

Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Original GC/EI/MS total ion chromatograms of *Lemna* (*Lemna minor* L.) treated or not with metribuzin, glyphosate, and their binary mixtures

Sofia Kostopoulou ^{a, c}, Georgia Ntatsi ^{b, c}, Gerasimos Arapis ^d, Konstantinos A. Aliferis ^{a, e, *}

^a Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece

^b Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization ELGO-DEMETER, Thermi, Thessaloniki GR-57001, Greece

^c Laboratory of Vegetable Production Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece

^d Laboratory of Ecology and Environmental Sciences, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece

^e Department of Plant Science, McGill University, Macdonald Campus, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada

ARTICLE INFO

Article history: Received 14 August 2019 Received in revised form 8 September 2019 Accepted 24 September 2019 Available online 9 October 2019

Keywords: Combined toxicity Ecotoxicogenomics Phytotoxicity *Lemna* metabolomics

ABSTRACT

The GC/EI/MS metabolite profiles of *Lemna minor* L. plants were recorded following treatments with sub-lethal concentrations of the herbicidal active ingredients (a.i.) metribuzin and glyphosate, and various of their binary mixtures. The raw GC/EI/MS total ion chromatograms (*.cdf format) of the *Lemna*'s endo-metabolomes were recorded, which are included in this article. Since *Lemna* is a model organism in ecotoxicological studies, the dataset could serve as a reference for *Lemna* metabolomics studies related to the investigation of the effects of phytotoxic compounds and their mixtures on its metabolism. Also, the dataset could be a valuable resource for the discovery of validated biomarkers of the toxicity of mixtures. The dataset support the research article "*Kostopoulou* et al., *Assessment of the effects of metribuzin, glyphosate, and their*

DOI of original article: https://doi.org/10.1016/j.chemosphere.2019.124582.

* Corresponding author. Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 118 55, Athens, Greece.

E-mail address: konstantinos.aliferis@aua.gr (K.A. Aliferis).

https://doi.org/10.1016/j.dib.2019.104591

^{2352-3409/© 2019} Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

mixtures on the metabolism of the model plant Lemna minor L. applying metabolomics. "Chemosphere 239, 2020, 124582."

© 2019 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

Specifications Table

Subject	Agricultural and Biological Sciences (General)
Specific subject area	Ecotoxicology, ecotoxicogenomics
Type of data	Raw GC/EI/MS total ion chromatograms (*.cdf format)
How data were acquired	Untargeted GC/EI/MS metabolomics analysis
	Instrument: Agilent 6890 MS platform (Agilent Technologies Inc.), equipped with a
	5973 series mass selective detector (MSD) and a 7683 autosampler
	Acquisition of data using the MSD Chemstation (Agilent)
Data format	Raw (*.cdf)
Parameters for data collection	Column: HP-5MS, length; 30 m, i.d.; 0.25 mm, film thickness 0.25 µm, Agilent
	Technologies Inc.
	Split ratio: 5:1
	Injector temperature: 230°C
	Oven temperature: 70°C, stable for 5 min, 5°C min ⁻¹ increase to 295°C, stable for 2
	min.
	Carrier gas: Helium at a flow rate of 1 mL min ⁻¹
	Ionization: Positive electron ionization, 70eV
	Full scan 50–800 Da (4 scans s^{-1})
	Temperature of the MS source, 230°C, guadrupole 230°C
Description of data collection	TIC of the Lemna metabolomes performing full scanning over the mass range
	between 50 and 800 Da
Data source location	Institution: Agricultural University of Athens
	City/Town/Region: Athens
	Country: Greece
Data accessibility	Repository name: Pesticide Metabolomics Group database
5	Data identification number: Lemna minor L. (PMG-04-19) Direct URL to data: https://
	www.aua.gr/pesticide-metabolomicsgroup/Resources/default.html
Related research article	Author's name; Sofia Kostopoulou, Georgia Ntatsi, Gerasimos Arapis, Konstantinos A.
	Aliferis
	Title; Assessment of the effects of metribuzin, glyphosate, and their mixtures on the
	metabolism of the model plant Lemna minor L. applying metabolomics
	Journal; Chemosphere 239, 2020, 124582.
	DOI; https://doi.org/10.1016/j.chemosphere.2019.124582.

Value of the Data

• The data provide an overview of the effects of the herbicides metribuzin, glyphosate, and their mixtures on the metabolism of *Lemna minor* L.

• The dataset could be used by researchers working on the investigation of the combined effects of mixtures on the metabolism of model biological systems

• To the best of our knowledge, no similar data exist on the combine effect of phytotoxic compounds on the metabolism of *Lemna*

1. Data

TIC of *Lemna* minor L. endo-metabolomes in *.*cdf* format corresponding to profiles of untreated (control) plants and plants treated with metribuzin (M), glyphosate (G), and binary mixtures [glyphosate-metribuzin 50%-50%, 25%-75%, 75%-25% (% of their corresponding EC₅₀ values].

2. Experimental design, materials, and methods

The aquatic microphyte *Lemna minor* L. was used for the monitoring of the effects of metribuzin, glyphosate, and binary mixtures on its metabolism and the discovery of the corresponding biomarkers of toxicity [1]. The experimental design and sample preparation was based on previously described protocols following optimization [2-4].

For the extraction of the *Lemna* endo-metabolomes a mixture (50-50, v/v) of ethyl acetate and methanol (MeOH) (GC/MS grade, 99.9% purity) (Carlo Erba Reagents, val de Reuil, France) was used. In sample preparation for GC/EI/MS metabolomics analyses, pyridine (99.8%, v/v), methoxylamine hydrochloride (98%, w/w), ribitol, and analytical standards of selected *Lemna* metabolites, were used (Sigma-Aldrich Ltd., Darmstadt, Germany). N- Trimethylsilyl-N-methyl trifluoroacetamide (MSTFA, Macherey and Nagel, Düren, Germany) was used for the silylation of the samples.

The derivatized *Lemna* extracts (1 μ L) were injected on column. An HP-5MS column (Agilent Technologies Inc.) was used; length; 30 m, i.d.; 0.25 mm, film thickness 0.25 μ m. Samples were injected applying a 5:1 split. The injector's temperature was set at 230°C. The temperature of the oven was set initially at 70°C, kept stable for 5 min, followed by a 5°C min⁻¹ increase to 295°C, stable for 2 min. Positive electron ionization at 70eV was used and full scan mass spectra were acquired in the mass range 50–800 Da (4 scans s⁻¹), with a 10 min solvent delay. The temperature of the MS source was set at 230°C and that of the quadrupole at 230°C. Helium was used as the carrier gas at a 1 mL min⁻¹ flow rate.

Acknowledgments

The work was supported by the Program of Postgraduate Studies of the Agricultural University of Athens (AUA), Department of Crop Science.

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- S. Kostopoulou, G. Ntatsi, G. Arapis, K.A. Aliferis, Assessment of the combined effects of metribuzin, glyphosate, and their mixtures on the metabolism of the model plant *Lemna minor* L. applying metabolomics, Chemosphere 239 (2020) 124582, https://doi.org/10.1016/j.chemosphere.2019.124582 (In press).
- [2] K.A. Aliferis, R. Chamoun, S. Jabaji, Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and ¹H NMR spectroscopy metabolite profiling, Front. Plant Sci. 6 (2015) 344.
- [3] I.F. Kalampokis, G.C. Kapetanakis, K.A. Aliferis, G. Diallinas, Multiple nucleobase transporters contribute to boscalid sensitivity in Aspergillus nidulans, Fungal Genet. Biol. 115 (2018) 52–63.
- [4] K.A. Aliferis, S. Materzok, G.N. Paziotou, M. Chrysayi-Tokousbalides, *Lemna minor* L. as a model organism for ecotoxicological studies performing ¹H NMR fingerprinting, Chemosphere 76 (2009) 967–973.