. We subtracted follow-up CBF images from baseline
maps per subject in order to obtain maps of changes in perfusion over
time for repeated measures analyses as implemented in FSL (see http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM#Experimental_Designs_-_Repeated_
measures).

We investigated cross-sectional differences between mutation car-
riers and controls at baseline and follow-up, and longitudinal group dif-
ferences in change over time by means of permutation-based testing
using 5000 permutations, applying a 2-sample t-test with age, gender
and voxel-wise grey matter volume (baseline grey matter volume for
baseline analyses and follow-up grey matter volume for follow-up and
longitudinal analyses) as confound regressors, to compare regional
CBF betweenmutation carriers and controls independent of greymatter
atrophy. We thresholded the statistical images at p b 0.05, corrected for
multiple comparisons using threshold-free cluster enhancement (Smith
and Nichols, 2009). The analyses were restricted to grey matter voxels
that were covered by the ASL scan in all participants.
2.5. Statistical analyses

We analyzed demographic features using independent samples
t-tests and Pearson's χ (Seelaar et al., 2011a) tests in SPSS 21.0 for
Windows (SPSS, Chicago, IL), applying a significance level of p b 0.05.
We investigated correlations between neuropsychological performance
and cerebral blood flow by means of linear regression analyses.
Fig. 1. Significant cross-sectional CBF differences betweenGRNmutation carriers and controls at
with controls. Color bar represents p-values corrected for multiple comparisons.
3. Results

3.1. Demographic features

DNA screening revealed a GRN mutation in 23 at-risk individuals, a
MAPT mutation in 11 and no mutation in 31 subjects (control group).
The total groups of mutation carriers and controls did not differ in age,
time between MRI scans, gender, level of education, and scores on
MMSE and BDI (Table 1). GRN andMAPTmutation carriers were respec-
tively 7.9 ± 7.5 and 6.4 ± 10.5 years younger than the mean onset age
in their affected family members (p = 0.630). Two mutation carriers,
one with a MAPTmutation and one with a GRNmutation, converted to
the clinical stage of behavioral variant FTD during the follow-up period
as demonstrated by behavioral disturbances reported by their relatives
and a significant cognitive decline at neuropsychological examination.

3.2. Cerebral blood flow – cross-sectional

There were no significant group differences at baseline for the total
study group or the GRN and MAPT subgroups. However, GRN mutation
carriers showed significantly lower CBF in the frontal pole, superior
frontal gyrus, paracingulate gyrus, posterior (mid)cingulate gyrus,
precuneus, and thalamus compared with controls at follow-up (Fig. 1,
Supplementary Table 1). We found no significant group differences in
the total group or theMAPT group at follow-up.

3.3. Cerebral blood flow - longitudinal

In longitudinal analyses the total group of mutation carriers showed
a significantly stronger decrease in CBF over time compared with con-
trols in widespread frontal, temporal, parietal, and subcortical regions
(Fig. 2a, Supplementary Table 2). TheGRN carrierwho converted to clin-
ical FTD showed the largest decrease in CBF in all significant clusters,
with the second strongest decline in the converted MAPT carrier in
three out of five significant clusters including frontal and right medial
temporal regions (clusters 2, 3, and 5 in Supplementary Table 2)
(Fig. 3). However, the abovementioned findings were not solely driven
by the converters, as excluding them from the analyses still resulted in
similar, albeit smaller, significant differences between carriers and
controls.

GRN mutation carriers showed largely similar longitudinal differ-
ences as the total group of mutation carriers, although less significant
(Fig. 2b, Supplementary Table 3), whereas we found no significant
longitudinal differences for the MAPT group.

Restricting the cross-sectional analyses for the total group to the
significant clusters in the longitudinal analyses revealed lower CBF in
mutation carriers compared with controls in the superior frontal
gyrus, left temporal pole, frontal orbital cortex, middle and superior
follow-up.Maps illustrate clusters of significantly lower CBF inmutation carriers compared

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM#Experimental_Designs_-_Repeated_measures
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM#Experimental_Designs_-_Repeated_measures
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/GLM#Experimental_Designs_-_Repeated_measures


Fig. 2. Significant longitudinal CBF differences between mutation carriers and controls in the total study group (A) and the GRN subgroup (B). Maps illustrate clusters of significantly
stronger decline in CBF over time in mutation carriers compared with controls. Color bar represents p-values corrected for multiple comparisons.
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temporal gyrus, right temporal fusiform cortex, parahippocampal gyrus,
hippocampus, and thalamus at follow-up (Supplementary Table 4),
whereas we still found no group differences at baseline. Again,
without the two converters, these differences were smaller, but still
significant.

3.4. Correlation between cerebral blood flow and neuropsychological
performance

Exploratory correlation analyses revealed that worse performance
on the RAVLT recognition subtask was associated with decreased CBF
in the left (medial) temporal and frontal cortex, TMT B with frontal, an-
terior cingulate, and right medial temporal hypoperfusion, categorical
fluency andWCSTwith right and left medial temporal lobe respectively,
Fig. 3. Individual values of decline in CBF over time in cluster 2 (superior frontal gyrus, frontal p
representsmutation carriers and the yellow line control subjects. For reasons of anonymity indiv
aMAPTmutation and the green arrow to the converter with a GRNmutation. (For interpretation
this article.)
and BNT and Ekman faces with decreased CBF in the frontal cortex
(Supplementary Table 5). However, these correlations are no longer
significant after correction for multiple testing.

4. Discussion

The present study is the first to show that significant decrease in CBF
in frontal, temporal, parietal and subcortical regions during two years of
follow-up can be detected by ASL in presymptomatic carriers of GRN
and MAPT mutations compared with controls independent of grey
matter atrophy. Interestingly, the two subjects that have converted to
clinically manifest FTD showed the strongest decline in perfusion in
these regions. We found no cross-sectional group differences at base-
line, but mutation carriers demonstrated significantly lower CBF in
ole, anterior cingulate cortex, paracingulate gyrus (Supplementary Table 2)). The blue line
idualmutation status is not shown. The orange arrowpoints to the converted subjectwith
of the references to color in this figure legend, the reader is referred to the web version of
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these regions at follow-up. These findings underline the value of ASL in
detecting early changes in brain perfusion in FTD, which could be used
to evaluate future therapies in clinical trials.

Our findings of a longitudinal CBF decline in frontal and subcortical
regions in mutation carriers is in line with previous cross-sectional
ASL studies in patients with FTD (Binnewijzend et al., 2014; Du et al.,
2006; Hu et al., 2010; Shimizu et al., 2010; Zhang et al., 2011; Steketee
et al., 2015). Frontal hypoperfusion has been correlated with behavioral
disturbances (Du et al., 2006). In contrast to most previous studies, we
also found a longitudinal decrease in temporal and parietal CBF in the
current presymptomatic mutation carriers. The discrepancy regarding
temporal hypoperfusion between the present and previous studies,
might be explained by incomplete brain coverage in previous ASL
studies (Du et al., 2006; Shimizu et al., 2010), since our finding is
supported by FDG-PET studies in patients with FTD, demonstrating
hypometabolism in the anterior temporal lobes (Ishii et al., 1998;
Jeong et al., 2005). The longitudinal decrease in posterior temporal
and parietal perfusion is probably mostly driven by the GRN mutation
carriers, as GRN mutations have consistently been shown to affect
more posteriorly located brain regions as well (Le Ber et al., 2008;
Rohrer et al., 2008; Seelaar et al., 2011b), which is supported by our
findings in the separate GRN analyses. Not surprisingly, the GRN
converter only, and not the converted subject with a MAPT mutation,
showed the strongest decline in these posteriorly located areas. On
the other hand, parietal hypometabolism was not found in a previous
FDG-PET study in presymptomatic GRN mutation carriers, and parietal
damage was suggested to be a later phenomenon in the disease process
than frontotemporal involvement (Jacova et al., 2013). However, our
finding of hypoperfusion in the precuneus and posterior cingulate cor-
tex in GRN carriers at follow-up underlines that parietal alterations
can occur at an early disease stage in GRN carriers.

Thefinding that the twomutation carriers that developed symptoms
of FTD during follow-up showed the strongest decline in CBF suggest
that the hypoperfusion is related to disease severity. This is further
supported by the correlations between decreased CBF and worse per-
formance on several neuropsychological tests that are typically affected
in early FTD, although these results were not significant after correction
for multiple testing. Therefore, further studies are needed to confirm
this correlation between CBF and neuropsychological performance.

Although we found no significant group differences for the smaller
MAPT group, the strong decline in CBF in frontal and subcortical areas
in the MAPT converter together with the less significant results in the
longitudinal analyses of GRN mutation carriers only compared to the
total study group differences, suggest similar CBF alterations over time
in presymptomatic MAPT carriers. The lack of significant differences in
the MAPT subgroup could be due to a lack of power. Therefore, larger
study groups are needed to define the exact distribution of hypoperfu-
sion in MAPT carriers.

In contrast to the present study, a more widespread hypoperfusion
pattern including temporal, parietal, and occipital lobes was found
using spin-echo contrast agent perfusion MRI in presymptomatic
CHMP2B mutation carriers (Lunau et al., 2012). However, this likely
reflects grey matter atrophy in this genetic group, as correction for
grey matter volume was not applied in these subjects, who were
previously shown to have generalized atrophy in the presymptomatic
stage (Rohrer et al., 2009).

Our longitudinal analyses suggest that ASL is a promisingmeasure of
disease progression around the time of symptomonset, possibly even at
the individual level. However, based on current findings CBF does not
provide an accurate predictor for disease conversion at baseline, since
values of the two converted subjects were still within the normal
range at that time. This contrasts findings in Alzheimer's disease (AD)
showing an association between baseline perfusion and subsequent
cognitive deterioration in healthy elderly and in patients withmild cog-
nitive impairment (Chao et al., 2010; Xekardaki et al., 2015). The low
number of converters in the current study might have hampered the
identification of baseline predictors. However, it is also possible that
changes in CBF occur earlier in AD compared to FTD, as suggested in a
previous ASL study in AD and FTD (Du et al., 2006).

Several major advantages of ASL over FDG-PET for the use in future
clinical trials were already mentioned, including the lower costs, its
non-invasiveness, the absence of radiation exposure, and the fact that
MRI scanners are more widely available compared to PET scanners.
Moreover, ASL can be easily combined with other MRI techniques in a
single session. We previously demonstrated presymptomatic alter-
ations in white matter integrity and functional connectivity using diffu-
sion tensor imaging and resting-state fMRI in the same cohort (Dopper
et al., 2014). Perhaps a combination of these threeMRI techniques could
further improve their sensitivity for measuring therapy effects in future
clinical trials. Itwould be interesting to compare sensitivity and specific-
ity of the different MRI techniques in a larger cohort such as the GENFI
initiative. A drawback of ASL is the huge diversity in acquisition
methods. Recently, an international consortium has published consen-
sus recommendations for ASL (Alsop et al., 2014), which will hopefully
result in a more standardized use of ASL, which is crucial for its use in
clinical trials.

Limitations to our study include the small number of converted
subjects and the lack of participants with C9orf72 repeat expansions.
Another important issue in both ASL and FDG-PET is the choice of a
reference region to correct for normal global variations in cerebral per-
fusion. The use of mean global perfusion for normalization has resulted
in regions of artifactual hyperperfusion (Hu et al., 2010; Dukart et al.,
2013; Yakushev et al., 2008). As the use of a non-affected region for nor-
malization seems to be more appropriate, we have used the occipital
pole as a reference region in the present study (Ishii et al., 1998; Du et
al., 2006). The cerebellum is also often used as a reference region
(Dukart et al., 2013), but was not always completely covered by the
field-of-view of our ASL protocol.

To conclude, we demonstrated longitudinal alterations in CBF in
presymptomatic carriers of MAPT and GRN mutations over two years
of time, which appear to be related to approaching symptom onset.
These findings suggest that ASL could provide a sensitive biomarker of
disease progression in the presymptomatic stage of FTD, which can be
useful for future clinical trials.
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