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Abstract Adenoviruses are widespread in human popula-

tion as well as in great apes, although the data about the

naturally occurring adenovirus infections remain rare. We

conducted the surveillance of adenovirus infection in wild

western lowland gorillas in Moukalaba-Doudou National

Park (Gabon), in order to investigate naturally occurring

adenovirus in target gorillas and tested specifically a pos-

sible zoonotic transmission with local people inhabiting the

vicinity of the park. Fecal samples were collected from

western lowland gorillas and humans, and analyzed by

PCR. We detected adenoviral genes in samples from both

gorillas and the local people living around the national

park, respectively: the overall prevalence rates of aden-

ovirus were 24.1 and 35.0 % in gorillas and humans,

respectively. Sequencing revealed that the adenoviruses

detected in the gorillas were members of Human mas-

tadenovirus B (HAdV-B), HAdV-C, or HAdV-E, and those

in the humans belonged to HAdV-C or HAdV-D. Although

HAdV-C members were detected in both gorillas and

humans, phylogenetic analysis revealed that the virus

detected in gorillas are genetically distinct from those

detected in humans. The HAdV-C constitutes a single host

lineage which is compatible with the host-pathogen

divergence. However, HAdV-B and HAdV-E are consti-

tuted by multiple host lineages. Moreover, there is no

evidence of zoonotic transmission thus far. Since the gor-

illa-to-human transmission of adenovirus has been shown

before, the current monitoring should be continued in a

broader scale for getting more insights in the natural his-

tory of naturally occurring adenoviruses and for the safe

management of gorillas’ populations.
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Introduction

Adenoviruses (AdVs) are non-enveloped icosahedral dou-

ble-stranded DNA viruses. They belong to the family of

Adenoviridae, which is divided into five genera: Mas-

tadenovirus, Atadenovirus, Aviadenovirus, Siadenovirus,

and Ichtadenovirus. Members of species belonging to

genera Mastadenovirus and Atadenovirus are known to

infect mammalian hosts [1, 2]. Mastadenoviruses infecting

primates encompass seven Human mastadenovirus species

(HAdV-A to G), the accepted species Simian mastaden-

ovirus A and candidate species SAdV-B to G, and further

not yet classified mastadenoviruses [2–4]. That classifica-

tion into species is based on hemagglutination features,

DNA (deoxyribonucleic acid) homology, and genomic

organization [5]. There are currently over 60 HAdV types

with HAdV-D containing the most members [5].

Adenoviruses were first isolated from humans and iden-

tified as the causative agent of epidemic febrile respiratory

disease among military recruits in the 1950s [6, 7]. It is

estimated that more than 90 % of the human population is

seropositive for one ormore serotypes of adenoviruses [8, 9].

The molecular biology of human-derived adenoviruses has

been characterized extensively for species HAdV-C, for

which human adenovirus 2 (HAdV-2) and HAdV-5 serve as

prototypes [10]. Adenoviruses cause a variety of non-lethal

infectious diseases in humans, and lethal disseminated ade-

novirus infection occurs in immunosuppressed patients [10].

The first description of a simian adenovirus in the lit-

erature was of a chimpanzee AdV [11], today known as

SAdV-21 within the species H. mastadenovirus B. Later,

when investigating chimpanzees suffering from kuru, four

novel ape AdVs were discovered [12]. Ape AdVs have

been detected or isolated from African apes including

chimpanzees, bonobos, and gorillas [13–18]. Gorilla ade-

noviruses have been proposed to be members of HAdV-B,

C, E, and F [13–18]. A recent report confirmed that the

species HAdV-B which includes viruses from mixed host

origin [14], originated from gorillas and have switched to

humans and to chimpanzees during two different host

switch events [18]. Serological surveys have found that

anti-AdV antibodies were prevalent in 96 % of mountain

gorillas, suggesting that AdVs are circulating among these

animals [19]. In addition, Hoppe et al. recently reported

high prevalence of AdV in wild apes including gorillas

(45-100 %) [18]. Because AdVs are shed in the feces and

saliva of infected animals [13], these viruses could possibly

be transmitted among host animals via the fecal–oral route

and inhalation of aerosols [20].

Comprehensive studies are still needed to clarify the

origin and the diversity of adenoviruses spread in human

and non-human primate populations.

Thus, to fill the gap, understanding the evolution pattern

of AdVs spread in non-human primates and in people

frequently coming in contact with these animals is critical.

In this study, we investigated AdV infection in two

habituated western lowland gorilla groups in Moukalaba-

Doudou national park (MDNP). In addition, we assessed

AdV infection in the local people living around the national

park to evaluate potential zoonotic transmissions.

Materials and methods

Sample collection and preparation

The study site MDNP is located in the south-western part

of Gabon (Fig. 1). MDNP has been reported to have a high

gorilla density (more than three gorillas per square kilo-

meter) [21], and the absence of hunting pressure from local

villagers makes it a major habitat for western lowland

gorillas in central Africa. From December 2010 to

November 2011, during tracking, we collected 112 fresh

fecal samples from 2 wild gorilla groups, which were

named Group Gentil (GG) and Group 8 (G8). GG and G8

had been habituated to human observers since 2003 [21]

and 2011, respectively. During the study period, GG con-

sisted of 20-21 individuals, including 1 adult (expected

age C13 years old) male, 6 adult (C10 years old) females,

10 young (4–6 years old) males, and 3 young females, and

all members were individually identified. In contrast, G8

was estimated to consist of 8–12 individuals, including 1

adult male, 2 adult females, and 5-8 young males and

females. GG was mainly sampled near the village Dous-

sala, in the ancient plantations, where the forest has been

formerly used in various crop fields, while G8 was found

far from the village in the primary forest (Fig. 1). In

addition to the gorilla samples, 20 fecal samples were

collected from villagers, including trackers working for the

habituation of gorillas. Upon collection, each fecal speci-

men was immediately placed into a tube containing 2 ml of

RNAlater (Ambion, Austin, TX, USA). The tubes were

kept at room temperature for at most 20 days at the field

camp until the samples were transported to the laboratory

in Libreville, the capital city of Gabon. At the laboratory,

the tubes were stored at –20 �C until DNA extraction.

DNA extraction and PCR

Total DNA was extracted from the sample using the

QIAamp DNA Stool Mini Kit (Qiagen, Hilden, Germany)

according to the manufacturer’s instructions. We used the

following primer sets for nested PCR: (1) 4431-s/4428-as

and 4428-s/4429-as (Supplementary Table 1), targeting the
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HAdV DNA polymerase (DPOL) gene [14] and (2)

AdhexF1/AdhexR1 and AdhexF2/AdhexR2, targeting loop

1—encompassing the hypervariable region (HVR1–6)—of

the hexon gene of mastadenoviruses [22]. PCR for the

DPOL gene was performed in a total volume of 20 ll
containing 10 ll of 29 GoTaq Green Master Mix (Pro-

mega, Madison, WI, USA), 20 pmol of each primer, and

50 ng of DNA template. The following cycling conditions,

slightly modified from Wevers et al. [14], were used: 95 �C
for 2 min; 35 cycles of 95 �C for 30 s, 55 �C for 1 min,

and 72 �C for 1 min; and a 7-min final extension step at

72 �C. PCR amplification of the hexon gene (HVR1–6) was

performed in a total volume of 50 ll containing 200 lM of

each dNTP, 20 pmol of each primer, 1.25 U of PrimeSTAR

GXL polymerase (TaKaRa, Tokyo, Japan), and 50 ng of

DNA template. The cycling conditions were as follows:

98 �C for 3 min; 35 cycles of 98 �C for 10 s, 45 �C for

1 min, and 72 �C for 2 min; and a final extension of 72 �C
for 7 min. For the nested reaction, 2 ll of the first PCR

product was amplified as above. Amplified products were

separated on 1.5 % agarose gel and purified using the

QIAquick Gel Extraction Kit (Qiagen) according to the

manufacturer’s instructions; the amplicons were then

directly sequenced with the primers for the second PCR.

BLAST search

BLAST searches were carried out in the NCBI database

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) using the deter-

mined nucleotide sequence as a query in the BLASTN

program. The queries with at least 90 % identity with the

deposited adenovirus gene sequences were considered for

AdV species identification.

Sequencing and phylogenetic analysis

Twenty-four of the 27 positive samples (DNA quantity

C5 ng/ll) were subjected to direct sequencing ofDPOL gene
fragments. Six samples were selected randomly for cloning

and sequencing ofDPOL and hexon HVR1–6 gene fragments.

The PCR products were cloned into plasmid vector pCR-

Blunt II-TOPO using the Zero Blunt TOPO PCR cloning kit

(Invitrogen, Carlsbad, CA, USA) according to the manufac-

turer’s instructions. Plasmid extraction was carried out using

the Wizard Miniprep Kit (Promega), and the extracted plas-

midswere sequenced byBigDye terminator cycle sequencing

(Applied Biosystems, Foster City, CA, USA).

The hexon HVR1–6 and DPOL gene sequences were

edited and aligned using GENETYX software version 12.0

(Genetyx Co., Tokyo, Japan) and MEGA software version

5.05 [23]. The nucleotide sequences of DPOL (528-bp,

corresponding to the position 29,200–29,727 in the reference

simian adenovirus 21) and 782-bp fragments of the hexon

gene (corresponding to the position 18,867–19,635 in the

reference simian adenovirus 21) were aligned using MUS-

CLE, with the default parameters for gap opening and gap

extension. These alignments were used for phylogenetic

analyses. Phylogenetic trees were constructed using the

neighbor-joining method in MEGA 5.05 [23]. A statistical

test for the phylogeny was computed by means of boot-

strapping. Percentages of 100 bootstrap replicates at the node

were calculated to ensure the reliability of the trees.

A B 

Fig. 1 Location features of the sampling area. a Map of Gabon,

showing Moukalaba-Doudou National Park [21]. b The sampling area

in the MDNP (blue line: rivers; black line: roads; red line: hunting

area limitation; green line with black strips: national park limitation;

dark green: primary forest; olive green: secondary forest; brown:

savanna; spotted green: swamp; black circle: sampling points of G8

pointed by an arrow; gray circle pointed by an arrowhead: sampling

points of GG; white circle: base camp; black rectangle with a black

flag: village; white squares: habitations) (Color figure online)
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Nucleotide sequence accession numbers

Preliminary names were given to candidate novel HAdVs

following the method used byWevers et al. [14]. The gorilla

adenoviruses detected in this study were named as follows:

Gorilla gorilla AdV B11-B23 (KM886307-KM886309,

KM886311, KM886325-KM886328, KM886331-KM886-

335), Gorilla gorilla AdV C10-C18 (KM886310, KM886-

320-KM886324, KM886329), and Gorilla gorilla AdV E1

(KM886330). The sequences used as references for phylo-

genetic analysis are presented in Supplementary Table 2.

Results

Detection of AdV genes in western lowland gorillas

in MDNP

To survey AdV infection in gorillas in MDNP, we col-

lected fecal samples from two gorilla groups (GG: well-

habituated group, G8: newly habituated group) and ana-

lyzed them by nested PCR targeting the DPOL and hexon

genes. The DPOL and hexon genes were detected in both

groups (Table 1). The overall prevalence of AdV in the

gorilla population was 24.1 % (27/112): of the 86 samples

from GG, 21 were positive for both genes, 4 were positive

only for the DPOL gene, and 1 sample was positive only

for the hexon gene. In contrast, only 1 of the 26 samples

was positive for both tested genes in G8 (Table 1). These

data suggest that AdVs are naturally circulating among

gorillas in MDNP. To confirm the detected AdV species,

we further determined the nucleotide sequences of the

amplicons and determined the species of the detected AdVs

by BLAST searches. Of the tested samples, 16 belonged to

HAdV-B; 10 to HAdV-C; and 1 to HAdV-E.

Detection of AdV genes in local people living around

the national park

The prevalence of AdVs in well-habituated gorillas

(30.2 % in GG group) was higher than that of newly

habituated ones (3.8 % in G8 group), raising two possi-

bilities either the AdVs in gorillas are derived from humans

during the habituation process or AdVs are ubiquitous in

the environment in and around the areas of human habi-

tation. Therefore, we screened the local people (village

Doussala in Fig. 1) for AdV infection. The prevalence in

the local people was 35.0 % (7/20): two samples were

positive for both DPOL and hexon genes, and five were

positive only for the hexon gene (Table 2). These results

revealed that the local people including trackers were also

infected with AdVs. We sequenced the detected virus

genes and identified the species of AdVs: one sample was

infected with a HAdV-C type, and the others harbored

HAdV-D members.

Phylogenetic analysis

HAdV-C genes were detected in both gorillas and humans

in MDNP, suggesting zoonotic transmission of AdV

between the human and gorilla populations. To investigate

this possibility, as well as to gain insights into the genetic

Table 1 Detection of

adenovirus DPOL and hexon

genes in samples from gorilla

groups in MDNP

Gorilla groups No. of tested

samples

No. of positive

samples in PCR (%)

HAdV Species

No. of samples

B C E

GG 86 26 (30.2 %) 16 9 1

G8 26 1 (3.8 %) 0 1 0

Total 112 27 (24.1 %) 16 10 1

Table 2 Adenovirus infection in humans

Sample ID PCR DPOL PCR hexon

H1 HAdV-C HAdV-C

H2 HAdV-D

H3

H4

H5

H6 HAdV-D

H7

H8 HAdV-D

H9

H10

H11 HAdV-D

H12 HAdV-D

H13

H14

H15

H16

H17 HAdV-D HAdV-D

H18

H19

H20

674 Virus Genes (2016) 52:671–678
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diversity of adenoviruses in MDNP, we performed phylo-

genetic analyses.

In gorillas, on the tree based on the DPOL gene, 14 AdV

genes identified in this study were divided into two groups;

they clustered with SAdV-28.2, SAdV-46, SAdV-47, and

gorilla AdV strains 6588 and 6575, which are representa-

tive strains of HAdV-B in gorillas, and unidentified simian

adenoviruses recently described [18] (Fig. 2 and

Supplementary Fig. 1). Nine AdV genes were clustered

with simian AdV-45 and simian AdV-43, which are rep-

resentative strains of HAdV-C in gorilla and new uniden-

tified simian adenoviruses [18] (Fig. 2 and Supplementary

Fig. 1). In contrast, one AdV gene clustered with SAdV-26

and chimpanzee AdV strain Y25, which are chimpanzee-

specific strains belonging to HAdV-E (Fig. 2 and Supple-

mentary Fig. 1). On the hexon gene-based trees, five
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Fig. 2 Phylogenetic tree of adenovirus (AdV) DPOL. The tree was

constructed based on the alignment of AdV DPOL (539 bp) by using

the neighbor-joining bootstrap-confirmed method in MEGA 5.05

software with 100 replicates. The names of simian isolates include the

serotype nomenclature and the animal species of isolation (Ch

chimpanzee, Go gorilla, Bo bonobo). Names of novel sequences

obtained in this study are indicated with black dots. Bootstrap values

\90 % are omitted. Scale bar, nucleotide substitutions per site
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HAdV-B (Supplementary Fig. 2a) and HAdV-E (Fig. 3)

strains were identified among those isolated from gorillas.

HADV-E is divided into four groups (Fig. 3): two groups

of human origin and two of simian origin. The HAdV-E

detected in gorillas in this study belonged to the H mas-

tadenovirus E of simian origin (Fig. 3).

In the case of humans, the tree based on the DPOL gene

showed one AdV gene clustered with HAdV-1 (HAdV-C),

which is genetically different from the strains detected in

gorillas (Fig. 2 and Supplementary Fig. 2b), and one

clustered with the human AdV type 44 and human AdV

type 47, which belong to the HAdV-D (Supplementary

Fig. 1). The HAdV-D seems to be exclusively limited to

the human population as reported earlier [18].

Discussion

In this study, we detected several species of AdVs in

western lowland gorillas in MDNP as well as in local

people residing nearby. Interestingly, the positive rate in

the well-habituated group (30.2 %) was higher than that of

the newly habituated group (3.8 %). In addition, members

of HAdV-C were detected in both gorillas and humans.

However, the phylogenetic analyses revealed that the AdVs

detected from gorillas are genetically distinct from those

from local people living around the national park. There-

fore, gorilla viruses and human viruses may have been

separately circulating in each population in this region, and

transmission between human and animals does not seem to

happen easily in either direction, although we cannot

exclude the possibility that we just missed zoonotically

transmitted AdVs in this study. The difference in the

prevalence between groups GG and G8 may be attributed

to the quality of samples, because samples from GG might

have been fresher than the ones from G8; GG was sampled

while following animals, but G8 was sampled on trails,

sometimes without observing the animals. In contrast,

AdVs were reported to be transmitted between humans and

non-human primates, indicating that AdVs have zoonotic

potential [15, 18], despite the belief that AdVs have co-

evolved with their hosts and are usually not transmitted to

other species.

Adenovirus infections have been reported in high

prevalence in wild gorillas’ populations as well as in other

great apes [15, 17, 18]. In this study, the overall prevalence

0.2 
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Fig. 3 Phylogenetic tree of the adenovirus hexon gene loop 1 of

HAdV-E. The tree was constructed based on the alignment of a

792-bp sequence of the hexon gene by using the neighbor-joining

bootstrap-confirmed method in MEGA 5.05 software with 100

replicates. The names of simian isolates include the serotype

nomenclature and the animal species of isolation (Ch chimpanzee,

Go gorilla Bo bonobo). Names of novel sequences obtained in this

study are indicated with black dots
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of AdV infection in gorillas was 24.1 %, which is lower

than the previously reported figure of 44.9 % in free-

ranging gorillas in Congo Republic [17] or of 48 % in free-

ranging gorillas in Loango National Park (Gabon) [18].

These differences might be due to the quality of the sam-

ples and/or sensitivity of the PCR. In addition, the PCR

systems used in this study targeted the conserved DNA

polymerase gene of mastadenovirus or the hypervariable

region of the hexon gene, but in some samples, only one of

the two genes was amplified. This shows that our PCR

system might not be able to amplify all gene variants or

that the samples could have been partially degraded [18].

Alternatively, the DNA amount of AdV in the gorillas

included in this study was lower than detection limit.

Further systematic studies are needed to assess these

possibilities.

We detected members of three species: HAdV-B,

HAdV-C, and HAdV-E in western lowland gorillas in

MDNP; these AdV species have been reported earlier

[15–18] in western lowland gorillas as well as in other

gorilla sub-species in sub-Saharan Africa. The gorilla

adenoviruses of this study mainly belong to the HAdV-B

(59 %). This confirms the gorilla as the major host of

HAdV-B in sub-Saharan Africa. Based on the hexon tree

(Supplementary Fig. 2a), the new virus named Gorilla

gorilla adenovirus B19, together with the Human mas-

tadenovirus B isolates 6560 and 6674 constitutes a single

clade. The pattern observed within the species Human

mastadenovirus C (Supplementary Fig. 1) is compatible

with the host-pathogen divergence as previously reported

[13, 15, 18]. All the lineages in HAdV-C are host specific

[18]. The only member of HAdV-E detected in this study

clusters with chimpanzee strains (Fig. 3). This finding

supports previous report describing the non-human primate

AdVs members of the HAdV-E to originate from chim-

panzees [18]. We can suspect the Gorilla gorilla adenovirus

E1 of this study to be the result of chimpanzee-to-gorilla

transmission, as chimpanzees and gorillas are living sym-

patrically in MNDP. Broader screening would clarify the

evolution of viruses belonging to HAdV-E.

On the other hand, the adenoviruses detected in the

human population around MDNP are mainly members of

the HAdV-D (85.71 %) which confirms that the species

HAdV-D originated in humans [18] and so far has been

exclusively human specific. Four different serotypes were

detected in this study, highlighting the diversity of aden-

oviruses circulating in the target human population. Further

systematic studies should clarify the circulation of AdVs in

human population.

Taken together, our results show that AdVs are naturally

present among gorillas and humans in MDNP in Gabon.

Although there is no evidence of zoonotic transmission of

AdVs in this region, our data show the feasibility of

monitoring viral agents in wild habituated gorillas [24] and

in local people living nearby for the safe management of

wild gorilla populations and human health, as well as for

understanding the evolution of virus. Since the zoonotic

transmission of adenovirus already occurred during homi-

nin evolution, assessing the zoonotic transmission of that

virus in the context of habituation sites such as MNDP is

recommended.
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