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INTRODUCTION 
 

Lung cancer is the most common cancer worldwide that 

originates from the bronchial mucosal glands and is 

associated with poor prognosis because of late diagnosis 

[1–3]. Lung squamous cell carcinoma (LUSC) is the 

second most common histological type of lung cancer 

that originates from the main bronchus, develops into a 

sessile mass, and blocks the lumen. In recent years, 

targeted therapy has improved the survival and quality 
of life of nearly 60% of lung adenocarcinoma patients 

that carry the corresponding driver gene mutations [4, 

5]. However, majority of the advanced lung squamous 

cell carcinoma (LUSC) patients do not harbor mutations 

in the driver genes that are amenable for the currently 

available targeted therapeutics and are therefore treated 

by traditional chemotherapies [4]. In recent years, 

immune check point block (ICB) therapeutics have been 

available for treating LUSC patients [6], but, some 

LUSC patients show hyper-progression after ICB 

treatment [7]. Several cytokines including IL-6 promote 

the stemness of the LUSC cells in the tumor 

microenvironment and assist the tumor cells to escape 

immune surveillance [8, 9]. Evasion of immune 

surveillance and chronic inflammation are both 

hallmarks of tumor progression in all tumor tissues 
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ABSTRACT 
 

In this study, we performed bioinformatics analyses to identify hub genes that regulate tumor infiltration by 
immune cells and antitumor immunity in the lung squamous cell carcinoma (LUSC). We identified 1738 
robust and stable differentially expressed genes (DEGs) in the LUSC tissues based on robust rank 
aggregation (RRA) analysis of RNA-sequencing data from 5 GEO-LUSC datasets. We then classified TCGA-
LUSC patients based on ssGSEA and ESTIMATE analyses of LUSC tissues into high, medium and low immunity 
subgroups showing significant differences in tumor purity. Weighted gene co-expression network analysis of 
the robust DEGs revealed five immunity-related modules, including the brown module with 762 DEGs and 
30 hub genes showing the highest correlation with the immunity-related LUSC patient subgroups and their 
clinicopathological characteristics. We selected four hub genes, LAPTM5, C1QC, CSF1R and SLCO2B1, for 
validation of the immunity status and prognosis of LUSC patients. High expression of these four genes 
correlated with increased infiltration of immune cell types, upregulation of the immunosuppressive TOX 
pathway genes, CD8+ T cell exhaustion, and shorter overall survival of LUSC patients. These findings 
demonstrate that four hub genes regulate tumor infiltration of immune cells, anti-tumor immunity, and 
survival outcomes in LUSC patients. 
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including LUSC [10]. In the past decade, RNA-

sequencing technology has developed greatly and 

helped to gain greater insights into the molecular 

mechanisms that are promote or restrict growth and 

progression of LUSC [11]. However, majority of these 

studies have small sample sizes. Moreover, the use of 

different microarray platforms reduces the statistical 

power while merging data from different cohorts [5].  

 

In this study, we performed Robust Rank Aggregation 

(RRA) analysis of 5 microarray datasets from the Gene 

Expression Omnibus (GEO; http://www.ncbi.nlm.nih. 

gov/geo/) database to identify differentially expressed 

genes (DEGs) between LUSC tissues and matched 

normal lung tissue samples [12]. We then quantified the 

enrichment levels of 29 immune signatures in each 

LUSC sample from the TCGA database using gene set 

enrichment analysis or ssGSEA [13, 14] and identified 

different immunity-related subtypes of LUSC patients. 

We also used the ESTIMATE algorithm [15] to 

evaluate the immune cell infiltration levels (immune 

score), tumor purity, and stromal content (stromal 

score) in all LUSC samples, and performed weighted 

gene co-expression network analysis (WGCNA) of the 

DEGs to identify key immunity-related modules and 

annotated the functions of the DEGs in the highest 

correlating module using Gene Ontology (GO) and 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

analyses. We selected four hub genes, LAPTM5, C1QC, 

CSF1R, and SLCO2B1, and analyzed their correlation 

with the tumor infiltration of 22 immune cell subsets 

using CIBERSORT [16] and the prognosis of different 

immunity-related LUSC patient subtypes. Finally, we 

performed Gene Set Enrichment Analysis (GSEA), and 

Gene Set Variation Analysis (GSVA) to determine the 

potential functions of these four hub genes. 

 

RESULTS 
 

Identification of robust DEGs by the RRA method 

and functional enrichment analysis of DEGs 

 

The study strategy for the identification, validation, and 

functional analysis of DEGs is shown in Figure 1. RRA 

analysis of the RNA-sequencing data from 5 eligible 

LUSC datasets (GEO database) identified 1738 DEGs 

(808 up-regulated and 930 down-regulated). The 

expression patterns and the chromosomal locations of 

the top 93 DEGs, visualized using the OmicCircos R 

package are shown in Figure 2A. The top 4 upregulated 

genes in the LUSC tissues were ANLN, UBE2C, 

CCNA2, and CCNB1 and the top 4 downregulated genes 

in the LUSC tissues were ASPA, FAM107A, ABCA8, 

and ADAMTS8. The heatmap of the top 20 up-regulated 

and top 20 down-regulated DEGs are shown in 

Supplementary Figure 1. 

We then performed GO and KEGG functional 

enrichment analyses of the top 300 DEGs. The top GO 

terms for the enriched biological processes (BP) were 

mitotic nuclear division, nuclear division, organelle 

fission, mitotic sister chromatid segregation, cell 

junction assembly, and cell junction organization 

(Figure 2B). The most significantly enriched GO term 

for cellular component (CC) was chromosomal region 

(Figure 2C). The top GO terms for the molecular 

functions (MF) were ATPase activity and DNA helicase 

activity (Figure 2D). The most enriched KEGG 

pathways were cell cycle, oocyte meiosis, and 

progesterone-mediated oocyte maturation (Figure 2E). 

 

Identification of immunity-related LUSC patient 

subtypes using ssGSEA and ESTIMATE  

 

We then analyzed the status of 29 immunity-related 

gene sets that represent diverse immune cell functions, 

and pathways using ssGSEA [13, 14, 17] in the TGCA-

LUSC cancer samples (The numbers of these samples 

were in the Supplementary File 1) and ranked them 

according to ssGSEA scores. Hierarchically clustering 

of the TCGA-LUSC samples revealed high immunity, 

medium immunity, and low immunity subgroups 

(Figure 3A). The immune scores, stromal scores, and 

tumor purity of the three subtypes of LUSC samples 

were calculated using the ESTIMATE algorithm 

(Figure 3B). The high immunity group showed the 

highest stromal and immune scores and the lowest 

tumor purity whereas the low immunity group showed 

the lowest stromal and immune scores and the highest 

tumor purity (Kruskal–Wallis test: P< 0.001; Figure 

3C–3E). The expression of PD-L1 and HLA genes was 

highest in the high immunity group and lowest in the 

low immunity group (ANOVA test: P < 0.05; Figure 

3F, 3H). This suggests that the high immunity group of 

LUSC patients might respond better to anti-PD-L1 

immunotherapy compared to the other two LUSC 

groups because PD-L1 expression is positively 

associated with the anti-PDL1 immunotherapy response 

[18]. However, survival analyses showed no significant 

differences in overall survival times between the three 

LUSC patient groups (Figure 3G). This suggested that 

the LUSC cells escape immune surveillance despite the 

abundant presence of immune cells in the LUSC tissues.  

 

We then performed GO and KEGG functional 

enrichment analyses of the DEGs between the high and 

low immunity groups of LUSC patient samples. The 

most significant GO terms and the KEGG pathways are 

shown in Figure 4A–4D. The high immunity LUSC 

group was enriched in several cancer-associated 
pathways such as NF-κB, PI3K–Akt, and RAS 

signaling pathways and immune signatures related to 

the establishment of lymphocyte and T-cell polarity.  

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
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Identification of key modules associated with the 

immunity status of LUSC samples using WGCNA 

 

We performed WGCNA on the TCGA-LUSC dataset 

using the DEGs obtained from the RRA analysis to find 

key immunity-associated gene modules and evaluated 

their relationship with the clinicopathological 

characteristics of LUSC patients. The clinical 

information of LUSC patients including gender, age, 

TNM grades, stage, and smoking history was retrieved 

from the TCGA database. Figure 5A shows the 

clustering of the TCGA-LUSC samples according to 

 

 
 

Figure 1. Schematic representation of the study workflow. 
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their correlation with clinicopathological characteristics 

such as gender, age, TNM grades, stage, and smoking 

history, as well as the immune score, tumor purity, 

stromal score, and immunity-related LUSC patient 

groups (low-, medium- and high-immunity). We 

identified 5 immunity-related gene modules by setting 

the soft-threshold power as 4 (scale free R2 value = 

0.96) and cut height value as 0.45 (Figure 5B–5D; non-

clustering DEGs are shown in gray). The brown module 

showed the highest correlation with the immunity-

related LUSC patient clusters (Pearson correlation 

coefficient = 0.7, P < 5E-64; Figure 5E).  

 

 
 

Figure 2. Identification and functional enrichment analysis of robust DEGS in five GEO-LUSC datasets. (A) The circular heatmaps 
show the differential expressed genes (DEGs) in the five GEO-LUSC datasets, which are shown in the inner circle. The upregulated genes are 
shown in red and the downregulated genes are represented in blue. Genes that are not present in a given dataset are shown in white. The 
outer circle represents the chromosomes. The lines indicate their specific chromosomal locations of each gene. The top 4 up-regulated and 
down-regulated genes according to the adjusted P values are shown in red and blue, respectively and are connected by the red and blue lines 
to the center of the circles. (B) The chord plot shows the relationship between the top 300 DEGs and the GO terms related to the biological 
processes (BP). (C) The chord plot depicts the relationship between the top 300 DEGs and the GO terms related to the cellular components 
(CC). (D) The chord plot depicts the relationship between the top 300 DEGs and the GO terms related to the molecular functions (MF). (E) The 
chord plot depicts the relationship between the top 300 DEGs and the KEGG pathways. 
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The brown module contains 762 genes (Figure 6A). 

Next, we calculated the connectivity within the brown 

module and selected the 30 most connected genes for 

further analysis, namely, CD74, HLA.DRA, ITGB2, 

HLA.DPB1, LAPTM5, HLA.DPA1, CD4, C1QC, 

CSF1R, TYROBP, HLA.DMB, FCER1G, SLCO2B1, 
MS4A6A, CYBB, CD53, SLAMF8, DOCK8, NCKAP1L, 

FPR3, LAIR1, IL10RA, MPEG1, DOCK2, SLA, 

CMKLR1, IRF8, C3AR1, EVI2B and CD84. Next, we 

generated the PPI interaction network and the 

coexpression network between the 30 genes (Figure 6B, 

6C). GO and KEGG pathway analyses of the DEGs in 

the brown module show enrichment of gene sets related 

to extracellular structure organization and PI3K-Akt 

signaling pathway (Figure 6D). 

 

Validation of hub genes in the TCGA-LUSC dataset  

 

Among the 30 hub genes in the brown module, we 

selected four genes, namely, C1QC, CSF1R, LAPTM5 

 

 
 

Figure 3. ESTIMATE analysis of three immunity-related subtypes in the TCGA-LUSC samples based on ssGSEA scores. (A) 

Hierarchical clustering of TGCA-LUSC samples based on the ssGSEA scores generated by analyzing the expression levels of the immunity-
related gene sets. The data shows three distinct LUSC subgroups: high immunity, medium immunity, and low immunity. (B) ESTIMATE 
analyses of tumor purity, stromal scores, and immune scores of the high, medium, and low immunity groups of LUSC patient samples. 
Histogram plot shows the ESTIMATE scores of the three LUSC subgroups (Mann–Whitney U test, p<0.001). (C) Histogram plot shows the 
stromal scores of the three LUSC subgroups (Mann–Whitney U test, p<0.001). (D) Histogram plot shows the immune scores of the three LUSC 
subtypes (Mann–Whitney U test, p<0.001). (E) Histogram plot shows the tumor purity levels of the three LUSC subgroups (Mann–Whitney U 
test, p<0.001). (F) Histogram plot shows the PD-L1 expression levels of the three LUSC subgroups (ANOVA test, p<0.001).(G) Kaplan-Meier 
survival curve analysis shows the overall survival times of the LUSC patients belonging to the three LUSC subgroups (log-rank test: P>0.05). 
(H) Histogram plot shows the expression levels of HLA genes of the three LUSC patient subgroups (ANOVA, P<0.05). (G) Histogram plot shows 
the TOX expression levels of the three LUSC subgroups (ANOVA, P<0.05). Note: Immunity_H denotes high immunity group; Immunity_M 
denotes medium immunity group; Immunity_L denotes low immunity group. 
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and SLCO2B1 for validating the prognosis of LUSC 

patients and analyze their association with immune cell 

infiltration into LUSC tissues. The mRNA expression of 

all these 4 genes was significantly reduced in the LUSC 

samples compared to the adjacent normal lung tissue 

samples (P < 0.001; Figure 7A). The IHC data in the 

Human Protein Atlas database also showed that the 

expression of C1QC, CSF1R, LAPTM5 and SLCO2B1 

proteins was significantly reduced in the LUSC tissues 

compared to the normal lung tissues (Figure 7B, 

Supplementary Table 1). Moreover, the mRNA 

expression of C1QC, CSF1R, LAPTM5 and SLCO2B1 

was significantly higher in the high immunity group of 

LUSC patient samples compared to the low immunity 

group of LUSC patient samples (Supplementary Figure 

2A). The mRNA expression of C1QC, CSF1R, 

LAPTM5 and SLCO2B1 was negatively associated 

with tumor purity (Supplementary Figure 2B). In 

addition, the mRNA data in the Cancer Cell Line 

Encyclopedia database showed that the expression of 

C1QC, CSF1R, LAPTM5 and SLCO2B1 mRNA was 

significantly lower in LUSC cell lines (n=23) compared 

to lymphoid cell lines (n=167) (Supplementary Figure 

2C). Kaplan-Meier survival curve analysis showed that 

patients with higher expression of C1QC, CSF1R, 

LAPTM5 and SLCO2B1 were associated with worse 

overall survival times compared to those with lower 

expression of these four genes (Figure 7C).  

 

Identification of LUSC patient clusters based on the 

expression of the Tox pathway genes  

 

T cell exhaustion or hypo-responsiveness is observed 

during chronic infections and in solid tumors [19]. 

 

 
 

Figure 4. Functional enrichment analyses of DEGS in the high immunity subgroup of LUSC patient samples. (A) Gene set 

enrichment analysis (GSEA) results show the enriched GO terms and KEGG pathways in the high immunity subgroup of TGCA-LUSC samples. 
(B) The bubble plots show the enriched GO and KEGG pathways based on the analysis of upregulated genes in the high immunity subgroup of 
TGCA-LUSC samples. 
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Recent studies demonstrate that the transcriptional 

regulator Tox plays an important role in T cell 

exhaustion [20–22]. The top 100 differentially 

upregulated genes in the TOXWT CD8+ T cells compared 

to the TOX∆ CD8+ T cells in the GSE131643 dataset are 

defined as the TOX pathway gene signature [20] (These 

genes were shown in Supplementary File 2). We 

performed consensus clustering of the TCGA-LUSC 

samples based on the TOX pathway gene signature and 

identified two distinct clusters as shown in the 

clustering heatmap (Figure 8A). Kaplan-Meier survival 

analyses showed that the overall survival (OS) times 

were significantly lower in the cluster 2 LUSC patients 

compared to the cluster 1 LUSC patients (p=0.029; 

Figure 8B). The heatmap in Figure 8C shows the 

differentially expressed genes (DEGs) in cluster 2 

compared to the cluster 1 LUSC samples. Furthermore, 

GSEA analysis using the exhausted versus effector 

CD8+ T cell data from the Molecular Signature 

Database for the GSE30962 dataset [23] showed that 

the density of exhausted CD8+ T cells was significantly 

higher in the cluster 2 LUSC samples compared to the 

cluster 1 LUSC samples (Figure 8D). Venn diagram 

shows that a higher proportion of high immunity group 

 

 
 

Figure 5. Weighted gene correlation network analysis to identify key immunity-related gene modules in the TCGA-LUSC 
dataset and their correlation with the LUSC-related clinicopathological traits. (A) The clustering dendrograms of robust DEGs 
identified by the RRA analysis in the TCGA-LUSC samples. The color intensity varies according to the clinicopathological characteristics such as 
age, TNM grades, stage and smoking history (smoking packs per year), immune scores, tumor purity, stromal scores and immunity subtypes 
(high, medium or low immunity subgroups). The red color indicates biochemical recurrence and white indicates absence of biochemical 
recurrence. For gender, red color denotes female and white color denotes male. (B, C) Network topology analyses for various soft-
thresholding powers. The left panel shows the scale-free fit index (y-axis) as a function of soft-thresholding power (x-axis). The right panel 
shows the mean connectivity (degree, y-axis) as a function of soft-thresholding power. (D) The clustering dendrogram of all DEGs with 
dissimilarity measures based on topological overlap measure (TOM) together with assigned module colors. The non-clustering DEGs are 
shown in gray. (E) The heatmap shows the correlation between module eigengenes and the clinicopathological traits of LUSC. Each column 
contains the corresponding correlation coefficient and P value.  
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Figure 6. Identification and functional annotation of the hub genes in the brown module. (A) Scatter plot of the gene significance 

(GS) versus the module membership (MM) of the 30 hub genes in the brown module. (B) Protein-protein interaction (PPI) network of the 30 
hub genes in the brown module. (C) Coexpression network analysis including visualization of the module membership (nodes) and the gene-
gene connections (edges) of the top 30 hub genes in the brown module using the Cytoscape version 3.4.0 software (D) Functional enrichment 
analysis results show the enriched GO terms and KEGG pathways related to the DEGs in the brown module.  
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Figure 7. Validation of the four hub genes in the TCGA-LUSC dataset. (A) The expression levels of LAPTM5, CSF1R, SLCO2B1 and 

C1QC mRNA in the TCGA-LUSC and adjacent normal lung tissue samples. (B) The expression levels of LAPTM5, CSF1R, SLCO2B1 and C1QC 
proteins in the LUSC and normal lung tissue samples based on the IHC data in The Human Protein Atlas database. (C) Correlation analysis of 
the mRNA expression levels of the 4 hub genes, LAPTM5, CSF1R, SLCO2B1 and C1QC in the LUSC tissues and the overall survival time of the 
TCGA-LUSC patients. The red line indicates TCGA-LUSC samples with high expression of the 4 hub genes (above the best-separation value, 
n=157), and the blue line denotes the TCGA-LUSC samples with low expression of the 4 hub genes (below best-separation value, n=209).  
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LUSC samples (110 of 146) belonged to the cluster 2 

group (Figure 8E). Although survival analysis showed 

no significant differences in OS between the three 

LUSC subtypes (Figure 3G), TOX mRNA expression 

levels were significantly higher in the high immunity 

group of LUSC samples compared to the low 

immunity group (Supplementary Figure 3A). This 

suggests that TOX promotes CD8+ T cell exhaustion 

in the high immunity LUSC group. We also observed 

that LAPTM5, C1QC, CSF1R, SLCO2B1 were highly 

expressed in the cluster 2 LUSC samples (Figure 8F). 

ROC curve analysis showed that all the four hub 

genes clearly distinguished the cluster 2 LUSC 

samples from the cluster 1 LUSC samples as shown 

by the AUC values (LAPTM5: AUC=0.800; C1QC: 

AUC=0.800; CSF1R: AUC=0.837; LCO2B1: 

AUC=0.832; Figure 8G). 

 

GSEA and GSVA reveal a close relationship 

between hub genes and immune dysfunction 

 

We performed gene set enrichment analysis (GSEA) 

and gene set variation analysis (GSVA) of the TCGA-

LUSC RNA-seq data to further investigate the potential 

functions of LAPTM5, C1QC, SLCO2B1 and CSF1R in 

LUSC. The gene sets related to the complement 

receptor mediated signaling and MHC class II protein 

complex were significantly enriched in the LUSC 

patients with high LAPTM5, C1QC, SLCO2B1 and 

CSF1R expression (Figure 9A). The gene set related to 

establishment of T cell polarity was enriched in the 

high-expression groups of LAPTM5, C1QC and 

SLCO2B1, whereas, the gene set related to negative 

thymic T cell selection was enriched in the LAPTM5, 

C1QC and CSF1R high-expression groups (Figure 9A). 

Gene sets related to the regulation of apoptotic cell 

clearance and synapse pruning were enriched in  

the SLCO2B1 and CSF1R high-expression groups  

(Figure 9A).  

 

GSVA results showed that gene sets related to 

negative T cell selection and establishment of 

lymphocyte polarity were enriched in the C1QC and 

LAPTM5 high-expression groups (Figure 9C). GSVA 

confirmed GSEA results in the LAPTM5, C1QC, 
SLCO2B1 and CSF1R high-expression groups (Figure 

9C). GSVA results also showed that gene sets related 

to tolerance induction, negative regulation of natural 

killer cells mediated immunity, and negative 

regulation of IL-12 production were enriched in the 

LAPTM5, C1QC and CSF1R high-expression groups 

(Figure 9C). The gene sets with the highest 

enrichment scores were all closely associated with the 
regulation of immunity in the tumor micro-

environment. These findings suggest that the 

expression of immunosuppressive genes in the LUSC 

cells regulates the polarity of T cells and induces 

immune tolerance. KEGG pathway analysis results 

(Figure 9B) and GSVA results (Figure 9D) show that 

genes related to allograft rejection, asthma, and 

autoimmune thyroid disease pathways were enriched 

or upregulated in the LAPTM5, C1QC, SLCO2B1 and 

CSF1R high expression groups (Figure 9B). GSVA 

results also showed that the gene set related to  

intestinal immune network for IgA production was 

enriched in the LAPTM5, C1QC and SLCO2B1 high-

expression groups (Figure 9D). Overall, the results 

showed that LAPTM5, C1QC, SLCO2B1 and CSF1R 

high-expression groups were associated with 

immunosuppression in the LUSC tissues.  

 

Association of hub genes with immune infiltration  

 

The tumor microenvironment consists of the tumor cells, 

stromal cells, and the infiltrating immune cells. We 

utilized the CIBERSORT algorithm to investigate the 

association between the expression levels of hub genes 

and the infiltration of immune cells in the LUSC tissues. 

The expression levels of LAPTM5, C1QC, SLCO2B1, 

and CSF1R were all positively associated with the 

infiltration of M2 macrophages, M1 macrophages, 

resting mast cells and CD8+ T cells, and negatively 

associated with the infiltration of follicular helper T 

cells, M0 macrophages, and activated dendritic cells 

(Figure 10A–10D). Kaplan-Meier survival curves and 

log-rank tests showed that lower proportions of follicular 

helper T cells and M0 macrophages, and higher 

proportions of monocytes significantly correlated with 

poor overall survival LUSC patients (Supplementary 

Figure 4A). The correlation heatmap shows that the 

proportion of T follicular helper cells positively 

correlates with the proportions of CD8+ T cells, M1 

macrophages and activated NK cells and negatively 

correlates with the proportions of the M2 macrophages 

(Supplementary Figure 4B). 

 

DISCUSSION 
 

Immunotherapy has revolutionized the treatment of 

advanced lung squamous cell carcinoma (LUSC), but, 

the mechanisms that regulate immunity in the LUSC 

tissues are complex and not understood fully. For 

example, the overexpression of immune-effector 

cytokines such as IL-6 and PGE2 not only increase the 

tumor-infiltration of immune cells, but also induce 

stemness in the LUSC cells, thereby reducing their 

recognition by the immune surveillance machinery [8, 

24]. In this study, we used bioinformatics analysis 

including RRA, WGCNA, ssGSEA, CIBERSORT and 

ESTIMATE to identify and characterize the hub genes 

associated with immune cell infiltration and the status 

of immunity in the LUSC tissues.  
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Figure 8. Identification of immunity-based molecular subtypes of LUSC patient samples based on the expression of the TOX 
pathway gene signature. (A) Clustering heat map shows the presence of two clusters among the TCGA-LUSC dataset based on the TOX 

pathway gene signature. (B) Kaplan–Meier survival curve analysis shows the differences in overall, survival times of cluster 1 and cluster 2 
TCGA-LUSC patients. (C) The heatmap shows the expression of DEGs in the cluster 1 and cluster 2 TCGA-LUSC patients. (D) GSEA plot shows 
the upregulation of genes related to the exhausted CD8+ T cells in the cluster 2 TCGA-LUSC dataset compared to those in the cluster1 TCGA-
LUSC dataset. The upregulated genes linked to the exhaustion of CD8+ T cells are shown on the left. Note: NES: normalized enrichment score. 
(E) Venn diagram shows the numbers of cluster 1 (n=36) and cluster 2 (n=110) molecular subtypes among the high immunity LUSC subgroup 
(n=146). (F) The histogram plots show the mRNA expression levels of LAPTM5, CSF1R, SLCO2B1 and C1QC in the cluster 1 and cluster 2 LUSC 
samples. (G) ROC curve analysis shows the sensitivity and accuracy of the 4 hub genes,  LAPTM5, CSF1R, SLCO2B1 and C1QC to distinguish 
cluster 1 and cluster 2 samples based on their expression. The area under the ROC curve (AUC) values demonstrates that all 4 hub genes 
show high sensitivity and accuracy in distinguishing the LUSC patients belonging to the two clusters. Note: Immunity-High denotes high 
immunity group; Immunity-Middle denotes medium immunity group; Immunity-Low denotes low immunity group. 
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We first integrated and analyzed RNA-seq data from 5 

eligible GEO-LUSC datasets using the RRA method 

and identified many robust DEGs such as CCNA2 and 

CCNB1, which play a vital role in LUSC pathology 

[25]. Chromosome mapping showed that most of the 

top 93 DEGs were located on chromosome 1. 

Functional enrichment analyses of the DEGS showed 

up-regulation of genes related to nuclear division and 

cell cycle, which have been previously reported to play 

a role in LUSC development and progression [26]. 

Moreover, genes involved in cell junction assembly 

were significantly downregulated in the LUSC tissues, 

which influenced the proliferation and metastasis of 

breast cancer [27]. However, we did not observe 

significant enrichment of immune-related pathways in 

these DEGs using the GEO-LUSC data. Therefore, we 

analyzed the LUSC data using ESTIMATE algorithm 

and ssGSEA to determine differences in the immune 

cell infiltration in the TCGA-LUSC tumor samples. We 

identified high-, medium- and low-immunity subtypes 

among the TCGA-LUSC samples. The high immunity 

LUSC subtype was enriched in immunity-related gene 

signatures as well as cancer-associated NF-κB, PI3K–

Akt, and RAS signaling pathways. However, survival 

analysis did not show any significant differences 

between these three subtypes, which suggested 

 

 
 

Figure 9. Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) of hub genes in the TCGA-LUSC 
dataset. (A) The plot shows the enriched GO terms based on the GSEA enrichment score in the TCGA-LUSC patients with high expression of 

each of the four hub genes, LAPTM5, CSF1R, SLCO2B1 and C1QC. (B) The plot shows the enriched KEGG pathways based on the GSEA 
enrichment score in the TCGA-LUSC patients with high expression of each of the four hub genes, LAPTM5, CSF1R, SLCO2B1 and C1QC. (C) 
GSVA-derived clustering heatmaps show the enriched GO terms for the LAPTM5, CSF1R, SLCO2B1 and C1QC in the TCGA-LUSC dataset. GO 
terms with log2 (foldchange) > 0.35 and adjusted P<0.05 are shown. (D) GSVA-derived clustering heatmaps show the enriched KEGG 
pathways for the LAPTM5, CSF1R, SLCO2B1 and C1QC in the TCGA-LUSC dataset. KEGG signaling pathways with log2 (foldchange) > 0.2 and 
adjusted P<0.05 are shown.  
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probable immunosuppressive mechanisms operating in 

the high immunity LUSC samples that suppress anti-

tumor immunity despite having higher numbers of 

immune cells.   

 

Previous studies have shown that prolonged exposure to 

tumor antigens induces exhaustion in CD8+ T cells, 

thereby attenuating their effector function and ability to 

identify and eliminate cancer cells; it also decreases 

their immunotherapeutic potential [23, 28]. T cell 

exhaustion is regulated by TOX and related proteins 

that are part of the TOX gene signature [19–21]. TOX 

mRNA levels were significantly elevated in the high 

immunity LUSC samples. Based on the expression of 

the TOX pathway genes, we identified two distinct 

clusters namely, cluster 1 and cluster 2. GSEA results 

showed that the proportions of exhausted CD8+ T cells 

were significantly higher in the cluster 2 LUSC samples 

compared to the cluster 1 LUSC samples. Kaplan Meier 

analysis also showed that the overall survival (OS) was 

significantly shorter for the cluster 2 LUSC patients 

compared to the cluster 1 LUSC patients. The Chi 

square test showed that 110 of the 146 high immunity 

group LUSC samples belonged to cluster 2. In fact, the 

proportion of cluster 2 samples was significantly higher 

in the high immunity LUSC samples compared to the 

 

 
 

Figure 10. The expression of the four hub genes is associated with differential infiltration of immune cells into the LUSC 
tissues. (A–D) CIBERSORT analysis shows the association between infiltration of 22 immune cell types into the LUSC tissues and the 

expression levels of (A) C1QC (B) CSF1R (C) LAPTM5 and (D) SLCO2B1 genes. The LUSC patients were ranked into high, medium and low hub 
gene expression groups based on the levels of expression of each of the four hub genes, C1QC, CSF1R, LAPTM5 and SLCO2B1. The red, blue, 
and green histograms indicate high, medium and low expression levels of the corresponding hub genes. The correlations between the groups 
were analyzed using Mann–Whitney U test. 
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medium immunity and low immunity LUSC samples 

(Supplementary Figure 3B). Overall, our results 

demonstrate that increased proportion of exhausted 

CD8+ T cells in the high immunity LUSC samples 

because of high TOX expression reduces overall 

survival to comparable levels in the medium and low 

immunity groups of LUSC patients.  

 

We then used WGCNA to construct the co-expression 

network of the DEGs and identify hub genes that 

regulate immune function in the TGCA-LUSC patients. 

WGCNA results showed that the genes in the brown co-

expression module correlate with the immune 

infiltration status of the TCGA-LUSC patient samples. 

GO and KEGG pathway analysis of genes in the brown 

module showed enrichment of genes related to 

extracellular structure organization and the PI3K-Akt 

signaling pathway. We further performed filtration of 

the genes in the brown module based on their GS and 

MM scores and identified 30 hub genes (CD74, 

HLA.DRA, ITGB2, HLA.DPB1, LAPTM5, HLA.DPA1, 

CD4, C1QC, CSF1R, TYROBP, HLA.DMB, FCER1G, 
SLCO2B1, MS4A6A, CYBB, CD53, SLAMF8, DOCK8, 

NCKAP1L, FPR3, LAIR1, IL10RA, MPEG1, DOCK2, 
SLA, CMKLR1, IRF8, C3AR1, EVI2B, CD84). We then 

investigated the prognostic value of four hub genes, 

namely, LAPTM5, CSF1R, SLCO2B1 and C1QC, all of 

which have not been reported widely in literature. 

 

Complement C1q C chain (C1QC) gene encodes the C-

chain polypeptide of the complement C1q protein. 

C1QC protein is an integral part of the complement C1q 

protein as well as a key regulator of macrophage 

functions [29]. LAPTM5 encodes the lysosomal-

associated protein transmembrane 5 whose down-

regulation promotes the pathogenesis of LUSC [30]. 

Moreover, LAPTM5 activates NF-κB and MAPK 

signaling pathways in the macrophages, but negatively 

regulates T- and B- cell activation [31]. CSF1R gene 

encodes the colony stimulating factor 1 receptor protein. 

CSF1R inhibitor repolarizes M2 macrophages into the 

anti-tumorigenic M1 macrophages [32]. Not only that, a 

recent literature reported that treatment with anti-

CSF1R preferentially depleted macrophages with an 

inflammatory signature but spared macrophage 

populations that in mouse and human expresses pro-

angiogenic/tumorigenic genes [33]. SLCO2B1 gene 

encodes a protein called the solute carrier organic anion 

transporter family member 2B1(OATP1). OATP2B1 

mediates the uptake of indoxyl sulfate which amplifies 

macrophage activation via Dll4-Notch signaling [34]. 

Overall, the expression levels of LAPTM5, CSF1R, 

SLCO2B1 and C1QC were all reduced in the LUSC 
tissue samples compared to the normal samples. 

Furthermore, expression levels of LAPTM5, CSF1R, 

SLCO2B1 and C1QC were significantly higher in the 

high immunity group of LUSC patients compared to the 

low immunity group of LUSC patients. The expression 

of LAPTM5, CSF1R, SLCO2B1 and C1QC was 

negatively associated with the tumor purity in the LUSC 

samples. In addition, the mRNA expression of C1QC, 

CSF1R, LAPTM5 and SLCO2B1 was significantly 

lower in LUSC cell lines compared to lymphoid cell 

lines. Based on these findings, we proposed that 

LAPTM5, CSF1R, SLCO2B1 and C1QC are mainly 

expressed in immune cells rather than LUSC cells in 

tumor samples. Moreover, LUSC patients with higher 

expression of LAPTM5, CSF1R, SLCO2B1 and C1QC 

were associated with worse OS compared to those with 

lower expression of these genes. These findings suggest 

that LAPTM5, CSF1R, SLCO2B1 and C1QC regulate 

the infiltration of immune cells into the tumor 

microenvironment in LUSC tissues. Besides, a previous 

study demonstrated that LAPTM5 downregulation is 

associated with LUSC progression [30]. LAPTM5, 
C1QC, CSF1R, and SLCO2B1 were also highly 

expressed in the cluster 2 LUSC samples. The ROC 

curve analysis showed that all the four genes accurately 

distinguished cluster 1 and cluster 2 LUSC samples. 

The AUC values for LAPTM5, C1QC, CSF1R, and 

SLCO2B1 were 0.800, 0.800, 0.837, and 0.832, 

respectively. This suggests that these four hub genes 

were strongly associated with CD8+ T cell exhaustion. 

We then performed GSEA and GSVA to determine the 

immunity-related functions of the 4 hub genes. The GO 

and KEGG pathway analysis of high-hub gene 

expressing LUSC tissues showed enrichment of gene 

sets related to autoimmune diseases such as asthma and 

autoimmune thyroid disease, establishment of T cell 

polarity, negative thymic T cell selection, negative 

thymic T cell selection, and the MHC class II protein 

complex. This suggests that the four hub genes alter the 

functions of the monocytes and macrophages and 

stimulate the differentiation of T cells in the tumor 

immune microenvironment.  

 

We used the CIBERSORT algorithm to determine the 

proportions of 22 different types of immune cells in the 

LUSC microenvironment [16]. The results showed that 

the expression levels of LAPTM5, CSF1R, SLCO2B1 

and C1QC were positively associated with the 

proportions of CD8+ T cells, M1 macrophages, and M2 

macrophages, and negatively associated with the 

proportions of activated dendritic cells, M0 

macrophages, and follicular helper T cells. This 

suggests that the high expression of the 4 hub genes 

promotes differentiation of M0 macrophages into M1 

and M2 macrophages. Kaplan-Meier survival curves 

and log-rank tests showed that lower proportions of 
follicular helper T cells correlates with short overall 

survival of LUSC patients, which is similar to 

previously reported findings [35]. Furthermore, the 
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proportion of follicular helper T cells positively 

correlates with the proportion of CD8+ T cells, M1 

macrophages, and activated natural killer (NK) cells and 

negatively correlates with the proportions of M2 

macrophage cells. These results further confirm that the 

follicular helper T cells mediate the anti-tumor effects 

in the tumor microenvironment. The GSVA and GSEA 

results demonstrate that the high expression of these 4 

hub genes contributes to differential infiltration of 

different types of immune cells and also promotes an 

immunosuppressive microenvironment in the LUSC 

tumors. 

 

Our study has some limitations. Firstly, we did not 

perform in vivo and in vitro experiments to validate the 

findings regarding the 4 hub genes in LUSC immunity. 

Secondly, we did not explore several other hub genes 

that are related to immunity but did not show aberrant 

expression in the LUSC tissues. Therefore, future in-

depth investigations are necessary to confirm our 

findings.  

 

In conclusion, we combined RRA, WGCNA, 

CIBERSORT, and other bioinformatics tools to identify 

four hub genes, LAPTM5, CSF1R, SLCO2B1 and C1QC 

that are strongly associated with the infiltration of 

different types of immune cells into the LUSC tissues 

and influence patient survival outcomes. Functional 

enrichment analyses with GSEA and GSVA 

demonstrates that high expression of these 4 hub genes 

is associated with immunosuppression in the LUSC 

tissue microenvironment and CD8+ T cell exhaustion. 

Further investigations are necessary to validate the 

potential of these 4 hub genes as immunotherapy targets 

for LUSC patients. 

 

MATERIALS AND METHODS 
 

Selection of LUSC gene expression datasets  

 

We queried the Gene Expression Omnibus (GEO) 

database to identify LUSC patient tissue datasets with 

normal lung tissue samples as controls with adequate 

information regarding technologies and platforms used 

for high throughput gene expression analysis. Based on 

these criteria, we downloaded five LUSC datasets from 

the repository (The names of the five datasets were 

shown in Table 1). The Human Protein Atlas 

(http://www.proteinatlas.org) database (HPAD) was 

used to validate the expression of LAPTM5, CSF1R, 

C1QC, and SLCO2B1 proteins in LUSC tissues based 

on immunohistochemistry. The links for HPAD are 

shown in Supplementary Table 1.  

 

The Cancer Cell Line Encyclopedia database 

(https://portals.broadinstitute.org/ccle/about) was used 

to validate the expression of LAPTM5, CSF1R, C1QC, 

and SLCO2B1 mRNA in LUSC cell lines and 

lymphocytic cell lines. 

 

Identification of robust DEGs using RRA 

 

We downloaded the transcriptome files of the 5 GEO 

datasets, normalized the data, and identified the DEGs 

between LUSC and normal lung tissue samples using 

the limma R package [36]. We then identified the most 

significant DEGs by integrating the 5 datasets using 

RRA [12]. The genes were then ranked according to 

their P values and those with adjusted P < 0.05 were 

considered as robust DEGs in the RRA analysis. We 

then visualized the expression patterns and the 

chromosomal locations of the top 47 up-regulated and 

top 46 down-regulated genes (n=93) using the 

OmicCircos R package.  

 

Hierarchical clustering of TGCA-LUSC samples 

based on ssGSEA scores of 29 immunity-related 

gene set signatures 

 

We first determined the single-sample gene-set 

enrichment analysis (ssGSEA) score [13, 14] based on 

the expression levels of 29 immunity-related gene set 

signatures for each smaple in the TCGA-LUSC dataset 

(Supplementary File 1). Then, we performed 

hierarchical clustering of the LUSC samples according 

to ssGSEA scores and classified the LUSC samples into 

high, medium, and low immunity subgroups. 

 

ESTIMATE and CIBERSORT analysis of the LUSC 

samples 

 

We determined the immune score (immune cell 

infiltration levels), tumor purity, and stromal score 

(stromal content) for each of the LUSC samples using 

ESTIMATE [15]. We used CIBERSORT [16] to 

calculate the proportions of 22 human immune cell 

subsets in each of the TCGA-LUSC tumor samples 

using 1000 permutations and P< 0.05 as the criteria. We 

then ranked the TCGA-LUSC tumor samples according 

to the expression levels of each of the 4 hub genes. We 

classified the LUSC samples into three groups, namely, 

low-, medium- and high-expression groups based on the 

expression of each of the hub genes and compared the 

proportions of the 22 different immune cell subsets 

between the high- and low-expression groups using the 

Mann–Whitney U test. 

 

Function enrichment analyses  

 
The Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment 

analyses of the DEGs were performed using the 

http://www.proteinatlas.org/
https://portals.broadinstitute.org/ccle/about
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Table 1. Characteristics of the included GEO-LUSC datasets. 

Data ID 
Number of samples 

GPLID Number of rows per platform 
T                              N 

GSE21933 21 21 GPL6254 4815 

GSE33479 14 27 GPL6480 19595 

GSE33532 16 26 GPL570 14533 

GSE62113 7 9 GPL14591 20818 

GSE74706 8 18 GPL13497 21754 

Note: GSE, Gene Expression Omnibus Series; GPL, Gene Expression Omnibus Platform; T, tumor samples; N, normal samples. 

 

clusterprofiler R package [37]. The GO terms or KEGG 

pathways with adjusted P <0.05 were considered 

statistically significant and visualized using the GO plot 

R package [38]. 

 

WGCNA  

 

We extracted the top 6748 up-regulated DEGs in the 

LUSC samples from the RRA analysis and the gene 

expression data for the TCGA-LUSC dataset. We then 

analyzed the association between the 

clinicopathological traits and the 4 hub genes using the 

WGCNA R package [39]. The adjacency matrix was 

transformed into a topological overlap matrix (TOM) 

and the DEGs were sorted into different gene modules 

according to the TOM-based dissimilarity measure. The 

key gene modules were identified by setting the soft-

thresholding power as 4 (scale free R2 = 0.96), cut 

height as 0.45, and minimal module size as 30. The 

module that showed the highest correlation with the 

clinical traits was subjected to functional enrichment 

analysis (GO and KEGG analyses) to determine the 

biological functions of the genes and also used to screen 

the hub genes. The hub genes were defined as those 

with gene significance (GS) > 0.3 and a module 

membership (MM) > 0.8. The module membership 

(nodes) and the gene-gene connections (edges) of the 

top 30 hub genes were extracted from the topology 

overlay matrix and used to construct coexpression 

networks with the Cytoscape software version 3.4.0 

[40]. The PPI network of DEGs was analyzed by the 

STRING database (http://string-db.org). 

 

Validation and survival analysis of hub genes  

 

We used the ggstatsplot R package (https://cran.r 

project.org/web/packages/ggstatsplot/) to validate the 

expression levels of the hub genes in the LUSC and 

adjacent normal lung tissue samples. We also evaluated 

their correlation with the clinicopathological features in 

the TCGA-LUSC dataset. We analyzed the data using 

the t-test or one-way analysis of variance (ANOVA). 

We also performed survival analysis for the hub genes 

in the TCGA-LUSC dataset using the survminer R 

(https://CRAN.R-project.org/package=survminer) and 

survival R (https://CRAN.R-project.org/package=survival) 

packages. The tumor samples in the TCGA-LUSC dataset 

were divided into two groups based on the median 

expression cut-off value for each hub gene and then 

Kaplan-Meier (K-M) survival curves were constructed.   

 

Gene set enrichment analysis (GSEA) and gene set 

variation analysis (GSVA)  

 

We performed GSEA analysis of the hub genes using 

the TCGA-LUSC dataset with the clusterprofiler R 

package [37]. The GSVA R package was used to 

determine the pathways associated with the hub genes 

[14]. The LUSC patients were ranked according to the 

expression level of each hub gene into low-, medium-, 

and high-expression groups. P < 0.05 was considered  

as statistically significant. We downloaded the gene set 

“c2.cp.kegg.v6.2.symbols.gmt”and“c5.all.v6.2.symbols.

gmt” from the Molecular Signature Database 

(http://software.broadinstitute.org/gsea/msigdb/index.jsp) 

as the reference gene set.  

 

Identification of immunity-related molecular 

subtypes of LUSC patients  

 

The expression profiles of the immunity-related genes 

in the TCGA-LUSC cohort were used to identify the 

LUSC subtypes. We downloaded the GSE131643 

dataset [22] from the Gene Expression Omnibus 

database (http://www.ncbi.nlm.nih.gov/geo/) and 

identified the human Entrez IDs using the 

clusterProfiler R package version 3.8.1 [37] for the 

highly expressed  genes with a FDR P value < 0.05 and 

a log2FC > 0.15 when compared with the TOX pathway 

gene signature. The TOX gene signature includes 100 

TOX pathway-related genes (Supplemental File 2) 

obtained previously by comparing TOXwt CD8+ T cells 

vs. TOXΔ CD8+ T cells. Therefore, we evaluated the 

molecular subtypes of the LUSC patients in the TCGA 

cohort using the ConsensusClusterPlus R package [41] 

using default parameters for the classification and the 

http://string-db.org/
https://cran.rproject.org/web/packages/ggstatsplot/
https://cran.rproject.org/web/packages/ggstatsplot/
https://cran.r-project.org/package=survminer
https://cran.r-project.org/package=survival
http://software.broadinstitute.org/gsea/msigdb/index.jsp
mailto:http://www.ncbi.nlm.nih.gov/geo/
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total numbers of cluster numbers as 2. The analysis of 

differently expressed genes (DEGs) was performed with 

the limma R package [36]. An empirical Bayesian 

method was applied to estimate the fold change between 

clusters 1 and 2 using moderated t-tests. The genes with 

adjusted P-value < 0.05 and absolute log2FC > 1.5 were 

denoted as DEGs. We used the clusterprofiler R 

package to perform the GSEA analysis [37]. The 

“ACUTE_VS_CHRONIC_LCMV_PRIMARY_IARY_

INF_CD8_TCELL_UP” gene set was downloaded from 

the Molecular Signature Database (http://software. 

broadinstitute.org/gsea/msigdb/index.jsp) and selected 

as the reference gene set. This gene set is from the 

GSE30962 dataset that has been previously used to 

assess the exhaustion of CD8+T cells [20, 21, 28]. The 

survival curve analysis was performed using the R 

survival R package. The receiver operating 

characteristic (ROC) curves were used to determine the 

diagnostic value of the hub genes and the area under the 

ROC curve (AUC) values were calculated using the 

IBM SPSS Statistics 21.0 software. The Venn diagram 

was plotted using the FunRich software version 3.1.3. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figures 
 

 
 

Supplementary Figure 1. The circular visualization of the expression patterns of the top 93 DEGs and their chromosomal 
positions. The heatmap shows the top 20 up-regulated genes and top 20 down-regulated genes according to their P value. The columns 

represent each of the five GEO datasets. Each row represents a single gene. Red and blue indicate up-regulation and down-regulation, 
respectively. The numbers in the heatmap indicate log (fold change) values in each dataset as calculated by the limma R package. 



 

www.aging-us.com 3839 AGING 

 
 

Supplementary Figure 2. Validation of the hub genes in the TCGA-LUSC dataset. (A) The histogram plots show the mRNA 

expression of LAPTM5, CSF1R, SLCO2B1 and C1QC in the high, medium and low immunity LUSC subgroups. (B) The histogram plot shows the 
mRNA expression levels of LAPTM5, CSF1R, SLCO2B1 and C1QC in the LUSC samples with different tumor purity levels. (C) The expression 
levels of LAPTM5, CSF1R, SLCO2B1 and C1QC mRNA in the LUSC cell lines(n=23) and lymphocytic cel lines(n=167). 
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Supplementary Figure 3. (A) The histogram plots show the expression levels of TOX in the high, medium and low immunity LUSC 

subgroups (ANOVA test, p<0.001). (B) Comparison of the proportions of cluster 2 samples in the high, medium and low immunity LUSC 
subgroups (Chi-square test, p<0.001). Note: Immunity-High denotes high immunity group; Immunity-Middle denotes medium immunity 
group; Immunity-Low denotes low immunity group. 
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Supplementary Figure 4. (A) The heat map shows the proportions of 22 immune cell types in the TCGA-LUSC tumor samples as calculated 

with the CIBERSORT algorithm, and their correlation with the expression levels of the four hub genes, namely, LAPTM5, CSF1R, SLCO2B1 and 
C1QC in the TCGA-LUSC dataset. (B) The correlation analysis between the proportions of follicular helper T cells, M0 macrophages and 
monocytes in the LUSC tissues and the overall survival time of the TCGA-LUSC patients. The red and blue lines indicate the LUSC samples with 
high or low proportions of follicular helper T cells, M0 macrophages, and monocytes. 
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Supplementary Table 
 

Supplementary Table 1. Direct website links to the protein expression data of the 4 hub genes in normal lung and 
LUSC tissues in the human protein atlas database. 

Hub genes Normal lung tissue LUSC tissue 

LAPTM5 https://www.proteinatlas.org/ENSG00000162511-

LAPTM5/tissue/bronchus#img 

https://www.proteinatlas.org/ENSG00000162511-

LAPTM5/pathology/lung+cancer#img 

SLCO2B1 https://www.proteinatlas.org/ENSG00000137491-

SLCO2B1/tissue/bronchus#img 

https://www.proteinatlas.org/ENSG00000137491-

SLCO2B1/pathology/lung+cancer#img 

C1QC https://www.proteinatlas.org/ENSG00000159189-

C1QC/tissue/bronchus#img 

https://www.proteinatlas.org/ENSG00000159189-

C1QC/pathology/lung+cancer#img 

CSF1R https://www.proteinatlas.org/ENSG00000182578-

CSF1R/tissue/bronchus#img 

https://www.proteinatlas.org/ENSG00000182578-

CSF1R/pathology/lung+cancer#img 

 

 

 

 

 
Supplementary Files 
 

Please browse full text version to see the data of Supplementary Files 1, 2. 

 

Supplementary File 1. Characteristics of the included TCGA-LUSC patients. 

Supplementary File 2. The top 100 differentially upregulated genes in the TOXWT CD8+ T cells compared to the TOX∆ 
CD8+ T cells in the GSE131643 dataset. 
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