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ABSTRACT
Raman spectroscopy, a robust and non-invasive analytical method, has demonstrated significant potential for monitoring
biopharmaceutical production processes. Its ability to provide detailed information about molecular vibrations makes it ideal for
the detection and quantification of therapeutic proteins and critical control parameters in complex biopharmaceutical mixtures.
However, its application in Saccharomyces cerevisiae fermentations has been hindered by the inherent strong fluorescence
background from the cells. This fluorescence interferes with Raman signals, compromising spectral data accuracy. In this study,
we present an approach that mitigates this issue by deploying Raman spectroscopy on cell-free media samples, combined with
advanced chemometric modeling. This method enables accurate prediction of protein concentration and key process parameters,
fundamental for the control and optimization of biopharmaceutical fermentation processes. Utilizing variable importance in
projection (VIP) further enhances model robustness, leading to lower relative root mean squared error of prediction (RMSEP)
values across the six targets studied. Our findings highlight the potential of Raman spectroscopy for real-time, on-line monitoring
and control of complex microbial fermentations, thereby significantly enhancing the efficiency and quality of S. cerevisiae-based
biopharmaceutical production.

1 Introduction

Raman spectroscopy is a well-established technique within the
field of process analytical technology (PAT) [1], valued for its
insensitivity to water and non-invasive nature [2, 3]. Over the
past three decades, Raman spectroscopy has been widely applied
in bioprocessing [4–7] and biopharmaceutical industries [8–11].
The multivariate nature of Raman spectra necessitates the use of

chemometrics for effective process monitoring and control [12,
13].

In the past 10–15 years, the use of Raman spectroscopy has
increased, particularly within mammalian cell-based recombi-
nant protein production. Comparatively, Raman spectroscopy
has been used as a PAT for mammalian cultivation to a greater
extent than formicrobial fermentation [14]. This can be attributed

Abbreviations: CV, cross-validation; P, prediction; PLS, partial least squares; RMSE[-], root mean squared error [of]; VIP, variable importance in projection.
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Summary
∙ This study presents a scalable method that offers the pos-
sibility of continuous monitoring compared to measuring
discrete samples using traditional HPLC and other ana-
lytical methods currently employed in biopharmaceutical
production.

∙ By utilizing Raman spectroscopy, our approach stream-
lines the assessment of critical process and quality param-
eters in Saccharomyces cerevisiae fermentations.

∙ Specifically developed for industrial use, this method
showcases a novel application of Raman spectroscopy in
yeast-based fermentations for biopharmaceutical protein
production.

∙ Additionally, it holds the potential to broaden the scope
of Raman spectroscopy in the fermentation-based produc-
tion and processing of recombinant therapeutic peptides
or proteins.

∙ By demonstrating this new application space, we aim
to inspire further advancements in the use of Raman
spectroscopy for fermentation analysis in the biopharma-
ceutical industry.

to several factors, which have made using Raman spectroscopy
for process monitoring of mammalian cell cultivations more
feasible than their microbial counterparts: (1) The lower biomass,
even when operating in perfusion mode [14, 15]. The biomass
dry weight for high-yielding mammalian cultivations is typically
below 0.1% [16, 17], while for Saccharomyces cerevisiae it can
reach upwards of 10% w/w or more. (2) The (auto)fluorescence
background, which although high for both, is much lower for
mammalian cells [18]. This can be attributed to the media
composition [8, 19, 20], and the cell constituents, for example
differences in cell wall structure [21] and metabolites [22].

1.1 Current State of the Art for Monitoring Yeast
Fermentations

Process monitoring of yeast fermentations is a critical aspect of
biomanufacturing. The critical process parameters (CPP), which
are optimized to produce the most stable high-yielding processes
are: temperature, pH, oxygen supply, growth rate, and nutrient
availability. The primary goal of process monitoring is to ensure
consistent product quality and yield, while minimizing the risk of
contamination or other process deviations [23].

There are various methods used for process monitoring of bio-
pharmaceutical yeast fermentations, including online and offline
techniques. Online methods involve the real-time measurement
of key process variables using (e.g., optical) sensors, while offline
methods involve the collection of samples for analysis in a
laboratory setting [24].

Commonly used online monitoring techniques for biopharma-
ceutical yeast fermentations include: (1) in situ sensors for pH,
dissolved oxygen, and temperature, (2) sensors for biomass and

ethanol, or (3) vibrational spectroscopy (e.g., NIR or IR) for
in-line monitoring of multiple process variables [25–27]. While
offlinemonitoring techniquesmay include: (1) high-performance
liquid chromatography (HPLC) for quantification of metabolites
and product concentration, (2) gas chromatography (GC) for
monitoring of volatile metabolites, or (3) microscopic analysis
for monitoring of cell morphology and viability. A significant
amount of research in recent years has focused on developing
novel processmonitoring techniques for biopharmaceutical yeast
fermentations, particularly those that can be used in real-time
and provide more comprehensive information about the fer-
mentation process, such as mass spectrometry and fluorescence
spectroscopy. An example is the use of 2D EEM fluorescence,
which has been used to successfully predict cell count and optical
density (OD) in fed-batch S. cerevisiae fermentations [28].

These measurements, along with typical HPLC/UPLC, could be
potentially used for model development, process monitoring, and
control [23, 29, 30]. Two types of models are typically used in
the industry, the mechanistic and the data driven. Mechanistic
models require longer development time; however, they can be
used from early development tomanufacturing [31, 32]. Themain
use of mechanistic models is during process development for
optimization, robustness, scale-up studies, and control analysis
[33]. Furthermore, the use of mechanistic models for online
monitoring has gained increasing attention recently [34]. On the
other hand, data driven models are easily developed but they
cannot be used extensively for scale-up studies and technology
transfer to manufacturing facilities due the higher dependence
on matrix-specific interactions. In a typical yeast fermentation
process, samples are collected atmost every fewhours andusually
not all the metabolites are monitored. Thus, use of an online
instrument such asRaman, could provide very useful information
for scientists and operators in near-real time.

1.1.1 Raman Spectroscopy in Yeast Applications

Raman spectroscopy has significantly advanced the study of
yeast fermentations, particularly those involving S. cerevisiae.
While initial studies focused on ethanol fermentations, the use of
Raman and chemometrics for on-line monitoring has expanded
to include high-pressure fermentations, statistical process con-
trol, and even biorefinery applications. The first study to use
Raman and chemometrics for on-line monitoring of ethanol pro-
duction in S. cerevisiae fermentationwas conducted by Shaw et al.
[4]. Since then, this work has been built upon by many groups,
including those by Picard et al. [35], who applied Raman to high-
pressure fermentations, and Ávila et al. [36], who implemented
statistical process control in glucose fermentation using Raman
spectroscopy.

Moreover, Raman spectroscopy has been used to develop models
for corn mash fermentations with glucose, oligosaccharides,
and polysaccharides present [37], as well as in biorefinery (i.e.,
lignocellulosic) applications [7, 38, 39]. In more recent years,
novel non-contact probes and feedback control schemes have
been developed, providing researchers with even more tools to
explore the complexities of S. cerevisiae fermentations. Notable
examples include the development of a non-contact probe for in
situ Raman measurements [40, 41], and the establishment of a
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feedback control scheme to optimize S. cerevisiae fermentations
for bioethanol production [42].

1.1.2 Raman Spectroscopy in Biopharmaceutical Appli-
cations

Within yeast-based biopharmaceutical applications, a few studies
using Raman spectroscopy exist. One study describes the devel-
opment of calibration models on the primary substrates (glycerol
and methanol) in supernatant samples from Pichia pastoris
fermentations [43]. Here, the authors were not able to predict
protein concentrations below 1 g/L. Others have investigated
the use of Raman-enabled machine learning models as a tool
for process control in P. pastoris-based fermentations for the
production of a potential Malaria vaccine [44]. The models were
calibrated using offline measurements on one Raman system,
while the in situmeasurementswere obtained on another system.
Moreover, the authors found that, due to non-linearities present
within the data, support vector machines (SVM) outperformed
partial least squares (PLS)-regression. This is common in systems
with complex or highly fluorescent sample matrices [45, 46].
To our knowledge, there is no published literature showcas-
ing the feasibility of using Raman for monitoring S. cerevisiae
fermentations specifically in biopharmaceutical applications.

In the subsequent sections, a methodology is proposed for
multivariate calibration of Raman spectra derived from cell-
free media samples of S. cerevisiae fermentations. The models,
calibrated using this approach, are evaluated based on prediction
error to examine their ability to generalize.

2 Materials andMethods

2.1 Cultivation Data

2.1.1 Yeast Strain andMedium

ArecombinantS. cerevisiae strain is used in prolonged continuous
cultivations. The recombinant strain expresses a heterologous
protein. The heterologous protein is expressed extracellularly
using the glycolytic triose-phosphate isomerase (TPI) promoter.
The TPI promoter was chosen for the expression of the protein
since it is considered strong [19]. It has furthermore been used
with success in other studies for expression of heterologous
proteins during prolonged continuous cultivations [47]. The
cultivation mediumwas derived from ref. [48] with a supplement
of yeast extract. No further details regarding the expression
system, the heterologous protein, and the cultivationmedium can
be given due to confidentiality reasons.

2.1.2 Inoculum

Inocula were prepared by transferring 450 µL cell culture to a
300 mL shake flask with 100 mL defined standard cultivation
medium. The shake flasks were grown in a rotary shaker at
175 rpm overnight. The bioreactors were inoculated with the
amount of seed culture corresponding to a start OD600 in the
bioreactor around 0.5 AU.

2.1.3 Standard Cultivations

Aerobic continuous cultivations were performed in 2 L fully
instrumented and automatically controlled BIOSTAT B plus
fermenters (Sartorius StedimBiotech S.A., Germany) at a dilution
rate of 0.08/h. Aerobic conditions were obtained by a stirrer speed
of 1200 rpm and an aeration rate of 2 VVM. The cultivations
were initiated with a fed-batch phase to increase the amount
of biomass. The working volume in the continuous phase was
kept at 1.2 L by a peristaltic effluent pump coupled to a weight
measurement of the tank. pH was controlled at a constant level
of 5.7 by addition of 10% NH3.

2.1.4 Sampling

Samples were taken daily for determination of protein concentra-
tion, residual glucose concentration, and extracellular metabolite
concentration (Glucose, Glycerol, Acetate, Pyruvate, Succinate,
Metabolite X). Checking for contamination, offline pH control,
and verifying the volume in each bioreactor was also done on
daily basis. Each sample was aliquoted into two cryo-tubes:
one for reference analyses and one which was immediately
frozen at −80◦C. After the finalization of the experiments, all
frozen samples were shipped for Raman analysis, as detailed in
Section 2.2.

2.1.5 Extracellular Metabolite Determination

Around 10 mL sample was taken from the cultivation broth using
syringes containing frozen steel spheres. The steel spheres were
frozen at −20◦C. The sample was filtered through a 0.45 µm
Sterivex filter (Merck, Darmstadt, Germany). Around 5 mL of
filtered sample was needed. Syringes with frozen steel spheres
were used to quench cellular metabolism [49]. The extracellular
metabolites were measured by HPLC. The substrates in the
samples were separated using an Aminex HPX-87H (Bio-Rad,
California, USA) ion exclusion column, whereas an RI-detector
and a UV-detector were used to determine the concentrations of
the different substrates. Five millimolar H2SO4 in Milli-Q water
was used as a mobile phase and the flow was set to 0.6 mL/min.

2.1.6 Analysis of Recombinant Protein

The extracellular recombinant protein concentration was deter-
mined using 1 mL of cultivation broth. The broth was mixed
with 3 mL KH2PO4 buffer to increase the pH to 12, followed by
centrifugation at 5000 rpm for 10 min. The supernatant was then
filtered and mixed with an equal volume of K2HPO4 buffer to
neutralize the pH. Protein concentrationwasmeasured via HPLC
using a Waters Alliance 2695 HPLC system equipped with a UV
detector (Waters, Massachusetts, USA).

Metabolite X is a side-product synthesized by S. cerevisiae via the
degradation pathway of a non-polar amino acid. Its presence is
monitored in this study by a VIS-based spectroscopic method
since a correlation between its synthesis and a lower productivity
of the process has been observed.

3 of 11



FIGURE 1 Evolution of the six metabolites from Experiment 3 as a function of time. The y-axis is scaled to 100% of the overall values.

Figure 1 shows the evolution of metabolites as a function of
fermentation time for Experiment 3, which is the longest running
experiment. It was chosen to give an indication of how the
metabolites vary over time. The values are scaled to themaximum
of all the values. While not indicated in the figure, some of the
metabolites have a few extreme samples, for example glucose,
which were deemed out of scope for subsequent chemometric
analysis, and thus removed prior to analysis.

2.2 Raman Data Acquisition

The samples were delivered frozen and thawed at 5◦C overnight.
Before analysis, each sample tubewas vortexed on the highest set-
ting for 10 s each before being transferred to a quartz cuvette (P/N:
CV10Q14, Thorlabs, Sweden). Raman spectra were collected
using a Viserion 785 nm Analyzer (Indatech, Clapiers, France).
The instrument uses a 180◦ backscatter configuration, and the
detector was cooled to −60◦ to achieve optimal performance.
Spectra were recorded using an integration time of 10 s, with
15 accumulations for a total acquisition time of 2.5 min/spectra.
Automatic cosmic ray filtering was used, but otherwise the
Raman spectrawere notmodified in anyway before data analysis.

The experimental data encompass a range of fermentation
durations and number of spectra collected. On average, each
experiment included around 18 spectra, with run times varying
from 144 to 406 h. This variation was not intentional but provides
a broad dataset to validate the Raman spectroscopy method.
For instance, Experiment 1 had 11 spectra over 165 h, while
Experiment 3 spanned 406 h and included 34 spectra. This
diverse dataset allows for a comprehensive analysis of the Raman
spectroscopy’s performance across different conditions.

2.3 Chemometric Modelling

2.3.1 Data Pretreatment

The pretreatment procedure is essential to improve the signal-to-
noise ratio and comprises several important operations [50, 51].
In this analysis, motivated by the approach established in the
commercially available softwareDataHowLab Spectra (DataHow,
Zurich, Switzerland), the following pretreatment stepswere used:

Variable Selection–Selection of the regions of the spectra that
aremost likely to contain relevant information [52]. As a baseline,
the following Raman shift regions were used: 450–3050 cm−1,
with the region 1800–2800 cm−1 excluded.

Furthermore, variable selection can be performed algorithmi-
cally. Several algorithms exist to solve this without the need
for a priori knowledge [53, 54]. In this study, we use the
variable importance in projection (VIP)-algorithm as an example
of variable selection [55] since it is fast and simple. However,
manymore exist. For a comprehensive view of availablemethods,
the readers are encouraged to review ref. [52]. In general, these
methods can be used to denoise spectral signals by explicitly
selecting the most relevant wavenumbers for the prediction
task.

Savitzky-Golay (SG)–A smoothing and differentiation tech-
nique that fits a moving polynomial to the spectra to reduce
noise or irregularities [56]. This is done along the wavenumber
dimension and has three integer parameters: (1) Window length:
number of consecutive features (wavenumbers) to consider in the
moving window (testing window sizes between 11 and 131 in steps
of 10). (2) Polynomial order: order of the fitted polynomial (testing
either second, third, or fourth order). (3) Derivative order: order of
the signal to compute (integer values between zeroth and second
order were considered).

Row-wise scaling–Using standard normal variate (SNV) to scale
the rows of X to mean zero and a standard deviation of one [57].
This method works well when most of the constituent signal is
the same in the spectra [58].

Column-wise centering and scaling. A set of simple methods
that makes the model treat all wavenumbers similarly [59].
This preprocessing operation has three Boolean options: (1)
Mean-centering: Remove the mean across samples for each
wavenumber. (2) Scaling: Divide spectra values by the standard
deviation across samples. (3) Run-wise: Compute mean and
standard deviation with respect to each of the subsets.

The preprocessing approach used the following sequence:
Savitsky-Golay smoothing/derivative, wavenumber selection,
SNV followed by a centering and scaling step. The optimization
of the hyperparameters was performed automatically during
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modelling. The search ranges for the various preprocessing
steps were as follows: For Savitsky-Golay; window size of 11–131,
polynomial orders of two, three and four, derivative orders
between zero and two. For the scaling step, we considered
mean-centering, autoscaling, and run-wise scaling.

2.3.2 Partial Least Squares Regression

The partial least squares (PLS) model is a multivariate bi-linear
algorithm that projects the highly correlated input X and output
Ymatrices unto new uncorrelated latent spaces, the scores of the
input and output matrices [60, 61]. Simultaneously it performs
a regression between the scores to maximize the covariance
between X and Y [62]. PLS is a widely utilized method in
chemometrics for calibrating models based on spectra [63]. This
work uses the PLS1 algorithm, where the independent variable,
y, is univariate, that is, a vector. Thus, for each of the six variables
of interest in this study, a single model will be calibrated to yield
a total of six models. The number of PLS components considered
in the study was between one and six.

To assess if further improvement to the prediction results was
possible, VIP-scores were employed as a variable selection tool
[64]. In this study, a threshold of 0.8 is used for VIP-based variable
selection,meaning variables with VIP-scores above this threshold
are considered unlikely to represent noise and thus retained in the
model [65].

Additionally, attempts were made to test other machine learning
methodologies, such as SVM and extra trees regressors (ETR).
These methodologies did not outperform PLS-VIP (data not
shown). It is likely due to either: (1) the datasets being too small to
achieve adequate convergence [66], or (2) the data can be assumed
to be linear and as such, a bilinear model like PLS will be able to
explain the variation in the data sufficiently.

2.3.3 ModellingWorkflow

The proposedmethodology utilizes a nested cross-validation (CV)
approach to ascertain the model’s ability to generalize across
different data sets [67, 68]. In the outer loop of this approach,
one experiment is isolated from the others to serve as a test run,
thereby preventing information leakage between the sets. The
inner loop fine-tunes five hyperparameters of the preprocessing
pipeline (window length, polynomial order, derivative order,
scaling, and the number of latent variables) using the training
data. This fine-tuning process combines five-fold CV and a guided
optimization loop.

Five-fold CV offers a reliable estimate of the model’s perfor-
mance on unseen data, whereas the guided optimization loop
implements a strategic sampling strategy for the next set of
hyperparameters [69]. By balancing exploration and exploitation
of the hyperparameter space, this strategy aims for efficient
convergence to an optimal solution, expressed as the minimal
rootmean squared error of cross-validation (RMSECV). After this
nested optimization, the final hyperparameters chosen are those
leading to the lowest RMSECV. These are then used to retrain

the model on the complete calibration data set. Within the inner
CV loop, the incorporation of VIP selection (the PLS-VIPmethod)
initiates by calculating the VIP values for all wavenumbers using
the trained PLS model. Those with a VIP value exceeding 0.8 are
then identified. Subsequently, a second optimization campaign
is initiated, aimed at determining the optimal hyperparameters
for this feature subset. The selected hyperparameters are then
used to retrain the model on the training set and evaluate it on
the test set, but only incorporating the wavenumbers identified
during the VIP selection process. In cases where VIP selection
is not applied, the model is directly evaluated on the test set
after the initial optimization campaign, making use of all input
features. In this study, a comparison is made between the
performance of the PLS method with and without the use of VIP
selection.

Given there was only data available for six experiments, the
training process for both methods was repeated by iterating
the outer CV loop with a new experiment serving as the test
run, and the respective training procedure was repeated on a
new training set. This strategy facilitated the evaluation of the
proposed approach’s sensitivity to a limited number of calibration
data points. It also examined its generalization capabilities when
applied to disparate test experiments, by calculating an average
prediction error across all possible runs when each was used
individually as a test set.

A visual representation of the modeling workflow employed in
this study is presented in Figure 2. It consists of the following
steps: Train/test split, where the six experiments are iteratively
split into five train runs and one test run. Optimization, where
the preprocessing and other hyperparameters are evaluated to
converge on the best solution under five-fold CV (1 experi-
ment of 5 held out each time). Retraining, where the optimal
parameters found previously are applied to the entire train set.
Evaluation, where finally, the trainedmodel is applied to predict
on the unseen test run. The process depicted was repeated
six times, to ensure each experiment is used once in model
evaluation. In the cases where VIP-selection was used, the
modeling workflow consisted of additional steps to compute VIP-
scores before Optimization and Retraining with just the selected
wavenumbers.

2.3.4 Evaluation of Model Performance

The performance of the models is evaluated using the root mean
squared error (RMSE)-statistic. It is preferred over the coefficient
of determination (R2) due to the original units being retained and
thus making it easier for interpretation. The root mean squared
error of prediction (RMSEP) is used for evaluation.

The RMSEP is calculated by the following equation (Equation 1):

Relative RMSEP =

√
1

𝑛

∑𝑛−1
𝑖=0 (𝑦𝑖 − �̂�𝑖)

2

𝑠(𝑦)
(1)

In Equation (1), n represents the number of samples, yi and y(hat)i
denote the measured and model-predicted offline concentrations
for the i-th sample, respectively, and s(y) is the standard deviation
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FIGURE 2 Modeling workflow used to optimize hyperparameters, calibrate, and evaluate on the test run. The dashed area, representing the VIP
selection block, was only used for PLS-VIP model.

of the variable y. The final step involves computing the average
of the errors from the six test sets, which is then utilized for
comparison. This number represents the average prediction error
for an unseen experiment, scaled by the standard deviation of the
respective variable.

3 Results and Discussion

The PLS-VIP model consistently outperformed the standard PLS
across all process variables, as evidenced by the RMSEP. Notably,
the PLS-VIP model achieved the lowest VIP selection average
relative RMSEP errors for Product and Metabolite X, both below
0.4 g/L. Conversely, Glucose exhibited the largest average error
at 0.82 g/L, likely due to the limited range of observed glucose
values and the reduced sensitivity of Raman spectroscopy at these
concentrations.

For example, the RMSEP for Glucose was reduced from 0.90 g/L
(SD 0.32) to 0.82 g/L (SD 0.25) when using the PLS-VIP model.
Similarly, for Product, the error decreased from 0.38 g/L (SD
0.09) to 0.35 g/L (SD 0.08). Acetate also saw an improvement,
with errors reducing from 0.88 g/L (SD 0.21) to 0.77 g/L (SD
0.16). Glycerol and Succinate showed smaller but still notable
improvements. Specifically, Glycerol’s RMSEP reduced from
0.62 g/L (SD 0.24) to 0.53 g/L (SD 0.20), and Succinate’s RMSEP
slightly improved from 0.73 g/L (SD 0.24) to 0.72 g/L (SD 0.23).
For Metabolite X, the RMSEP decreased from 0.40 g/L (SD 0.15)
to 0.36 g/L (SD 0.13).

The standard deviation of the prediction errors indicates the
robustness of the models. Both Product and Metabolite X
exhibited low standard deviations, suggesting that the proposed
methodology is both accurate and robust to changes in calibration
and test data. The PLS-VIP model consistently demonstrated
marginally better robustness than the standard PLS, likely due to
its parsimonious nature.

The results indicate that the general trend for both Product
and Metabolite X (Figure 3B,F) are well captured by the cali-

bration model for all experiments. For Glycerol and Succinate
(Figure 3D,E), the deviation from the optimal line can vary among
different test experiments. This observation can be attributed to
the limitations of data-driven models in extrapolating beyond
the calibration range. When the experimental values of the
test set fall outside the range observed during calibration, the
prediction errors tend to increase. The same can be observed
when predictingMetabolite X for Experiment 3, where the model
mostly under-predicts when extrapolating, as seen in Figure 3F,
where most of the points above 30% are below the 1:1 line. The
extent of this variability is expected to diminish as larger training
sets are utilized following an increasing number of fermentations
monitored by Raman, covering a more comprehensive range
of process behavior. Moreover, the vertical line of points seen
at the lower end of the observed scale for Metabolite X and
Glycerol might be an indication of the lower detection limit of
the calibration model.

The process evolution plots depicted in Figure 4 validate the
usefulness of such soft sensors in monitoring and control appli-
cations. This is particularly evident in cases where there are rapid
changes in the process dynamics, such as sudden accumulation or
consumption of a metabolite, and the model consistently tracks
these changes over time. Moreover, for Experiments 3 and 4
(Figure 4B,E), the models show good predictive performance for
both variables up to 400 h of process run time, where the spectra
acquired are affected by high fluorescence effects.

While the generated models perform well in general, Figure 4
shows that, at low concentrations, model performance is poor for
Experiment 6 (Figure 4C,F). This could be due to several factors,
including the inherent sensitivity limits of the Raman technique
and the reduced signal-to-noise ratio at low concentrations.
Further studies are needed to refine the model and improve its
performance at low concentrations.

These results suggest that it might be possible to predict process
variables of interest based on Raman spectral information col-
lected in a bioreactor fermentation process using the proposed
methodology. In other words, based on the utilization of a single
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FIGURE 3 Observed versus predicted plots of PLS-VIP performance for each target variable on all experiments (when in the test set/held out).

FIGURE 4 Process evolution plots for Product (A–C) andMetabolite X (D–F) where observed values correspond to the real samples and predicted
values (dashed lines) correspond to predictions using PLS-VIP model.

sensor, the proposed methodology could allow for the quantifica-
tion of numerous variables such as the Product,Metabolite X, and
Glycerol accurately. This is achieved by the effective elimination
of the strong fluorescent background by filtering the cells and by
data preprocessing. By employing VIP selection, the spectra can

be further denoised, enhancing the learning ability and predictive
performance of the model.

The work of others (e.g., Bogomolov et al. [28]) underscores
the fact that relevant chemical information can be found by
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spectroscopic techniques in general. In this instance, the authors
show that the strong fluorescence observed in yeast-based
matrices lends itself well to using 2D fluorescence spectra. This
underlines the hypothesis that removing the cells prior to Raman
analysis will lead to better results.

Besides fluorescence spectroscopy, NIR has been shown to pro-
duce good results in in situ applications of ethanol fermentations,
even for some of the same metabolites as those investigated
presently [27]. The reported standard errors of prediction were
0.51 and 0.79 g/L for glycerol and glucose, respectively—two
metabolites also investigated in this analysis. The values are
quite comparable, with RMSEP of 0.53 and 0.82 g/L using
Raman spectroscopy. It is currently unknown whether the
use of NIR will translate to the more complex biopharma-
ceutical fermentations. However, internal investigations have
indicated that probe fouling remains a significant issue (data not
shown).

Since all six fermentationswere designedwith similar conditions,
there are no guarantees at this stage that the proposed approach
is not also correcting a random quantity exhibiting a behavior
like the targets. Ongoing work is focused on breaking such
correlations via a spiking study, as has been explored in the
literature [70].

One of the key advantages of Raman spectroscopy is its potential
for in line or in situ deployment, allowing real-time monitoring
within the fermenter. In a chemostat, a continuous fermentation
system utilized in this study, the harvest flow can be continuously
filtered to remove cells. This setup enables effective at-line
monitoring, providing real-time data on metabolite concentra-
tions without autofluorescence interference. By monitoring the
fermentation from the harvest flow, we can achieve precise
control and optimization of the process. Moreover, some com-
ponents measured here, and others not included in this work,
are currently analyzed by more laborious methods than HPLC,
limiting data acquisition from each fermentation. Additionally,
some analytes require even more cumbersome methods than
HPLC, further highlighting the advantages of Raman spec-
troscopy. Moreover, the potential for Raman to replace the
entire suite of reference instruments, providing a single point-of-
analysis, remains attractive regardless of the interfacing method.
If in line deployment is not achieved with continuous filtration
(such as that used in perfusion in mammalian cells), an at-
line Raman system can still service multiple bioreactors without
suffering from calibration transfer issues between probes or
instruments.

4 Conclusions

This study demonstrates the potential for accurately predicting
critical process quantities using Raman spectroscopy in cell-
free media samples from S. cerevisiae fermentations. Future
studies should consider spiking samples with specific quantities
of metabolites to better assess themethod’s accuracy, uniqueness,
and linearity. The findings indicate that Raman spectroscopy
could play an increasingly significant role in monitoring and
controllingmicrobial fermentations, leading to enhanced process
efficiency and product quality.

5 Future Work

For future work, it could be advantageous to explore the inte-
gration of the proposed chemometric methodology with hybrid
models that predict process dynamics using a filtering approach
[71]. Incorporating ensemble techniques like bagging could prove
beneficial when assessing model uncertainty in prediction. Addi-
tionally, a spiking design could enhance model training when
only a few training runs are available, especially in regions where
available samples are limited. This design could address the
challenges posed by scarce data and improve model performance
in such scenarios.

On the process side, working to either integrate the Raman
probe directly into the process, for example, by innovative probe
design or by a continuous filtering setup where the Raman
signal is collected from the permeate, could also prove very
beneficial. Alternate tangential filters (ATFs) are now com-
monplace in mammalian culturing, and the advent of these in
biopharmaceutical fermentations could unlock new possibilities
for PAT.
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