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Abstract: Neuroimaging studies have reported structural and physiological differences that could help
understand the causes and development of Autism Spectrum Disorder (ASD). Many of them rely on
multisite designs, with the recruitment of larger samples increasing statistical power. However, recent
large-scale studies have put some findings into question, considering the results to be strongly depen-
dent on the database used, and demonstrating the substantial heterogeneity within this clinically
defined category. One major source of variance may be the acquisition of the data in multiple centres.
In this work we analysed the differences found in the multisite, multi-modal neuroimaging database
from the UK Medical Research Council Autism Imaging Multicentre Study (MRC AIMS) in terms of
both diagnosis and acquisition sites. Since the dissimilarities between sites were higher than between
diagnostic groups, we developed a technique called Significance Weighted Principal Component Anal-
ysis (SWPCA) to reduce the undesired intensity variance due to acquisition site and to increase the sta-
tistical power in detecting group differences. After eliminating site-related variance, statistically
significant group differences were found, including Broca’s area and the temporo-parietal junction.
However, discriminative power was not sufficient to classify diagnostic groups, yielding accuracies
results close to random. Our work supports recent claims that ASD is a highly heterogeneous condi-
tion that is difficult to globally characterize by neuroimaging, and therefore different (and more
homogenous) subgroups should be defined to obtain a deeper understanding of ASD. Hum Brain Mapp
38:1208–1223, 2017. VC 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
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INTRODUCTION

Autism Spectrum Disorder (ASD) is a neurodevelop-
mental syndrome characterized by social and communica-
tion impairment as well as restricted, repetitive patterns of
behaviour, interests or activities. The delimitation of both
functionally and structurally affected areas in the brain in
such an etiologically and neurobiologically heterogeneous
condition has long been a major concern [Ecker and Mur-
phy, 2014; Lai et al., 2013; Lenroot and Yeung, 2013]. With
this context, the use of large samples is of fundamental
importance, and has been addressed by establishing multi-
centre collaborations such as the UK Medical Research
Council Autism Imaging Multi-centre Study (MRC AIMS)
[Ecker et al., 2012, 2013, 2015] and the Autism Brain Imag-
ing Data Exchange (ABIDE) [Di Martino et al., 2014]

Multicentre studies with structural (sMRI) and function-
al magnetic resonance imaging (fMRI) are increasingly
common, allowing for recruitment of larger samples in
shorter periods of time. However, the use of images
acquired at different sites still poses a major challenge. In
addition to logistical difficulties, such as regulatory appro-
vals and data protection, a number of technical and meth-
odological issues can potentially affect the resulting maps,
introducing undesired intensity and geometric variance.

Abbreviations

AAL Advanced Automated Labelling
AAM Active Appearance Models
ABIDE Autism Brain Imaging Data Exchange
ADNI Alzheimer’s Disease Neuroimaging Initiative
ADOS Autism Diagnostic Observation Schedule
ANOVA Analysis of variance
ASD Autism Spectrum Disorder
CBM Component-based morphometry
CSF Cerebrospinal fluid
GM Grey matter
IR Inversion Recovery
MNI Montreal Neurological Institute
MRI Magnetic resonance imaging
PCA Principal component analysis
SBM Source based morphometry
SPGR Spoilt gradient recall
SSPF Steady state free procession
SVC Support vector classifier
SVD Singular value decomposition
SWPCA Significance-weighted principal component analysis
VBM Voxel-based-morphometry
WASI Wechsler abbreviated scale of intelligence
WM White matter

r On the Brain Structure Heterogeneity of Autism r

r 1209 r



This issue has been addressed in other neurological condi-
tions, such as Alzheimer’s Disease [Jovicich et al., 2006;
Stonnington et al., 2008], where group differences are well
known, and demonstrating that the impact of a correction
for site on the resulting neurobiological differences is rela-
tively small. However, these effects have a stronger impact
in psychiatric conditions where the atypical radiological
signs on MRI are often subtle and require large samples of
patients to observe on-average differences relative to con-
trol samples. Recent meta-analyses point to differences
being inconsistently reported in schizophrenia [Friedman
and Glover, 2006; Turner et al., 2013], psychosis [Clementz
et al., 2016; Wang et al., 2015], and ASD (using the multi-
centre ABIDE database) [Haar et al., 2014].

These inconsistencies can arise from a variety of vari-
ance sources, ranging from the multi-level (phenotypic,
neurobiological, and etiological) heterogeneities of the con-
ditions to technical issues that include differences in scan-
ner make, model, manufacturer, static field strength, field
inhomogeneities, slew rates and image reconstruction [Van
Horn and Toga, 2009], as well as acquisition problems
such as within-acquisition participant head motion. Field
inhomogeneities are a source of misinterpretation of the
data even when the same MRI system manufacturer and
model are used [Van Horn and Toga, 2009]. Furthermore,
results in [Pearlson, 2009] demonstrate that a single scan-
ner can change with time, which makes some widely used
strategies, for example collecting controls first and patients
later, a flawed approach. Recent neuroimaging research on
ASD [Haar et al., 2014] has shown that, while analyses
performed on a particular database (acquired on a single
platform) could yield coherent regions, the atypical struc-
tures are often inconsistent across the wider literature
using different databases. Therefore, new methodologies
focused on reducing multi-site variance may be potentially
helpful in increasing the power to identify the characteris-
tic neurobiological signature of autism, should there be
one.

A number of approaches have been proposed to reduce
between-site variance. Geometric distortions caused by
magnetic fields inhomogeneities have been widely studied
[Jovicich et al., 2006; Stonnington et al., 2008]. Further-
more, there exist a number of diffeomorphic registration
algorithms, such as DARTEL [Ashburner, 2007] or ANTS
[Avants et al., 2010], intended to reduce inter-subject—and
by extension, inter-site—variations. In the case of intensity
variance, the issue has already been addressed in the MRC
AIMS database by leveraging sMRI sequences that yield
quantitative estimates of relaxation times [Deoni et al.,
2008] that have been demonstrated to reduce single-site
effects compared to weighted sequences. However, images
acquired using this technique still yield between-site dif-
ferences [Suckling et al., 2014].

To address the problem of intensity variance and
improve the homogeneity of the images across different
sites, we have developed a new post-acquisition

methodology that enhances derived maps (e.g. grey or
white matter volumes) by means of ameliorating site
effects. This method, called significance-weighted principal
component analysis (SWPCA), can be applied as part of
pre-processing before computing whole-brain or regional
statistical analysis. The algorithm proceeds by performing
a principal component analysis (PCA) over the whole
database of images and later computing the statistical sig-
nificance of each component in relation to a categorical
variable, in this case the acquisition site. This information
is used to reconstruct the datasets using a weighted strate-
gy that effectively reduces intensity inhomogeneities due
to site effects.

This article is organised as follows: First, in “Material
and Methods” section, the methodology is presented. It
comprises the presentation of the MRC AIMS image data-
base and its pre-processing, PCA, one-way analysis of var-
iance (ANOVA), and how these two statistical procedures
are combined in a weighted approach to create the cor-
rected maps. In “Results” section, the algorithm is applied
to maps of grey and white matters and estimates of relaxa-
tion times, with qualitative and quantitative results pre-
sented before and after applying SWPCA to the images.
“Discussion” section is used to discuss the relevance of
the SWPCA algorithm and the results of the case-control
comparison, and finally in “Conclusions” section, we draw
conclusions concerning multi-site studies and the neurobi-
ology of autism.

MATERIAL AND METHODS

Image Database

Structural MRI were analysed from 136 adult, right-
handed males (68 with ASD and 68 matched controls)
with no significant mean differences in age and full-scale
IQ, acquired from the centres contributing to the UK Med-
ical Research Council Autism Imaging Multi-centre Study
(MRC AIMS) [Ecker et al., 2012, 2013, 2015] and recruited
by advertisement. In this work, only participants recruited
at the Institute of Psychiatry, King’s College London
(LON) and the Autism Research Centre, University of
Cambridge (CAM) were included where an equivalent set
of images were acquired from each participant.

Participants were excluded from the study if they had a
history of major psychiatric disorder or medical illness
affecting brain function (e.g. psychosis or epilepsy), or cur-
rent drug misuse (including alcohol), or were taking anti-
psychotic medication, mood stabilizers or benzodiazepines.

All participants with ASD were diagnosed according to
International Classification of Diseases, 10th Revision
(ICD-10) research criteria, and confirmed using the Autism
Diagnostic Interview-Revised (ADI-R) [Lord et al., 1994].
Autism Diagnostic Observation Schedule (ADOS) [Lord
et al., 2000] was performed, but the score was not consid-
ered as an inclusion criteria. ASD participants, to be

r Martinez-Murcia et al. r

r 1210 r



included, must have scored above the ADI-R cut-off in the
three domains of impaired reciprocal social interaction,
communication and repetitive behaviours and stereotyped
patterns, although failure to reach cut-off in one of the
domains by one point was permitted. Intellectual ability
was assessed using the Wechsler Abbreviated Scale of
Intelligence (WASI) [Wechsler, 1999], ensuring the partici-
pants fell within the high-functioning range on the spec-
trum defined by a full-scale IQ> 70. The demographics of
the participants are shown in detail in Table 1.

Structural MRI were obtained using Driven Equilibrium
Single Pulse Observation of T1 and T2 (DESPOT1, DES-
POT2) [Deoni et al., 2008] at King’s College London and
University of Cambridge, both with 3T GE Medical Sys-
tems HDx scanners. Using multiple spoilt gradient recall
(SPGR) acquisitions in the DESPOT1 sequence and steady
state free procession (SSPF) acquisitions in the DESPOT2
sequence, with different flip angles and repetition times,
quantitative T1 and T2 maps (qT1 and qT2) were calculat-
ed with a custom ImageJ plug-in package. Correction of
main and transmit magnetic field (B0 and B1) inhomoge-
neity effects was performed during the estimation of T1
and T2.

For accurate registration to the standard stereotatic
space of the Montreal Neurological Institute (MNI), a sim-
ulated T1-weighted Inversion Recovery (IR) images
(synT1) were created based on the qT1 maps (Ecker et al.,
2012, 2013; Lai et al., 2012]. The synT1 images were then
segmented using New Segment into grey (GM) and white
matter (WM) maps, and normalized to the MNI space
using DARTEL in SPM8 [Friston et al., 2007], with modu-
lation (preserve volume) to retain information of regional/
local GM and WM volumes, and smoothed with a 3mm
FWHM Gaussian Kernel to account for inter-subject mis-
registration. The synT1, qT1 and qT2 maps were also reg-
istered to the standard MNI space using the same DAR-
TEL flow fields, but without modulation (preserve
concentration) to retain information of regional/local T1
contrast, T1 relaxation time, and T2 relaxation times, and
smoothed with a 3mm FWHM Gaussian kernel. Therefore,
there were five different modalities: qT1, qT2, synT1 map,
GM and WM maps, for each every participant, which
allows us to observe the impact of our SWPCA correction
of site-related undesired variance on quantitative (qT1 and

qT2), simulated (synT1) images and probability maps (GM
and WM).

During the pre-processing of the images, several proce-
dures targeted the reduction of inter-subject and inter-site
geometric distortion, amongst them the correction of B0
and B1 field inhomogeneity effects and the registration to
MNI space. Many other algorithms have been proposed to
help in this task. However, the study of their relative per-
formance lies beyond the scope of this article. Following
image registration, it was assumed that only the intensity
of the maps was affected between sites.

Intracerebral Mask

Prior to any processing of the brain images, masks were
applied that restricted the analysis to the brain parenchy-
ma. These binary masks comprised voxels in the DARTEL
study-specific template with GM (or WM) probabilities
>0.3, whilst excluding voxels with a cerebrospinal fluid
(CSF) tissue probability >0.3, to avoid including CSF
regions where T1 and T2 values are extremely high.
Throughout this work three masks were used: selectively
GM (excluding WM and CSF); selectively WM (excluding
GM and CSF); both GM and WM (excluding CSF).

Significance Weighted Principal Component

Analysis

The SWPCA is an algorithm to reduce, in this case,
undesired intensity variance introduced by multi-site
image acquisition. SWPCA takes any dataset of pre-
processed images, spatially normalized, and decomposes
them into their variance components to then provide a cor-
rected dataset where these undesired variance components
have been reduced. To do so, PCA was applied to each
modality in turn to obtain the component scores and com-
ponent loadings. Since PCA is a data-driven approach, it
was only used to decompose the source images, and after
this procedure, a one-way ANOVA estimated the relation
between each variance component and a given categorical
variable, in our case, the acquisition site. The between-site
variability in the variance component was then identified
by its corresponding P-value. Finally, these P-values were
transformed into a weighting matrix K that weighted the
influence of each variance component in a final PCA
reconstruction of the corrected maps. The procedure is
summarized in Figure 1.

Principal component analysis

The first step in the SWPCA algorithm was to perform a
PCA decomposition of the dataset into a set of orthogonal
components that model the variance present in the images,
in an analogous way to the paradigm described in Active
Appearance Models (AAM) [Cootes et al., 2001].

TABLE 1. Demographics of the participants included in

the analysis

Database Group N Age (l 6 r years) IQ (l 6 r)

LON ASD 39 28.74 6 6.52 111.28 6 13.13
CTL 40 25.30 6 6.62 104.67 6 11.16

CAM ASD 29 26.83 6 4.64 115.83 6 11.88
CTL 28 26.75 6 7.32 115.25 6 13.67

ALL ASD 68 25.90 6 6.95 109.03 6 13.31
CTL 68 27.93 6 5.87 113.22 6 12.81
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PCA is a statistical procedure that uses an orthogonal
transformation to convert a set of observations X of possi-
bly correlated variables, where X is a K 3 N matrix, with
K participants (in this case, with one image per partici-
pant) and N the number of voxels, into a set of N linearly
uncorrelated variables called Principal Components (PC,
also known as component loadings or the mixing matrix)
W of size N 3 N whose linear combination using a vector
of component scores sK can perfectly recompose each
image. The set of these component scores S (size K 3 N)
was estimated as:

S5XW (1)

This transformation computes a sequence of PCs, maxi-
mally explaining the variability of the data while maintain-
ing orthogonality between components. PCA was
computed using singular value decomposition (SVD):

X5URV� (2)

where U is an K 3 K orthogonal matrix, R is an K 3 N
diagonal matrix with non-negative real numbers on the
diagonal, and the N 3 N unitary matrix V* denotes the
conjugate transpose of the N 3 N unitary matrix V . With
this decomposition both the component scores and esti-
mates of the set of components loadings W were obtained.
In this work the truncated form of SVD was used such
that only the first C components were considered, where
most of the variability of the data was concentrated:

SC5UCRC5XWC (3)

where SC is the set of component scores using the first C
components (size K 3 C). To achieve reasonable perfor-
mance with minimal information loss, it was assumed that

the number of components was the same as the number of
images, C 5 K. Thus, a partial reconstruction of the original
signal could be undertaken:

X̂5ScAc (4)

where AC is the pseudoinverse of the truncated matrix of
component loadings WC, and X̂ is the reconstructed set of
images.

One-way analysis of variance

The estimated PCs effectively model the variability of
the image dataset. The next step was to assess each PC as
a source of inter-site variance with ANOVA. ANOVA esti-
mates the F-statistic, defined as the ratio between the esti-
mated variance within groups and the variance between
groups:

F5
MSwithin

MSbetween
5

SSwithin= G21ð Þ
SSbetween= K2Gð Þ5

P
ini

�Yi 2�Y
� �2

= G 21ð Þ
P

ij Yij 2 �Yi

� �2
= K2Gð Þ

(5)

Where MSwithin and MSbetween are the mean squares within-
and between-groups respectively, G is the number of sepa-
rate groups (in our case, two), �Y is the sample mean of a
certain feature (in our case, the sample mean of all K val-
ues of a given component score), �Yi is the sample mean of
the features belonging to group i 5 1. . .G, Yij is the jth
observation of a feature belonging to group i and ni is the
number of participants in the ith group. The F-distribution
allows an easy computation of P-values, given the number
of groups and degrees of freedom. The F-statistic and P-
values were computed independently for each component

Figure 1.

Summary of the SWPCA algorithm, along with its context in the pipeline used in this article.

Circles represent the input data, both images (green shading) and class (group and acquisition

site, purple shading). Rectangles represent the different procedures applied, comprising the DAR-

TEL normalization and registration, the different steps contained in SWPCA -PCA, ANOVA and

obtaining the weighting function K(c)- and the suseqent analysis.
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score and acquisition site, and then used in the SWPCA
algorithm.

Weighting function

To obtain a set of corrected maps, a new signal matrix
of all maps of the same modality, X̂ , was estimated with
the influence of the PCs with variance related to acquisi-
tion site, assessed via the P-values, reduced. To do so, Eq.
(4) was modified to include a square matrix K (dimension
C 3 C) whose diagonal contains a weight kc for each
component that depends on its P-value; that is,

X̂5SKA (6)

The computation of each kc, for each component, was
performed using the Laplace distribution, modified so that
the weights were on the interval [0, 1]:

kc pc; pthð Þ512e
2pc
pth 8pc 2 0; 1½ � (7)

where pc is the statistical significance of the c-th compo-
nent with respect to the acquisition site and pth is the sta-
tistical threshold for significance; that is, pth50.05. This
weighting ensured that most of the components of vari-
ance that are not related to the acquisition site are kept
unchanged, while at the same time it strongly reduces the
influence of components with P-values less than the
threshold.

This procedure is illustrated in Figure 2, where a box-
plot of the distribution of the first four principal compo-
nent scores is shown. Since we have assumed that
substantial differences imply a bigger influence of the
acquisition site on the portion of variance modelled by
that component, the resulting weight is reduced, and the
contribution of that component to the reconstructed signal
will be smaller. After computing all weights, most of the

sources that are related to the acquisition site (for example,
the second and third components) have been parsed out
while keeping all other sources of variance.

Experimental Settings and Validation

To validate the effects of the SWPCA algorithm on the
inter-site variance, experiments were undertaken to assess
the reduction of the undesired site variance in the original
datasets, and its impact on the between-group signal. Two
kind of analysis were performed: a characterization of
voxel-wise differences, and a classification analysis.

Voxel-wise differences between groups were character-
ized using voxel-based-morphometry (VBM) [Ashburner
and Friston, 2000], comprising preprocessing (registration,
smoothing) and mass-univariate t-test on the smoothed
maps from each modality. SWPCA is included (when
needed) in this pipeline as a plug in, after the smoothing
and before the computation of the test. Permutation testing
assessed the significance of the relationship between the
tested and target variables. A max-type procedure was
used to obtain family-wise, whole-brain corrected P-values
[Freedman and Lane, 1983]. Additionally, a component-
based morphometry (CBM), based on source based mor-
phometry (SBM) [Xu et al., 2009] was used. This procedure
provided Z-maps for visual inspection comparable to
those obtained in VBM, by selecting component loadings
W, scaling them to unit standard deviation and weighting
their contribution to the final map with their statistical sig-
nificance, computed using the same permutation inference
as in VBM.

A classification analysis was undertaken using a com-
mon classification pipeline [Khedher et al., 2015; L�opez
et al., 2009] consisting of preprocessing, feature extraction
and classification. SWPCA is used as a plug-in here as
well, after the preprocessing and before the feature

Figure 2.

Box-plot of the distribution of the component scores at each site in the four first components. We

assume that bigger differences between distributions imply a bigger influence of the acquisition site

on the portion of variance modelled by that component and therefore, to parse out those differ-

ences, the resulting weight will be smaller. [Color figure can be viewed at wileyonlinelibrary.com]
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extraction step. We used PCA on the images for feature
reduction and a Support Vector Classifier (SVC) with line-
ar kernel, as implemented in LIBSVM [Chang and Lin,
2011], to classify the component scores in both corrected
and uncorrected datasets (i.e. with and without SWPCA).

The classification was validated using stratified 10-fold
cross-validation [Kohavi, 1995]. In brief, 9 subsets of the
dataset were used for extraction of the PCs and training of
the classifier with the remaining subset used for testing.
This procedure was repeated for each subset, repeated 10
times to avoid possible bias and random effects of the par-
titions. The average and standard deviation of the accura-
cy (acc), sensitivity (sens) and specificity (spec) values for
each repetition were recorded.

For each modality independently, the following experi-
ments were performed:

Experiment 1: To demonstrate the ability of the
SWPCA algorithm to reduce undesired effects due to
acquisition site, the PCA 1 SVC pipeline was applied to
the datasets labelled by acquisition site. Classification
accuracy was compared to datasets with and without
SWPCA. VBM was then applied to identify the spatial
location of the between-site differences. This was
undertaken on the whole database (ALL), and sub-
groups containing only ASD or CTL participants.

Experiment 2: The discrimination ability of each
modality, acquired at different sites was assessed by
classification performance of individuals from Lon-
don (LON) and Cambridge (CAM) was separately
assessed, using group (ASD and CTL) as the labels.

Experiment 3: To assess the impact of SWPCA on the
datasets when characterizing the differences between
ASD and CTL groups, the classification pipeline com-
prising PCA 1 SVC, as well as VBM and CBM, were
applied to all participants with group as the labels.

RESULTS

Experiment 1: Effect of Acquisition Site

The first experiment was to demonstrate the ability of
SWPCA to reduce the intensity variance related to acquisi-
tion site. To do so, we first performed a VBM analysis in
all five modalities (qT1, qT2, synT1, GM and WM) sepa-
rately, with the uncorrected (without applying SWPCA)
and the corrected (after applying SWPCA) maps, using the
acquisition site as labels.

To illustrate where the sources of variance of the acqui-
sition sites are located, Figure 3 shows a brain t-map of
significant (P< 0.01, |t|>2.57) GM and WM between-site
differences. The biggest reductions in variance were found
in qT1 and synT1 maps, where high variability between
acquisition sites, especially in the right hemisphere, was

substantially reduced after the application of SWPCA. The
reduction in the qT2, GM and WM maps was smaller,
although noticeable.

To quantify the impact of this variance reduction on the
between-groups effects, the classification analysis was
undertaken. Higher accuracy values imply that the maps
contain site-related patterns that were significant, whereas
accuracy close to 0.5 indicates that the site-related variance
was low. The test was applied to ALL, and also to the
ASD and CTL subgroups. The classification results are
presented in Table 2.

Performance results indicate clear advantages of using
SWPCA, in particular in the case of qT1 and synT1 which
were associated with strong site-dependent variance.
These results are also consistent with the reduction of sig-
nificant between-group areas observed in Figure 3.

The between-site differences were smaller for GM and
WM maps, possibly due their reduced sensitivity. Since
fractional occupancy values are abstract, unitless values
derived from each image they are less influenced by the
acquisition site effects. For qT2 maps, the site-related dif-
ferences were greater for the CTL participants than ASD
where, according to the classification accuracy, they were
nearly indistinguishable. Acquisition site differences were
therefore noticeably reduced in the CTL and ALL data-
bases, but not in the ASD.

Experiment 2: Within-Site between-Group

Differences

In this second experiment, accuracy, sensitivity and spe-
cificity in the between-group comparison were recorded for
images acquired from each site. This is an estimation of the
discrimination ability of the different modalities without the
influence of the site effects; Table 3. For all modalities, most
of the values are close to a random classifier (�50%), indica-
tive of having either no significant differences between
groups, or having spatially heterogeneous patterns of sMRI
measures across individuals where mass-univariate
approaches are sub-optimal in detecting group differences.
It is interesting to note that the London sample contained
more between-group differences that those acquired in
Cambridge.

Experiment 3: Effect of SWPCA on Group

Differences

Finally, group differences were characterised with and
without applying site-effects reduction via SWPCA to the
five modalities.

Whole-brain VBM analysis was performed on the cor-
rected and uncorrected maps from each modality. Figure 4
depicts the brain t-maps of significant (P< 0.01, |t|>2.57)
qT1, qT2, synT1, GM and WM between-group differences,
using ALL, with the GM 1 WM mask, before and after
applying SWPCA, so that the reduction of site-related
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variability can be observed. Some of the highlighted areas
after applying SWPCA are inconsistent across modalities,
with spurious peaks and noise, including a large area
around the ventricles in the qT1 and synT1 modalities
related to some abnormal participants that will be dis-
cussed later. However, there were some areas that were
consistent across modalities. Significant areas found across
at least 4 of the 5 modalities correspond to the Advanced
Automated Labelling (AAL) [Tzourio-Mazoyer et al., 2002]
areas of: (A) right superior frontal gyrus, Brodmann areas

6 (z 5 60); (B) the pars opercularis of the left inferior fron-
tal gyrus, Brodmann areas 44; (C) the pars triangularis of
the left inferior frontal gyrus, Brodmann areas 45; (D) the
posterior part of the left middle temporal gyrus (z 5 24);
CSF filled spaces on the margins of the ventricles
(z 5 26,4,14,24); and the left crus I of cerebellar hemi-
sphere (z 5 226).

The complementary CBM (Section 2.4) analysis was per-
formed on the most significant components. The resulting
regions, statistically thresholded with |Z|>2.57

Figure 3.

Brain t-map (voxel-based morphometry) of significant (P< 0.01, |t|>2.57) GM and WM between-

group differences using qT1, qT2, synT1, GM and WM modalities after applying SWPCA to

remove site effects. [Color figure can be viewed at wileyonlinelibrary.com]
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(corresponding to P< 0.01), were superimposed on the
MNI template, and are depicted in Figure 5. A reduction
of significant between-group areas after applying SWPCA
is evident in most modalities, but particularly noticeable in
the qT1 and qT2. In WM no significant regions were
observed, neither before nor after SWPCA. The significant
regions identified in any modality corresponded to the
AAL areas of the CSF filled areas around the ventricles
(planes z 5 26, 4, 14, 24), the right middle temporal gyrus
(plane z 5 14) and the left crus I of cerebellar hemisphere
(plane z 5 226). However, none of these regions were
repeated over more than two of the modalities, except for
the large areas around ventricles that were caused by
abnormalities in three participants, which will be dis-
cussed later.

Performance results for the classification analysis
applied to ALL are shown in Table 4. Between-group
results were quite similar before or after applying SWPCA,

although reducing between-site variance generally reduced
the performance towards a random classifier. The results
in this table match the overall effects that were found in
Figure 4, where most spurious significance peaks disap-
peared after applying SWPCA, but some regions were
highlighted. These regions, where SWPCA did not seem to
eliminate the significant areas but enhanced them, could
be responsible for the accuracy increment in the analysis
of the qT2 modality, and the GM with GM mask.

DISCUSSION

Brain anatomical and functional differences between
ASD participants and controls have been explored by a
number of previous studies [Di Martino et al., 2014; Ecker
et al., 2015; Hernandez et al., 2015; Lenroot and Yeung,
2013; Z€urcher et al., 2015]. Many affected structures have

TABLE 3. Classification accuracy (Acc), sensitivity (Sen) and specificity (Spec) 6 standard deviation for each modali-

ty and mask using the participants acquired at the LON and CAM sites

LONDON CAMBRIDGE

Modality Mask Acc Sens Spec Acc Sens Spec

qT1 GM1WM 0.603 6 0.175 0.512 6 0.260 0.692 6 0.237 0.504 6 0.193 0.492 6 0.276 0.515 6 0.307
GM 0.501 6 0.157 0.440 6 0.244 0.565 6 0.245 0.484 6 0.201 0.488 6 0.300 0.480 6 0.327
WM 0.505 6 0.174 0.485 6 0.248 0.526 6 0.242 0.451 6 0.197 0.465 6 0.297 0.435 6 0.296

qT2 GM1WM 0.628 6 0.168 0.535 6 0.246 0.719 6 0.237 0.467 6 0.181 0.527 6 0.307 0.417 6 0.314
GM 0.539 6 0.149 0.425 6 0.220 0.654 6 0.222 0.491 6 0.196 0.548 6 0.316 0.430 6 0.298
WM 0.619 6 0.194 0.585 6 0.262 0.655 6 0.250 0.472 6 0.195 0.448 6 0.283 0.492 6 0.290

synT1 GM1WM 0.665 6 0.158 0.578 6 0.224 0.755 6 0.238 0.479 6 0.201 0.478 6 0.318 0.475 6 0.316
GM 0.547 6 0.159 0.475 6 0.237 0.622 6 0.252 0.514 6 0.218 0.477 6 0.322 0.555 6 0.342
WM 0.515 6 0.185 0.520 6 0.288 0.506 6 0.254 0.509 6 0.209 0.472 6 0.317 0.542 6 0.316

GM GM1WM 0.513 6 0.171 0.507 6 0.252 0.518 6 0.245 0.488 6 0.202 0.445 6 0.318 0.528 6 0.285
GM 0.586 6 0.174 0.610 6 0.247 0.564 6 0.270 0.521 6 0.187 0.522 6 0.303 0.535 6 0.289

WM GM1WM 0.471 6 0.181 0.455 6 0.245 0.488 6 0.278 0.489 6 0.206 0.502 6 0.319 0.483 6 0.314
WM 0.465 6 0.174 0.445 6 0.243 0.484 6 0.268 0.468 6 0.210 0.488 6 0.292 0.448 6 0.305

TABLE 2. Between-site classification accuracy ( 6 standard deviation) for different modalities and masks without

and with SWPCA correction

ALL CTL ASD

Modality Mask No SWPCA SWPCA No SWPCA SWPCA No SWPCA SWPCA

qT1 GM1WM 0.875 6 0.083 0.530 6 0.130 0.847 6 0.141 0.543 6 0.115 0.769 6 0.145 0.553 6 0.093
GM 0.849 6 0.085 0.535 6 0.107 0.835 6 0.154 0.501 6 0.090 0.712 6 0.161 0.575 6 0.084
WM 0.865 6 0.082 0.447 6 0.071 0.876 6 0.128 0.441 6 0.058 0.813 6 0.127 0.575 6 0.153

qT2 GM1WM 0.596 6 0.128 0.503 6 0.093 0.615 6 0.196 0.454 6 0.075 0.506 6 0.192 0.476 6 0.103
GM 0.596 6 0.126 0.493 6 0.097 0.549 6 0.187 0.478 6 0.108 0.497 6 0.197 0.425 6 0.091
WM 0.612 6 0.131 0.560 6 0.128 0.576 6 0.195 0.550 6 0.146 0.541 6 0.185 0.575 6 0.172

synT1 GM1WM 0.904 6 0.073 0.563 6 0.060 0.919 6 0.100 0.440 6 0.057 0.807 6 0.151 0.631 6 0.098
GM 0.879 6 0.090 0.576 6 0.035 0.899 6 0.108 0.526 6 0.079 0.800 6 0.145 0.587 6 0.042
WM 0.904 6 0.076 0.582 6 0.047 0.894 6 0.111 0.574 6 0.038 0.859 6 0.112 0.468 6 0.101

GM GM1WM 0.595 6 0.133 0.586 6 0.141 0.582 6 0.192 0.566 6 0.093 0.481 6 0.169 0.468 6 0.152
GM 0.620 6 0.141 0.585 6 0.078 0.604 6 0.227 0.574 6 0.038 0.499 6 0.188 0.525 6 0.114

WM GM1WM 0.659 6 0.139 0.448 6 0.066 0.635 6 0.180 0.507 6 0.144 0.522 6 0.206 0.525 6 0.198
WM 0.639 6 0.124 0.549 6 0.072 0.578 6 0.194 0.516 6 0.126 0.549 6 0.160 0.526 6 0.136
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been proposed in each of these studies, however as a
recent large-scale study points out [Haar et al., 2014], these
are frequently inconsistent throughout the literature.
Researchers argue that most of these structures are
database-dependent, and since many studies use multi-site
acquisition procedures, the variance introduced by each
acquisition site is a probable source of Type I errors.

The technical and logistical drawbacks of multicentre
studies are widely documented, including participant

recruitment procedures [Pearlson, 2009] and technical
effects that range from the usage of different equipment or
acquisition parameters [Van Horn and Toga, 2009] to
physical changes that affect the performance of MRI scan-
ners across time [Pearlson, 2009]. There is general recogni-
tion that standardization is needed to ensure the
uniformity of the acquired maps. Different approaches
have been used in large-scale studies, such as the Alz-
heimer’s Disease Neuroimaging Initiative (ADNI) where

Figure 4.

Brain t-map (voxel-based morphometry) of significant (P< 0.01, |t|>2.57) grey and white matter

differences in ASD using qT1, qT2, synT1, GM and WM images before and after applying

SWPCA to remove site effects. [Color figure can be viewed at wileyonlinelibrary.com]
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human “phantoms” were used to perform a preparatory
optimisation of MRI scanning platforms [Friedman and
Glover, 2006].

There are two major types of site effects, regardless of
their source: geometric distortions and intensity inhomoge-
neities. In this work, we focused on the latter, since much
of the geometric distortion has been eliminated during
acquisition (see section “Image Database”), and the DAR-
TEL normalization and registration acts as a homogenizing

step, reducing both between-site and between-subject geo-
metric differences, substantially reducing the impact of the
site-related geometric differences.

Regarding intensity correction, in the MRC AIMS data-
base used in this study [Ecker et al., 2012, 2013, 2015], a
standardization procedure based on quantitative imaging
[Deoni et al., 2008] was used to minimize inter-site vari-
ance and improve the signal-to-noise contrast. However,
as the between-site analysis in “Experiment 1: Effect of

Figure 5.

Brain Z-map (component-based morphometry) of significant (P< 0.01, |Z|>2.57) grey and white

matter differences in ASD using qT1, qT2, synT1, GM and WM images before and after applying

SWPCA to remove site effects. [Color figure can be viewed at wileyonlinelibrary.com]
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Acquisition Site” section suggests, this strategy still results
in variance that makes it easier to distinguish scanning
sites than diagnostic groups. For example, when using qT1
the accuracy for LON vs. CAM classification was >80%,
whilst when classifying ASD vs. CTL it was 52%. This
marks the substantial effect of site variance on the maps’
intensity distribution, even when the multi-site study
employs quantitative imaging protocol on the same model
of scanner platform across sites. However, with the inclu-
sion of GM and WM maps, we can observe that the inho-
mogeneities found on qT1 or synT1 barely affected the
segmentation procedure.

In this work, the approach we have taken is to perform
a multivariate decomposition of each dataset into a num-
ber of components that explain different portions of vari-
ance. The following step was to identify the components
of variance that are due to multi-site acquisition and
reduce them. Decomposition was completed using PCA
and then, to identify which of the components were linked
to acquisition site, we performed an ANOVA on the com-
ponent scores. Finally, using the weighting function
defined in Sec. 2.3.3, we reconstructed the original signal
reducing the undesired variance, in what we called Signifi-
cance Weighted PCA (SWPCA). The method has proven
its ability in reducing undesired variance, quantifiable by
means of the accuracy obtained in a site vs. site classifica-
tion. In this case, SWPCA reduced the accuracy from >0.8
to approximately �0.5, a random classifier, suggesting that
most site-related variance was eliminated.

A simpler approach such as applying a voxel-by-voxel
ANOVA would also be useful to reduce the acquisition
site effects [Suckling et al., 2012]. However, SWPCA is a
multivariate approach that still offers major advantages
over this voxel-wise algorithm, and similar algorithms
have found utility in text document searches [Kriegel
et al., 2008; Tavoli et al., 2013; Zhang and Nguyen, 2005].

First, PCA models the different sources of variance of the
dataset, whereas a simple voxel-wise ANOVA only
removes mean site differences, which might result in less
statistical power. Secondly, SWPCA is multivariate in
nature, where each component contains information that
potentially affects all voxels. Together, these two features
allow SWPCA to identify the components linked to the
undesired effects, and reduce their impact with a weighted
reconstruction approach, reducing the general variance
related to the acquisition site. However, this increased
power reveals a major drawback: SWPCA needs at least a
moderate number of participants to work properly. That is
the reason why we cannot apply SWPCA to databases
such as ADNI [Friedman and Glover, 2006] or ABIDE [Di
Martino et al., 2014], where the number of participants
acquired at each site is small, or to the six travelling phan-
toms used in the calibration of the MRC AIMS study.

There exist a number of similar multivariate methods
that model the influence of categorical variables, such as
the well-known Partial Least Squares (PLS) algorithm
[Vinzi et al., 2010] or Surrogate Variable Analysis (SVA)
[Leek and Storey, 2007]. In the first case, both PLS and
SWPCA take categorical variables Y along with the data X

as inputs to partition the influence of these into compo-
nents. However, the most significant difference is the
underlying model. Whilst SWPCA estimates the principal
components blindly using their variance, which is what
we aim to reduce, and performs an ANOVA afterwards,
PLS uses the categorical variable in the computation of the
covariance matrix and then estimates the components.

On the other hand, SVA, used for gene expression stud-
ies [Leek and Storey, 2007], is more comparable to
SWPCA. The SVA algorithm uses a number of decomposi-
tion and significance estimation steps to construct a set of
surrogate variables; that is, variables that account for the
unmodeled variance and expression heterogeneity. While

TABLE 4. Classification accuracy (Acc), sensitivity (Sen), and specificity (Spec)) 6 standard deviation for the differ-

ent modalities and masks using ALL, before and after applying SWPCA

No SWPCA SWPCA

Modality Mask Acc Sens Spec Acc Sens Spec

qT1 GM1WM 0.564 6 0.123 0.503 6 0.179 0.625 6 0.177 0.435 6 0.123 0.499 6 0.181 0.371 6 0.178
GM 0.523 6 0.112 0.468 6 0.162 0.580 6 0.192 0.458 6 0.120 0.477 6 0.187 0.441 6 0.210
WM 0.504 6 0.131 0.475 6 0.191 0.533 6 0.194 0.484 6 0.123 0.511 6 0.179 0.456 6 0.194

qT2 GM1WM 0.578 6 0.115 0.487 6 0.208 0.669 6 0.178 0.593 6 0.136 0.546 6 0.206 0.640 6 0.194
GM 0.554 6 0.135 0.492 6 0.194 0.614 6 0.181 0.526 6 0.144 0.512 6 0.209 0.543 6 0.222
WM 0.516 6 0.138 0.508 6 0.198 0.522 6 0.216 0.499 6 0.137 0.477 6 0.209 0.521 6 0.196

synT1 GM1WM 0.596 6 0.132 0.509 6 0.194 0.680 6 0.172 0.577 6 0.130 0.479 6 0.208 0.676 6 0.183
GM 0.587 6 0.139 0.509 6 0.210 0.665 6 0.169 0.483 6 0.136 0.489 6 0.218 0.480 6 0.200
WM 0.496 6 0.139 0.500 6 0.189 0.492 6 0.194 0.487 6 0.134 0.513 6 0.189 0.461 6 0.211

GM GM1WM 0.498 6 0.120 0.486 6 0.197 0.507 6 0.203 0.490 6 0.123 0.514 6 0.197 0.465 6 0.182
GM 0.574 6 0.121 0.571 6 0.189 0.579 6 0.163 0.593 6 0.127 0.602 6 0.172 0.587 6 0.190

WM GM1WM 0.499 6 0.132 0.506 6 0.189 0.487 6 0.181 0.521 6 0.129 0.510 6 0.209 0.532 6 0.180
WM 0.506 6 0.143 0.488 6 0.219 0.526 6 0.197 0.507 6 0.122 0.521 6 0.165 0.492 6 0.193
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similar to SWPCA in the steps used (i.e. SVD decomposi-
tion and significance estimation), their approaches are fun-
damentally different. SVA constructs a higher complexity
model that starts by eliminating the contribution of prima-
ry variables to produce a number of unknown hidden
(surrogate) variables, whereas SWPCA is intended to
reduce complexity by producing variance-reduced maps to
reduce the influence of previously known, but unconsid-
ered, variables and facilitate a subsequent analysis focused
only on the relevant variables.

Focusing on the VBM results, after performing the site-
effects removal by SWPCA significant between-group dif-
ferences were noted in five areas: (A) the right superior
frontal gyrus; (B) the pars opercularis of the left inferior
frontal gyrus; (C) the pars triangularis of the left inferior
frontal gyrus; (D) the posterior part of the left middle tem-
poral gyrus; and (E) the left crus I of cerebellar hemi-
sphere. The first three regions are within Brodmann areas
6, 44 and 45. However, when examining the projection of
the region D onto the MNI template (see Fig. 6), it is also
located in the posterior part of the left superior temporal

gyrus. Therefore, D corresponds closely with the region
between Brodmann areas 22 and 39, the Temporo-Parietal
Junction (TPJ), with negative t-value at the left side (con-
taining Wernicke’s area) and positive t-value at the right
side.

The role of these regions in autism has received much
attention. Brodmann areas 44 and 45, that together make
the Broca’s Area (of importance in speech production and
a proposed part of the human mirror neuron system
(Nishitani et al., 2005)], is a region where mirror neuron
dysfunction has been consistently reported in ASD-
affected children [Dapretto et al., 2006] and adults [Hadji-
khani et al., 2006; Lopez-Hurtado and Prieto, 2008; Verly
et al., 2014]. Wernicke’s area, contained in the left TPJ, is
also linked to language, and has been associated with ASD
in several works [Hadjikhani et al., 2006; Kriegel et al.,
2008; Verly et al., 2014]. Additionally, the right TPJ has
been proposed as related to mentalizing and has been
repeatedly implicated in autism [Barnea-Goraly et al.,
2004], including a fMRI study of a subsample of this same
AIMS dataset [Lombardo et al., 2011]. The right superior

Figure 6.

Location of the significant region that we have labelled D (posterior part of the superior tempo-

ral gyrus) within the MNI template.

Figure 7.

The template used in this work compared to two of the participants with abnormal ventricle

size (21016 and 21018). Atrophy of the cerebellum in participant 21016 can also be appreciated,

responsible for some of the ‘highlighted’ areas in qT1, qT2 and synT1 t-maps (see Fig. 4).
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frontal gyrus (region A) is more equivocal, with some
studies [Ecker et al., 2010, 2012] reporting abnormalities in
this area, while others [Hadjikhani et al., 2006; Segovia
et al., 2014] report no significant differences. Our analyses
reveal no differences in the insula and amygdala, brain
structures frequently linked to autism.

Some regions, particularly in qT2, synT1 and segmented
GM maps show potentially spurious significance peaks
around the ventricles and especially in the left crus I of
cerebellar hemisphere (region E). After examining the
database, two individuals had appreciable structural
abnormalities in the form of abnormal ventricle size and
cerebellar atrophy, as can be seen in Figure 7. It is possible
that these participants influenced the computation of the t-
maps, and therefore are responsible for the significance in
region E and areas surrounding the ventricles and, since
they are part of the LON subdataset, could also be respon-
sible for the increased classification accuracy of the quanti-
tative T1 and T2, and the synthetic T1 maps in this sub-
dataset.

After observing the influence of these participants on
the computation of the t-maps, we can assume that most
of the structural differences in ASD are so subtle that the
influence of just one or two images can impact on the final
results. This, along with the poor performance of the clas-
sification pipeline presented in Section 3, dramatically
reduces the significance of the aforementioned t-maps.
Therefore, the existing evidence leads to the conclusion
that ASD presents as either undetectable structural differ-
ences or, more likely, with such heterogeneous differences
that are difficult to establish a common pattern even after
reducing the variance introduced by acquisition site.

It may be the case that cohorts of individuals examined
at different sites are somehow systematically biased
towards a specific type of patient (in ways that we cannot
see simply based on phenotypic information), then site-
related intensity variability is also enriched with important
variability about nested autism subgroups. So with any
technique trying to remove the site-related inhomogeneity,
the subgroup information could also be removed. Togeth-
er, the evidence supports the claim that defining meaning-
ful subgroups based on different measures, such as
genetic profiling, clinical co-morbidities or sensory sensi-
tivities, is the most urgent next step for ASD research
[Haar et al., 2014].

CONCLUSIONS

In this work, a novel method called Significance Weight-
ed PCA (SWPCA) is proposed. The method comprises a
principal component extraction, the characterization of
their statistical significance according to a categorical vari-
able (in this case, acquisition site) and the reconstruction
of the images using a weighted approach. This approach
was tested with an ASD database and demonstrated its
ability for reducing inter-site variance, which we have

characterized with a site vs. site classification of the
images. A priori, the images yielded >0.8 of accuracy, in
contrast to a �0.5 accuracy between groups, suggesting
that the images contained many differences depending on
acquisition site. After minimizing site-related variance, sta-
tistically significant group differences were found for
example in Broca’s area and the temporoparietal junction.
However, their discriminative power was not sufficient to
classify diagnostic groups, yielding accuracy results close
to random. Our work supports recent claims that ASD is a
highly heterogeneous syndrome/diagnostic category that
is difficult to characterize globally using neuroimaging
and therefore different (and more homogeneous) sub-
groups should be defined using imaging and perhaps oth-
er biological measures to obtain a deeper understanding of
ASD.
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