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Abstract

Magnetic resonance imaging (MRI) has been widely used in combination with computed 

tomography (CT) radiation therapy because MRI improves the accuracy and reliability of target 

delineation due to its superior soft tissue contrast over CT. The MRI-only treatment process is 

currently an active field of research since it could eliminate systematic MR-CT co-registration 

errors, reduce medical cost, avoid diagnostic radiation exposure, and simplify clinical workflow. 

The purpose of this work is to validate the application of a deep learning-based method for 

abdominal synthetic CT (sCT) generation by image evaluation and dosimetric assessment in a 

commercial proton pencil beam treatment planning system (TPS). This study proposes to integrate 

dense block into a 3D cycle-consistent generative adversarial networks (cycle GAN) framework in 

an effort to effectively learn the nonlinear mapping between MRI and CT pairs. A cohort of 21 

patients with co-registered CT and MR pairs were used to test the deep learning-based sCT image 

quality by leave-one-out cross validation. The CT image quality, dosimetric accuracy and the 

distal range fidelity were rigorously checked, using side-by-side comparison against the 

corresponding original CT images. The average mean absolute error (MAE) was 72.87±18.16 HU. 

The relative differences of the statistics of the PTV dose volume histogram (DVH) metrics 

between sCT and CT were generally less than 1%. Mean 3D gamma analysis passing rate of 

1mm/1%, 2mm/2%, 3mm/3% criteria with 10% dose threshold were 90.76±5.94%, 96.98±2.93% 

and 99.37±0.99%, respectively. The median, mean and standard deviation of absolute maximum 

range differences were 0.170 cm, 0.186 cm and 0.155 cm. The image similarity, dosimetric and 

distal range agreement between sCT and original CT suggests the feasibility of further 

development of an MRI-only workflow for liver proton radiotherapy.
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1. INTRODUCTION

Worldwide, approximately 50% of all cancer patients undergo radiotherapy (Delaney et al., 
2005). As a highly advanced form of radiotherapy, proton therapy offers an important 

advantage over photons in terms of the depth dose distribution. It provides a sharp dose fall-

off beyond the target which spares the normal tissues from radiation (Levin et al., 2005). The 

recent adoption of pencil beam scanning (PBS) technique allows proton beam to be 

delivered spot-by-spot with modulation of intensity, lateral scanning position and penetration 

depth (Kanai et al., 1980). PBS also dramatically decreases the neutron dose that produced 

by the modulator and collimator from the double scattering technique. Like photon 

radiotherapy, the current proton treatment planning is depended on computed tomography 

(CT). CT is currently the clinically used image modality that provides the electron density 

information that is necessary for dose calculation and digitally reconstructed radiograph 

(DRR) generation. To precisely and robustly delineate target structures and organs at risk 

(OARs), magnetic resonance imaging (MRI) is often used as a complementary modality to 

CT in radiotherapy. Transformation of the contours from MR to CT necessitates the 

registration between MR and CT images, which can introduce an undesirable 2–5 mm 

systematic error (Edmund and Nyholm, 2017; Roberson et al., 2005; Ulin et al., 2010; Dean 

et al., 2012; Daisne et al., 2003; Nyholm et al., 2009), leading to a geometric miss and 

compromised PTV margin (Edmund and Nyholm, 2017). The motion induced movement of 

tumors has posed a major concern for treating lung and liver cancer and other locations in 

the thorax and abdomen. The differential movement of the primary tumor and lymph nodes 

is not only occurring at inter- but also intra-fractional radiotherapy (De Ruysscher et al., 
2015). The clinical introduction of MR-guided radiotherapy has allowed the mitigation or 

correction of motion artifact (Lagendijk et al., 2014; Kontaxis et al., 2017; Oborn et al., 
2017a), and is paving the way toward on-line adaptive radiotherapy. Motivated by 

eliminating systematic error and the emerging MRI imaging guidance in radiotherapy, MR-

only treatment planning has become an active field of research, in which MRI can be used as 

the sole imaging modality. MR-only treatment workflow can also spare the patient from CT 

radiation doses, which benefit more for pediatric patient that have much less dose upper 

limit (Dougeni et al., 2012) and for those patients that image-guided radiotherapy where 

multiple cone-beam CTs (CBCTs) are acquired (Wen et al., 2007). One major task in any 

MR-only treatment workflow is the generation of synthetic CT (sCT) images. These images 

can then serve as CT surrogates that can be used for dose calculation and digital 

reconstructed radiograph generation. Since the physics of X-ray and proton interactions in 

matter are fundamentally different, proton dose calculated is more sensitive to the local 

mismatch and HU accuracy. Therefore, the proton dosimetric results are supposed to be 

quite different among different sCT generation methods, which enables a direct comparison 

of the superiority.

The currently available methods to produce sCT broadly fall into the following three 

categories: segmentation-based (Chin et al., 2014; Korhonen et al., 2014; Bredfeldt et al., 
2017; Hsu et al., 2013), atlas-based (Sjölund et al., 2015; Guerreiro et al., 2017; Lei et al., 
2019a; Lei et al., 2018a) and machine learning-based methods (Han, 2017; Lei et al., 2018b; 

Yang et al., 2019). The tissue HU prediction of both segmentation and atlas-based methods 
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depends on either the predetermined values or the atlas CT number rather than patient-

specific HU values derived from learning-based methods. Learning-based methods can be 

further broken into different categories such as the random forests and deep-learning. The 

key difference between deep-learning and random forest is that the former can automatically 

learn useful features of the data, eliminating the need for handcrafted features such as Haar-

like and discrete cosine transform (DCT) used in random forest methods (Huynh et al., 
2016). In deep-learning-based methods, convolutional neural networks (CNNs) were 

introduced by Li et al. to generate a PET attenuation correction map. One limitation of 

CNN-based method is that it can produce blurry results due to MR-CT local mismatch. 

Recently, generative adversarial networks (GANs) have been proposed by incorporating an 

adversarial loss term to produce more realistic sCT (Nie et al., 2017; Emami et al., 2018). 

However, GAN-based methods still require the MR-CT pairs to be perfectly registered, 

which can be difficult especially in the body sites like abdomen.

Recently, we proposed a novel deep learning-based algorithm based on a 3D cycle GAN to 

generate MRI-based sCT (Lei et al., 2019c). This work aimed to apply this method to 

generate abdominal sCT for MRI-based proton radiotherapy. At the site of abdomen, the 

image quality is commonly affected by intrinsic organ motion, which can lead to significant 

artifacts without motion control. These artifacts make the accurate sCT prediction 

particularly difficult. In addition, to treat the target in liver, the proton beams usually have to 

go through the small rib bones, which are rather challenging to generate in sCT. In our deep 

learning-based method, a novel 3D cycle-consistent GAN with integrated dense block 

minimization to capture 3D spatial information and to cope with local mismatches between 

MR and CT paired images. To better differentiate bone from air structure and to retain sCT 

image sharpness, a novel compound loss function was employed in the architecture. To 

explore whether the sCT can be robust used for proton treatment planning, evaluation of the 

dosimetric and the distal range agreement between the sCT and the original CT was carried 

out.

2. MATERIALS AND METHODS

2.A. Image acquisition

The study cohort was composed of 21 patients diagnosed with hepatocellular carcinoma and 

originally treated with liver photon SBRT. The cancer stage was either T1N0M0 or 

T2N0M0. The patient age varied from 50 to 80. Treatment time ranged from 2010 to 2018. 

Image data were extracted retrospectively under an IRB-approved protocol. Routine 

abdominal CT and MR scans were acquired on the same day with either breath-hold (16 

patients) or abdominal compression (5 patients) to minimize the respiratory motion. CT 

scans were acquired on a Siemens (Erlangen, Germany) Biograph40. The CT acquisition 

parameters were: 120 kVp, 1.523 mm × 1.523 mm × 2 mm voxel size, and 780 mm × 780 

mm field-of-view (FOV), and the acquisition length in axial direction ranges from 160 mm 

to 598 mm. T1-weighted MRIs were acquired on Simens Biograph40 3T, Simens TrioTim 

3T, and GE Signa HDxt 1.5T. 3D fat-suppressed fast field echo images were acquired at the 

Siemens Skyra (2 patients) and Siemens TrioTim (2 patients) using volumetric interpolated 

breath-hold examination (VIBE). The sequence applied for these two methods were TE/TR 
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= 1.34/4.34 ms and TE/TR = 2.45, 2.46/5.27, 6.47 ms, respectively. FOVs were 440 mm × 

275 mm and 440 mm × 288.75 mm, respectively, and the acquisition length in axial 

direction was 288 mm. The flip angles were both 9 degree. The voxel sizes were both 1.375 

mm × 1.375 mm × 3 mm. 2D fat-suppressed fast spoiled gradient echo was applied at the 

GE Signa HDxt for the rest of the 17 patients. The sequence parameters were: TE ranging 

from 2.2 to 4.4 ms, TR ranging from 175 to 200 ms, patient position being FFS and flip 

angle being 80 degree. FOV was 480 mm × 480 mm and the acquisition length in axial 

direction was from 117 mm to 300 mm. The voxel size was 1.875 mm × 1.875 mm × 3 mm. 

Geometrical correction was performed using the built-in software package at the scanner. 

Respiratory belt was used to monitor breathing for the breath-hold scans. The scanning time 

for the T1 imaging was 20–26 seconds.

Anatomical structures were contoured by physicians for treatment planning.

2.B. Image pre-processing and registration

First, the intensity inhomogeneity of the MR images was corrected by the N4ITK MRI Bias 

correction filter, available at the open source 3D SLICER 4.8.1. N4ITK was used with 

BSpline grid resolution of 10,10,10, and the other parameters were the default values. The 

MR images were then rigidly registered and deformed to match with the corresponding CT 

images using Velocity AI 3.2.1 (Varian Medical Systems, Inc. Palo Alto, USA). The option 

of MR corrected deformable was used as the algorithm to deform the MR images to the CT 

images. Resample was applied on the deformed MR images. Finally, the registered MR 

images and their CT pairs were uploaded our machine-learning algorithm to train.

2.C. sCT generation

For the cohort of 21 patients, we used leave-one-out cross-validation. Given the degree of 

organ motion and the complexity of the required registrations, application of traditional 

convolution neural networks (CNN) to generate abdominal sCT could lead to errors 

(Wolterink et al., 2017). To overcome this, we used a novel 3D cycle GAN that contains 

several dense blocks in the generator to capture both the structural and textural information 

and to cope with local mismatches between MR and CT images. Compared to CT, MR 

images have more structural information and contrast in soft tissue regions and less at bone 

and air interfaces. The traditional MR-to-CT GAN is thus bound to generate erroneous 

prediction where the many-to-one or one-to-many mapping happens. To deal with this issue, 

we applied an inverse MRI-to-CT transformation model by incorporating “cycle GAN” (Zhu 

et al., 2017) to approach one-to-one MR to CT mapping. To solve the problem of possible 

cross-slice discontinuousness (Largent et al., 2018), a 3D image patch (voxel size [64, 64, 

5]) was adopted as the input of this model. MRI and CT are essentially two different image 

modalities, dense blocks were therefore employed to combine low and high frequency 

information to effectively represent image patches between these two. As is shown in the 

generator architecture in Figure 1, the feature map first undergoes two down-sampling 

convolutional layers to be downsized, then it passes 9 dense blocks, after which it goes 

through two deconvolutional layers and a tanh layer to enable an end-to-end mapping. The 

tanh layer works as a nonlinear activation function which facilitates the model to generalize 

or adapt to a variety of data that can differentiate the outputs, for example determining 
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whether a voxel on a boundary is bone or air. As shown in Figure 1, each dense block is 

implemented by six convolution layers. The first convolution layer is applied to the input to 

create k feature maps. The following four layers are applied to the concatenated information 

of all the previous feature maps and input to create more feature maps in sequence. The final 

output of these layers thus contains 5*k feature maps. Finally, the output goes through the 

last layer to shorten the feature maps to k. The low frequency signal that contains the texture 

information is obtained from former convolutional layers. The high frequency signal that 

contains the structural information is obtained from the latter convolutional layer. A novel 

compound loss function was further employed to effectively differentiate the structure 

boundaries with significant HU variations and to retain the sharpness of the sCT image. The 

use of a mean squared distance (MSD) loss function in the general networks tends to 

produce images with blurry regions (Michael Mathieu, 2015). The generator loss function in 

this study consists of two losses: one is the adversarial loss (Ladv) for distinguishing real 

images from synthetic images; the other is the distance loss (Ldistance) measured between 

real and synthetic images (Nie et al., 2018) or between real and cycle images. The accuracy 

of the generator directly depends on design of the loss function. Suppose that the generator 

G obtains a synthetic image G(X) = Z from original image X to target image Y. A weighted 

summation of the two losses forms the compound loss function for the proposed method:

G=argG
min λadvLadv Z + λdistanceLdistance Z,Y

Where λadv and λdistance are balancing parameter. The adversarial loss function is defined as

Ladv Z = MAD D Z , 1

in cycle GAN-based method (Zhu et al., 2017). For distance loss Ldistance(Z, Y), we 

introduced a lp-norm (p = 1.5) distance, termed mean p distance (MPD). We also integrated 

an image gradient descent (GD) loss term into the loss function, with the aim of minimizing 

the difference of the magnitude of the gradient between the synthetic image and the original 

planning CT. In this way, the sCT will try to keep zones with strong gradients, such as edges, 

effectively compensating for the distance loss term. The generators are optimized as follows:
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GCT−MR, GMR−CT

= arg min
GCT−MR, GMR−CT

λadvMAD DMR GCT−MR ICT , 1 + λMPD
cycle GMR−CT GCT−MR ICT , ICT p

p

+λGDL
cycleGDL GMR−CT GCT−MR ICT , ICT

+λMPD
fake GCT−MR ICT , IMR p

p + λGDL
fake GDL GCT−MR ICT , IMR

+λadvMAD DCT GMR−CT IMR , 1 + λMPD
cycle GCT−MR GMR−CT IMR , IMR p

p

+λGDL
cycleGDL GCT−MR GMR−CT IMR , IMR

+λMPD
fake GMR−CT IMR , ICT p

p + λGDL
fake GDL GMR−CT IMR , ICT

GDL Z, Y =
i, j, k

Zi, j, k − Zi − 1, j, k − Yi, j, k − Yi − 1, j, k 2
2 + Zi, j, k − Zi, j − 1, k − Yi, j, k − Yi, j − 1, k 2

2

+ Zi, j, k − Z
i, j, k − 1 − Yi, j, k − Yi, j, k − 1 2

2

where ⋅
p

p

 denotes the lp-norm, and GDL(⋅)denotes the gradient descent loss function (Nie 

et al., 2018). λMPD
cycle, λGDL

cycle, λMPD
fake , λGDL

fake , λMPD
cycle, λGDL

cycle, λMPD
fake , λGDL

fake  are regularization parameters 
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for different regularization. The discriminator loss is computed by mean absolute distance 

(MAD) between the discriminator results of input synthetic and real images. To update all 

the hidden layers’ kernels, the Adam gradient descent method was applied to minimize both 

generator loss and discriminator loss. Figure 1 outlines the workflow schematic of the 

proposed model, which consists of training and synthesizing stages. The training stage 

consists of 4 generators and 2 discriminators. Each generator includes several dense blocks. 

In the synthesizing stage, a new MR image is fed into the well-trained model to produce the 

sCT image.

The learning rate for Adam optimizer was set to 2e−4, and the model was trained and tested 

on an NVIDIA TITAN XP GPU with 12 GB of memory with a batch size of 8. During 

training, 3.4 GB CPU memory and 10.2 GB GPU memory was used for each batch 

optimization. The training was stopped after 150000 iterations. Training the model took 

around 15 hours, and sCT generation for one test patient took about 2 minutes.

2.D. Evaluation strategies

2.D.1 Image quality—To quantify the prediction quality, 3 commonly used metrics were 

applied, including mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and 

normalized cross correlation (NCC) (Lei et al., 2019b). MAE represents the discrepancies 

between the predictions and the reference HU numbers. PSNR is the ratio between the 

maximum possible power of a signal and the power of corrupting noise that affects the 

fidelity of its representation. NCC is a measure of similarity between 2 series as a function 

of the displacement of one relative to the other. The whole body MAE, PSNR and NCC 

were calculated together with the MAEs in soft tissue, bone and air pocket.

To evaluate the geometric displacement of the body contour and the bone contour between 

CT and sCT images, we calculated the Hausdorff distance 95% (HD95), mean surface 

distance (MSD), and the residual mean square distance (RMSD). The HD, MSD and RMSD 

metrics are generally used for quantification of boundary similarity between two surfaces. A 

displacement is associated with low HD, MSD and RMSD scores. The body surface was 

defined as the area with HU > −500. We first dilated the images to smooth the boundaries of 

the images, and then the air inside the images was removed by hole filling, and then we 

eroded the images to shrink the boundary to the original size. For the bone area, HU > 300 

was set as the threshold. Dilation was performed, followed by erosion to get a smooth 

boundary.

2.D.1 Dosimetric analysis—This patient cohort was previously treated with liver 

photon SBRT. The original CT images were transferred to RayStation (RaySearch 

Laboratories, Stockholm, Sweden) TPS (version 8A) for the proton treatment planning. 

Pencil beam scanning was used as the treatment technique. Experienced dosimetrists 

performed the planning and Monte Carlo (v4.2) was chosen as the dose calculation engine. 

OAR constrains were based on QUANTEC (Marks et al., 2010) for conventional fraction of 

1.8–2.0 Gy per fraction. One patient (p04) was decided to be excluded from this study 

because the patient has a large PTV contains not only tumor in liver but also spine and bowel 

lesions. This case is generally not suitable for proton therapy. For the rest of 20 patients, all 

Liu et al. Page 7

Phys Med Biol. Author manuscript; available in PMC 2020 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plans were prescribed with a total dose of 45 Gy in 25 fractions and normalized to 98% of 

the PTV receiving 100% of the prescription dose. For all the plans, two beams with 

optimized gantry angles were applied. The beam angles were chosen to minimize the normal 

tissues that involved in the beam path, to minimize the impact from patients’ breathing 

motion and daily setup variation, and to avoid passing through heterogeneous tissues, like 

bone and bowel filled with air. Our proton beam has minimum energy of 70 MeV with 

Bragg peak at 4-cm water equivalent thickness (WET). If a tumor’s depth at its proximal 

surface is less than 4 cm (WET), a range shifter with water equivalent depth of 2 cm, 3 cm, 

or 5 cm may be used to pull the proton ranged towards the surface.

After calculating the planning doses based on the original CT images, the evaluation doses 

calculation can be performed on the sCT images with the same beam settings. Given the 

purpose of acquiring MR images in this patient cohort was to help target volume delineation 

in the liver, the derived sCT images only included the area directly adjacent to the liver. The 

sCT thus have fewer axial slices than broader CTs that are necessary for conventional 

treatment planning. To make the OAR comparison feasible, original CT slices were added to 

the sCT to create data set of equal size. Since only coplanar beams were used, all the dose 

always fell into the area that was fully covered by the generated sCT. The dosimetric impact 

from the shared information between the two evaluation sources was zero.

In this study, the differences between the sCT and CT in PTV D10, D50, D95 Dmean and Dmax 

were evaluated. Since liver proton therapy does not have beams passing through OARs, only 

liver and bowel that are close to target are considered. OAR Dmean, Dmax, and D10 together 

with some other clinical concerned dose-volume histogram (DVH) matrix including V15 and 

V20 were considered (Zeng et al., 2017).

To evaluate the plane dose inaccuracy of the CT and sCT, the dose DICOM files were 

exported from RayStation to 3DVH (Sun Nuclear Corporation, Melbourne, USA). 3D global 

gamma analysis with 1%/1mm, 2%/2mm and 3%/3mm criteria with 10% dose threshold was 

carried out.

2.D.2 Distal range analysis—The planning CT- and sCT-based proton spread-out 

Bragg peak (SOBP) ranges of each individual beam along the beam-line that across the 

isocenter were retrieved from RayStation treatment planning system using an IronPython 

script. In this study, the proton beam range was defined at the 80% of the SOBP plateau dose 

at the distal range. The range difference and relative range difference between planning CT 

and sCT were calculated by:

Range difference=R80 _sCT − R80 CT

Relative range difference = R80_sCT − R80 CT /R80_CT × 100%

and compared with the Harvard Massachusetts General Hospital (MGH) uncertainty criteria:
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Uncertainty < 3 . 5 % R80_CT + 1 mm

This criteria is used by MGH in proton treatment planning considering the uncertainty from 

organ motion, setup and anatomical variations, dose calculation approximations and 

biological considerations (Paganetti, 2012). Other institutions such as MD Anderson and 

University of Pennsylvania apply looser criteria (3.5%+3mm), while University of Florida 

has a tighter one (2.5%+1.5mm). Since the abdominal sCT prediction accuracy depends on 

the amplitude of organ motion, anatomical variations as well as the HU fidelity, the 

acceptable level of range difference can be guided by these uncertainty criteria.

3. RESULTS

3.A. Image quality

Figure 2 lists the MAE, PSNR and NCC for each patient of this cohort. As summarized in 

Table 1, the mean (±standard deviation, abbreviation: SD) MAE, PSNR AND NCC are 

72.48±18.16 HU, 22.43±3.63 dB, and 0.92±0.04 respectively.

The mean MAEs in bone, soft tissue, air pockets were 216.81±63.05 HU, 58.62±30.61 HU, 

and 108.06±49.45 HU, respectively.

Figure 3 shows MR and CT images and the sCT images of a representative patient. It is 

noticeable that the quality of the training MR images was not very good even after intensity 

inhomogeneity correction. The method is capable of handling MR intensity inhomogeneity, 

at least when the inhomogeneity effect is not significant, by producing relatively uniform 

HU numbers in the same tissue. Gentle motion artifacts can still be observed after 

deformable registration. Nonetheless, our deep learning-based method has shown promising 

results that with small HU difference and similar HU profile across regions with rapid HU 

change.

3.B Dose comparison

Figure 4 exhibits the dose difference of two exemplary patients. The voxel dose differences 

were generally much less than 5% except at the distal edge of the beams. High dose 

discrepancy further occurs at the tissue and air interface. These results supported that proton 

therapy dose calculation is sensitive to the HU accuracy. Relatively large dose inaccuracies 

can be found with the presence of small rib bones and lung cavity. As can be seen in HU 

comparison graphs, the HU values of the livers are pretty close but discrepancies can be 

observed at the rib bones. This discrepancy can be due to the HU prediction inaccuracy or 

the rib bone displacement in CT and MR images because of patient motion. Overall 

however, our sCT has shown very promising results.

Mean gamma analysis pass rate of 1mm/1%, 2mm/2%, 3mm/3% criteria with 10% dose 

threshold were 90.76±5.94%, 96.98±2.93% and 99.37±0.99%, respectively. Figure 5 shows 

the boxplot of the gamma analysis with different criteria.
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Figure 6 shows the box plot of dose-volume statistics of PTV, liver, and bowel. The data in 

PTV and liver included the cohort of 20 patients, while limited patient data were included in 

the bowel (5 patients) because proton therapy has a very confined area of dose delivery and 

most of the patients had negligible dose deposition in OARs. As shown in the figure, one 

patient (p08) has relatively large dose differences in PTV Dmax and D95, otherwise the 

PTV dose-volume matrixes are all less than 0.5 Gy. In comparison to the prescribed dose of 

45 Gy, the clinical impact of 0.5 Gy is insignificant (around 1%). As for the outliner, the 

Dmax difference of 1.5 Gy accounts for 3% dose difference, which is supposed to be 

clinically acceptable. The DVH differences in the liver were higher than those in PTV since 

HU prediction inaccuracy in the tissues such as bone and liver. The HU inaccuracies 

obviously affected the DVH differences in liver D10, V15 and V20 as shown in the figure. 

The maximum volume differences in liver V15 and V20 were both around 12.5 cm3. This 

value accounts for less than 1% of a typical liver volume of 1500 cm3 (in this study, the liver 

volumes range from 1130 to 3021 cm3 with an average value of 1709±593 cm3). In addition, 

due to the patient motion, organ positions such as those of the ribs were not the same 

between CT and MR images. The sCT organ locations are the same as the MR images, thus 

leading to a beam overshooting when the proton beam directly passes across the rib in the 

CT-based plan but not in the sCT-based plan. We consider it as one of the limitations of the 

ground truth employed in this study (the MR/CT pairs), but not the drawback of the 

proposed networks. Lastly, for the bowel DVHs, the differences are generally much smaller 

than 2.5 Gy. Similarly, the differences could be from the limitation of the ground truth 

because of the different bowel movement status during scans. Nonetheless, it highlights the 

importance of MRI-guided radiotherapy for dose delivery accuracy enhancement.

3.C Range evaluation

Figure 7 shows the proton beam range comparison between the plans created based on 

original CT and sCT. The range was retrieved from the dose grids in the beam-line direction 

that passes through the isocenter. It was more likely to reveal the maximum range difference 

because the pencil beams pass through the isocenter usually has the longest range. The 

largest absolute range difference and relative range difference was found in patient p08 (0.56 

cm, 5.68 %) with maximum proton energy of 121 MeV. The median and mean absolute 

range differences were 0.17 and 0.186±0.155 cm, and the median and mean absolute relative 

range differences were 1.31 and 1.56±1.34 %. Using the Harvard MGH range uncertainty 

criteria shown in Figure 7(b), all beam ranges were within the tolerance level except two 

outliners (p05, p08).

4. DISCUSSION

This work sought to establish a novel method on generating liver sCT from corresponding 

MRI dataset by applying a dense-block cycle GAN model. To quantitatively evaluate the 

quality of the sCT, imaging endpoints (MAE, PSNR and NCC), proton treatment plan 

dosimetric endpoints (absolute dose difference, gamma analysis, and dose-volume statistics) 

and range endpoints (range difference, relative range difference, and Harvard MGH range 

uncertainty criteria) were performed. Side-by-side imaging comparisons revealed good 

agreement. The overall average MAE, PSNR and NCC of the sCT were 72.87±18.16 (HU), 
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22.65±3.63 dB and 0.92±0.04, respectively. These are competitive compared to counterpart 

values published from recent deep learning studies of sites such as brain and pelvis (Han, 

2017; Emami et al., 2018). The brain sCT generation based on GAN by Kazemifar et al. 
(Kazemifar et al., 2019) achieved very good MAE with an average value of 47.2 ± 11.0 HU. 

Photon VMAT plans were performed in their study and less than 1% dose differences were 

found for all of the DVH matrix. Some bone-air misclassification can still be seen in the sCT 

images and the tissue boundaries are relatively blurry. The cycle-GAN and compound loss 

used in our study can deal with those issues as better tissue boundaries and bone-air 

classification can be observed in our sCT images.

Although patient p05 and p08 had relatively higher MAE values and were later found with 

considerable range differences between plans created on CT and sCT, the interpretation of 

dosimetric and beam range accuracy in terms of these imaging endpoints is still limited, 

especially when the PSNR and NCC values does not appear to correspond to the dosimetric 

outcomes. It might be partly due to the sharp distal fall-off of the proton Bragg peak that 

confines the total area irradiated. Therefore, the overall imaging endpoint does not reveal 

very well the local mismatches or local HU difference that are important for proton 

treatment planning. In the application of liver proton therapy, since most of the beams must 

pass across the small rib bone before reaching the target, the accurate HU value prediction of 

the rib bone is very important. However, due to the small size, patient motion and general 

difficulty in bone prediction in sCT generation, the accurate rib bone prediction is 

particularly challenging. There are two published methods of abdomen sCT generation: one 

is based on fuzzy C-means and is not able to predict this small rib bone (Bredfeldt et al., 
2017); the other publication relies on atlas-based segmentation followed by voxel-based MR 

intensity to HU conversion based on predetermined conversion curves (Guerreiro et al., 
2019). The rib prediction of the latter depends on the position of atlas images, which might 

be totally different from the testing subject. As shown in Figure 4, our machine learning-

based method was able to generate the rib one, but the local mismatch caused by patient 

motion, the accuracy of its HU number prediction is limited by showing dose discrepancies 

right in the direction that the proton passing across the rib bones. Besides HU inaccuracies, 

the rib displacement between the images obtained from MR and CT scans contributes to the 

dose differences. This is not the limitation of our deep-learning network, but the limitation 

of the ground truth used (imperfectly MR/CT pairs). It is important to note that cycle-GAN 

deals with the mismatches during the training stage to effectively and accurately learn a 

mapping between the intensities in CT and MR even when the two images are not perfectly 

aligned. However, during the synthesize stage, the prediction is solely depended on the MR 

images and the mapping algorithm developed during training. Therefore, the geometry of the 

sCT would be the same as the MR images. The mapping algorithm doesn’t force the sCT 

structure geometry to be similar to the CT, which actually can benefit the future 

development of MRI-guided radiotherapy because we the organ positions may be different 

in real-time images as compared to the CT images. Figure 4 further revealed large dose 

differences caused by the local mismatch at the tissue and air interface. Because of the 

different physics interaction between proton and photon, the accuracy of proton dose 

calculation is much more sensitive to the HU values at the interfaces of different density 

tissues such as tissue-ling, tissue-bone, and bone edges.

Liu et al. Page 11

Phys Med Biol. Author manuscript; available in PMC 2020 July 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mean gamma analysis pass rate of 1mm/1%, 2mm/2%, 3mm/3% criteria with 10% dose 

threshold were 90.76±5.94%, 96.98±2.93% and 99.37±0.99%, respectively. The results were 

comparable to the pelvis study done by Maspero et al.(Maspero et al., 2017) with a 98.4% 

pass rate of 2mm/2% criteria, and the brain and prostate study done by Klivula et al.(Koivula 

et al., 2016) with a 91% pass rate of 1mm/1% criteria. The statistics of OARs has shown 

significant dependence on the accuracy of the beam range accuracy.

Range evaluation was performed by retrieving the line dose along the beam-line direction 

that across the isocenter. The median absolute range difference was 0.17 cm with maximum 

value to be 0.56 cm. These values are higher than the data reported by Pileggi et al. brain 

study (Pileggi et al., 2018) with a median value of 0.05 cm and maximum of 0.44 cm and the 

Maspero et al. pelvis study (Maspero et al., 2017) with an average median of 0.01 cm. We 

believe that the main reason for our larger range displacement was due to the organ motion 

that caused mismatch between CT and sCT. In addition, different methods were used to 

retrieve the SOBP along the beam line direction: in this study it was based on the grid dose 

line that across the isocenter, which was more likely to reveal the maximum range. This 

work also reported the absolute median range difference which would be generally higher 

than the median value adopted by the other two studies. Overall, most of this study’s range 

displacement fell into the MGH range uncertainty criteria acceptance level except two 

individual beams (among 20 patients multiplied by 2 beams each patient, a total of 40 

beams). In one case (p05), it was due to the bowel movement. The other case (p08) was due 

to significant organ motion that blurred the sCT images that lead to failure to predict the rib 

bones.

As have discussed above, the imperfect image registration and patient motion contributed 

greatly to the discrepancies. Deformable image registration to the abdomen is still an open 

problem. Research in this area continues, but no practical solution to this problem has yet 

been found. The registered MR images after deformable alignment were blurred and 

distorted, depending on the quality of the original MR images. It affects the model training 

process that results in blurred and locally distorted sCT images. Unlike photon volumetric 

modulated arc therapy (VMAT) that employs multiple entry points that ultimately 

minimized the impact from local blur or distortion(Wang et al., 2019; Wang et al., 2018; 

Shafai-Erfani et al., 2019), proton dose calculation is very sensitive to this mismatch effect 

and exhibits noticeable disagreement in dose and range calculation. The dense block cycle 

GAN algorithm used in this work has, at least partly, lessened or avoided the local mismatch 

resulted from non-ideal registration, but the solution to ultimately resolve the problem is 

currently unavailable. The development of deformable image registration algorithm and 

motion management techniques therefore becomes fundamentally important to ensure the 

high quality of the machine learning training dataset and the outcome of predicted sCT 

images. Nonetheless, our algorithm has demonstrated its rigor under the current non-ideal 

registration conditions by showing comparable results with those sCT images generated at 

more stationary body sites such as brain and pelvis. The dosimetric and range agreement 

clearly warrants the further development of MR-based liver treatment planning.

A common issue inherent to MRI-only treatment planning is the MR image distortion. Its 

effect to highly conformal treatment including liver proton therapy can be serious (Seibert et 
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al., 2016; Wang et al., 2013). At present, although not yet included as part of a standard 

package, the solution to correct such distortion have been supplied by many manufacturers 

(Jovicich et al., 2006; Doran et al., 2005; Baldwin et al., 2007) and a standard guideline is 

under development (American Association of Physicists in Medicine Task Group No. 117). 

Together with the increased availability of commercially MRI simulators (Devic, 2012) and 

development of novel MRI image guidance (Oborn et al., 2017b), high precision in target 

definition is the future for proton therapy. As we all know, very precise knowledge of the 

target delineation will do little good if we have incorrectly aligned the target at the treatment 

site. To avoid the large source of uncertainty from CT-MR registration, clearly, the 

unprecedented proton dose conformity calls for the more advanced MRI-only treatment 

process.

5. CONCLUSION AND FUTURE DIRECTIONS

We applied a novel learning-based approach to integrate dense-block into cycle GAN to 

synthesize abdominal sCT images from routine MR images for potential MRI-only liver 

proton therapy. The proposed method demonstrated a comparable level of precision in 

reliably generating sCT images for dose calculation, which supports further development of 

MRI-only treatment planning. Unlike photon therapy, the accuracy of proton dose 

calculation is highly dependent on stopping power rather than HU values. Therefore, the 

future directions of MR-only proton treatment planning include prediction of the stopping 

power map based on the MR images or generating elemental concentration maps that can be 

used for Monte Carlo simulations.
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Figure 1. 
Schematic flow chart of the proposed algorithm for MRI-based sCT generation. The training 

stage is consisted of 4 generators and 2 discriminators. Each generator includes several 

dense blocks. The synthesizing stage is shown on the right side, in which a new MR image is 

fed into this well-trained model to produce the sCT.
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Figure 2. 
Results of the MAE, PSNR and NCC for each patient.
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Figure 3. 
From left to right: MR image, CT image, sCT image, HU difference image between CT and 

sCT images, plot profile of red line in CT and sCT images. (a) and (b) Transversal view of a 

patient’s abdominal images. (a) presents the site with a number of organs and vertebral bone. 

(b) presents the liver site that has small tiny rib bones. (c) Sagittal view. (d) Coronal view.
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Figure 4. 
From left to right: coronal, transversal and sagittal view. 2 exemplary patients were used to 

demonstrate the dose differences between plans calculated on original CT and sCT. The dose 

profiles were retrieved from the 3 different views that interest with the isocenter.
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Figure 5. 
Gamma passing rates for 3 criteria: 1mm/1%, 2mm/2%, and 3mm/3% with 10% dose 

threshold. The central orange line indicates the median value, and the borders of the box 

represent the 25th and 75th percentiles. The outliers are plotted by the black “O” marker.
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Figure 6. 
Box plot of DVH difference between sCT and CT for the PTV and OARs. The central 

orange line indicates the median value, and the borders of the box represent the 25th and 75th 

percentiles. The outliers are plotted by the black “O” marker.
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Figure 7. 
Range comparison between the plans created on CT and sCT. (7a) Beam ranges of each 

beam of the 20 patient cohort. (7b) The red rhombus marker shows the distribution of the 

range differences as a function of the actual range value from the plan calculated on the 

original CT. The black square and triangle markers and the black lines represent the upper 

and lower limit for the MGH range uncertainty criteria. (7c) Box plot of absolute range 

difference. (7d) Box plot of absolute relative range difference.
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Table 1.

Statistics for the MAE, PSNR and NCC values of the cohort.

Mean (±SD) Median Min Max

MAE (HU) 72.87±18.16 66.46 43.74 126.53

PSNR (dB) 22.65±3.63 23.35 13.46 28.25

NCC 0.92±0.04 0.93 0.81 0.97
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