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Role of liver progenitors in acute liver injury
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Acute liver failure (ALF) results from the acute and rapid loss of hepatocyte function and
frequently exhibits a fulminant course, characterized by high mortality in the absence of
immediate state-of-the-art intensive care and/or emergency liver transplantation (ELT).
The role of hepatocyte-mediated liver regeneration during acute and chronic liver injury
has been extensively investigated, and recent studies suggest that hepatocytes are not
exclusively responsible for the regeneration of the injured liver during fulminant liver injury.
Liver progenitor cells (LPC) (or resident liver stem cells) are quiescent in the healthy
liver, but may be activated under conditions where the regenerative capacity of mature
hepatocytes is severely impaired. This review aims to provide an overview of the role
of the LPC population during ALF, and the role of putative cytokines, growth factors,
mitogens, and hormones in the LPC response. We will highlight the potential interaction
among cellular compartments during ALF, and discuss the possible prognostic value of the
LPC response on ALF outcomes.
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INTRODUCTION
Acute liver failure (ALF) is a rare clinical syndrome that affects
around 2000 individuals in the USA annually (Polson and Lee,
2005) and frequently exhibits a fulminant course, characterized
by high mortality in the absence of immediate state-of-the-art
intensive care and/or emergency liver transplantation (ELT).

ALF results from the acute and rapid loss of hepatocyte
function, and is associated with coagulopathy [International
Normalized Ratio (INR) >1.5] and hepatic encephalopathy (HE)
in a patient without pre-existing liver disease. Typically, the time
from onset of symptoms to development of HE is up to 8
weeks, but may take up to 26 weeks (Polson and Lee, 2005).
Individuals who develop hepatic dysfunction (i.e., coagulopa-
thy), in the absence of HE are defined as having severe acute
liver injury (sALI). ALF can occur as a result of various etiolo-
gies. In a German study, triggers such as non-acetaminophen
drug-induction (including idiosyncratic toxic reactions, e.g.,
Phenprocoumon) (32%), indeterminate or sero-negative hep-
atitis (24%), viral hepatitis (such as hepatitis A, B, E) (21%)
(Jochum et al., 2009), and acetaminophen overdose (9%) (Hadem
et al., 2012) appear to be most frequent causes of ALF. Other eti-
ologies include autoimmune disease (or hepatitis) (Czaja, 2013),
ischemia (Henrion, 2012) pregnancy (Ichai and Saliba, 2009),
Wilsons disease (Okada et al., 2010), and congestive heart failure
(Saner et al., 2009).

The prognosis of ALF is primarily dependent upon the under-
lying etiology. During ALF, viral-mediated (i.e., direct cytopathic
effects), cytokine and/or immune-mediated (i.e., indirect cyto-
pathic effects) hepatocyte necrosis, and apoptosis occur. A regen-
erative process is triggered, and replication of the remaining
healthy hepatocytes ensues, in an attempt to restore hepatic

architecture and function. This process is initiated or regu-
lated, at least in part, by three major factors which include
cytokines, growth factors, and metabolic signaling pathways.
During the early stages of liver damage, inflammatory cytokines
trigger healthy hepatocytes to enter the cell cycle. If hepato-
cyte replication is hampered by excessive parenchymal dam-
age (as generally observed in ALF), or hepatocyte senescence
(as occurring in steatotic livers or livers with concomitant
chronic injury), resident liver progenitor cells (LPCs) are acti-
vated to support, or take over the role of regeneration. However,
for many with ALF, this regenerative process is inadequate to
match the rapid, confluent loss of hepatocyte mass and func-
tion, and liver transplantation offers the only potential hope
for survival. Further studies will be needed to ascertain if an
enhanced liver progenitor response could lead to better patient
outcomes.

A proportion of individuals will recover spontaneously from
ALF, and they exemplify the unique capacity of the liver to regen-
erate completely after injury. Currently used ALF scores/criteria
such as the King’s College criteria (KCC), Model of end stage
liver disease score (MELD), and Bilirubin-lactate-etiology score
(BiLE) (Hadem et al., 2008) utilize clinical parameters at the time
of admission and/or during the course of ALF, and reliably predict
death, but are poor at predicting survival. Recent studies suggest
that cell death markers (M65)-based MELD may improve pre-
diction of spontaneous survival (Bechmann et al., 2008, 2010).
Hepatocyte cell death is intricately linked to LPC response in
chronic liver disease (Jung et al., 2012; Sancho-Bru et al., 2012),
hence, raising the possibility that the amount or type of LPC
activation (i.e., progenitor cell response) during ALF could also
predict ALF outcomes.
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The aims of the review are: (A) To provide an overview of
the mechanisms of LPC activation and to highlight potential
therapeutic targets/strategies in context of ALF, and (B) To dis-
cuss the clinical relationship between LPC activation and acute
liver damage, and the possible role of LPC activation in predicting
ALF outcomes.

DIFFERENT CELL POPULATIONS ARE ACTIVATED DURING
ACUTE AND CHRONIC LIVER DAMAGE
ALF (fulminant hepatic failure) occurs when there is rapid, mas-
sive hepatocyte cell death, which leads to significant impairment
of liver function. On the other hand, chronic liver injury is driven
by progressive hepatocyte injury and death that spans months,
years and even decades.

The cellular response that occurs during hepatic injury essen-
tially mirrors the clinical scenario, and as such, is strongly associ-
ated with the etiology and severity of injury. Mature hepatocytes
constitute the majority cell type in the liver, and are unipotent
cells that contribute to normal cell turnover and are able to
respond rapidly to injurious stimuli (such as liver resection in
man, or partial hepatectomy in mice). In contrast, the LPC com-
partment is triggered to expand when hepatocyte loss occurs in
the presence of residual hepatocyte senescence (i.e., replicative
senescence), a feature common to chronic liver disease (Santoni-
Rugiu et al., 2005; Dollé et al., 2010). Upon transit amplification,
the LPCs infiltrate along the liver plate toward the central vein,
and differentiate into hepatocytes to restore liver function and cell
mass (Espanol-Suner et al., 2012).

The role of LPC in acute injury or ALF remains poorly defined
(Theise et al., 2013). Nevertheless, we and others have recently
reported that LPC expansion occurs in mice and humans dur-
ing acute hepatic injury (or hepatic failure), and propose that the
LPC compartment is an important contributor to the restoration
of liver parenchyma or function in mice (Ochoa et al., 2010; Khuu
et al., 2013). Inhibiting the LPC response in mice after 70% par-
tial hepatectomy led to impaired liver regeneration, as assessed
by the liver to body weight ratios, and reduced overall survival.
It is likely, however, that the LPC compartment is only activated
when there is an insufficient number of healthy residual hepato-
cytes to undertake the regenerative process. Indeed, Katoonizadeh
et al. suggest, that a minimum 50% hepatocyte loss and presence
of hepatocyte replicative senescence are necessary triggers for LPC
activation (Katoonizadeh et al., 2006).

The activation and expansion of the LPC compartment occurs
roughly over 7 days, while process of LPC differentiation into
intermediate hepatocytes requires an additional 7 days (Fausto,
2004; Fausto et al., 2006). Thus, the LPC response is a much
slower regenerative process (compared with hepatocyte replica-
tion), and can be more easily detected in the livers of patients with
a sub-acute form of ALF (i.e., such as in those with sero-negative
hepatitis). Although there is no direct evidence on the role of LPC
in human liver regeneration during ALF, the presence of a ductu-
lar response after acute alcoholic hepatitis or ALF, and aggregate
data from small animal studies support the hypothesis that acti-
vation and differentiation of LPCs might play a pivotal role in
regeneration following fulminant hepatocyte loss (Katoonizadeh
et al., 2006; Sancho-Bru et al., 2012).

SIGNALING PATHWAYS AND MARKERS OF LPC
Under normal circumstances (i.e., in a healthy adult liver), the
responsibility of regenerating a liver after an acute insult falls
upon the residual hepatocytes. Ordinarily, hepatocytes turn over
once or twice a year (Fausto et al., 2006). Upon acute injury,
complete hepatocyte regeneration can occur after 2–3 cycles of
hepatocyte replication (Michalopoulos, 2010). This regenera-
tive process is orchestrated by cross talk between different liver
cell compartments, and mediated by multiple cytokines, growth
factors, and mitogens.

The regulation of the LPC response is best characterized in
humans and animal models of chronic liver disease. Chronic
liver disease is characterized by hepatocyte apoptosis, necrosis,
and senescence (Ghavami et al., 2005), and is concomitantly
associated with a robust expansion of the LPC compartment
(Duncan et al., 2009; Fellous et al., 2009). Some of the puta-
tive factors that promote LPC expansion include cytokines IL6,
TNFα, TGFβ, as well as cytokine regulated transcription fac-
tors nuclear factor kappa B, CCAAT enhancer binding pro-
tein beta, and growth factors HGF, EGF (Campbell et al.,
2001). Hormones (such as insulin, somatostatin) (Jung et al.,
2012), adipokines (cytokines released by adipocytes, such as
leptin) (Diehl, 2005; Nobili et al., 2012), and neurotransmit-
ters (such as serotonin, epinephrine or norepinephrine) have
also been reported to regulate LPC response or growth. The
interactions between these factors and signaling pathways are
complex, and remain poorly understood. In aggregate, they
act to stimulate the proliferation of LPC, and promote their
differentiation into new hepatocytic cells and cholangiocytes.
Recent studies show that morphogens (factors important dur-
ing embryonic development) such as Wnt, Notch, and Hedgehog
(Hh) are also important drivers of LPC response. For exam-
ple, Hh ligands released by apoptotic hepatocytes can act
on surrounding LPC and hepatic stellate cells (the key cell
involved in scar tissue accumulation) to promote liver repair
(Jung et al., 2010), while Wnt and Notch signals within the
microenvironment could modulate LPC differentiation into
either hepatocytes or cholangiocytes, respectively (Boulter et al.,
2012).

The regenerative process that follows ALF is not well described
or understood, but is likely to resemble the liver repair pro-
cess occurring during chronic liver disease. During ALF, the liver
would have been subject to a significant insult that results in
widespread hepatocyte necrosis and apoptosis, which far exceeds
the capacity of the remaining healthy hepatocytes to replicate and
to restore homeostatic function.

For individuals who have other co-morbidities (such as hepatic
steatosis associated with obesity or type 2 diabetes mellitus), hep-
atocytes may already exhibit replicative senescence which would
further limit the regenerative capability of residual hepatocytes.
The LPC compartment located within the canals of Herring
(Petersen and Shupe, 2008) is therefore tasked to restore hep-
atocytic function in the failing liver. Indeed, in a recent study
(Dechene et al., 2010), we observed a robust ductular reaction
among survivors of ALF. Consistently, LPC markers appeared to
correlate with severity and short-term mortality among individu-
als with alcoholic hepatitis (Sancho-Bru et al., 2012). Following
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fulminant liver injury, several different cell signaling axes have
also been postulated to regulate LPC-mediated liver regeneration.

The TNF-like weak apoptosis inducing factor
(TWEAK)/Fibroblast growth factor inducible 14 (Fn14)
pathway plays a crucial role in activation of LPCs. TWEAK/Fn 14
activation has been reported to selectively expand LPCs, without
affecting growth and viability of mature resident hepatocytes
(Jakubowski et al., 2005). Recent studies in humans and mice
with chronic liver disease confirmed that Fn14, the receptor
of TWEAK, is dramatically upregulated during chronic injury,
and directly modulates the LPC response (Tirnitz-Parker et al.,
2010). Liver expression of TWEAK/Fn14 is also upregulated
significantly, early after partial hepatectomy (Ochoa et al., 2010).
Using the Fn14-deficient mice, Karaca and colleagues further
propose that TWEAK/Fn14 axis could directly stimulate LPC
expansion after acute liver injury (Karaca et al., 2010).

Following activation of progenitor cell niche, it has been pos-
tulated, that migration of LPCs is mediated by SCF/c-Kit (Hu and
Colletti, 2008) and SDF1/CXCR4 (Hatch et al., 2002):

Stem cell factor (SCF) and its receptor c-kit play a key role
in hematopoiesis and cellular proliferation. It is well accepted,
that c-kit is a cell surface marker for progenitor cells (Heinemann
et al., 2005). The biologic effects of the SCF/c-kit system are
believed to involve survival, proliferation, and migration of early
stem cell progeny (Fujio et al., 1994). There is a large reser-
voir of hepatic SCF, and this molecule has proven to play a
pivotal role in liver reconstitution following 70% partial hep-
atectomy in mice. In another mouse model of ALF, Hu and
co-workers found SCF-deficient mice administered APAP exhib-
ited significantly higher mortality compared with litter-mate
controls. Furthermore, administration of exogenous SCF signifi-
cantly reduced mortality of APAP-treated wild-type mice (Hu and
Colletti, 2008).

Stromal derived factor-1 alpha (SDF-1alpha) and its cognate
receptor CXCR4 have similarly been shown to regulate migra-
tion of hematopoietic stem cells (HSC) in the fetal and adult
stages of hematopoiesis. Previously, others have shown that bone
marrow-derived mesenchymal stem cells promote hepatic regen-
eration after CCl 4 treatment in rats (Gruttadauria et al., 2013;
Li et al., 2013). Hatch and colleagues recently proposed that the
SDF-1alpha-CXCR4 axis is important for oval (LPC) cell acti-
vation during liver regeneration. They show that up-regulation
of hepatocyte-derived SDF-1alpha expression during fulminant
liver injury could not only promote recruitment of HSC from the
bone-marrow (Hatch et al., 2002), but also enhance LPC accumu-
lation, as both of these progenitor populations express CXCR4,
the known receptor for SDF-1alpha.

The Hh pathway normally orchestrates fetal tissue and organ
development, but has been shown to play an important role
during adult tissue repair (Omenetti and Diehl, 2008). Hh lig-
ands stimulate the expansion and viability of various stem cells
(Yang et al., 2008b) and have been shown to function as viability
factors for human and rodent liver progenitors. Recent stud-
ies have shown that Hh pathway activation occurs during liver
regeneration after partial hepatectomy (Ochoa et al., 2010; Cai
et al., 2011; Hanaoka et al., 2013). Importantly, inhibiting the
Hh signaling (with cyclopamine, an antagonist of Smoothened),

led to an attenuated LPC response, a lower expression of liver
progenitor markers, AFP, Fn14, and K19, and reduced overall
survival (Ochoa et al., 2010). The aggregate observations con-
firm the importance of Hh signaling in the LPC response after
acute liver injury, and suggest that the degree of Hh pathway
activation may dictate the extent of liver regeneration and clin-
ical outcome in ALF. Although consistent with its recognized role
during development, further studies will be needed to ascertain
the importance of Hh-mediated LPC response in other mod-
els of adult ALF. A better understanding of the role of LPC in
ALF, and more detailed study of some of these pathways may
help identify potential treatment strategies for the treatment
of ALF.

The role of Tri-iodothyronine (T3) in tissue regeneration
is well recognized (Leffert and Alexander, 1976; Short and
Ove, 1983). Experimental models of liver regeneration have, in
most cases, focused on characterizing hepatocyte replication,
but not of LPC-mediated parenchymal reconstitution. T3 affects
cell growth, differentiation, and regulates metabolic functions
via its interaction with the thyroid hormone nuclear receptors
(TRs). Cumulative studies suggest that T3 is a potent stim-
ulator of liver regeneration. Bockhorn et al. found out that
the exogenous administration of T3 enhanced liver regenera-
tion after 70 and 90% hepatectomy in terms of increased liver
to body weight ratio and Ki-67 index (Bockhorn et al., 2007).
Several molecular mechanisms have been postulated to medi-
ate T3 effects on liver regeneration. T3 stimulated rats that were
subjected to partial hepatectomy expressed the cell cycle pro-
tein, cyclin D1 at earlier time points compared with control
rats that did not receive T3, suggesting that T3-TR signaling
is an important regulator of the cell cycle in an experimen-
tal model of liver resection (Leffert and Alexander, 1976; Short
and Ove, 1983). Recent reports suggest that T3 not only stim-
ulates hepatocyte proliferation, but may induce LPC activation
during fulminant liver injury. In a rodent model of combined
AAF/PH, László et al. showed that administration of T3 led to
an accelerated differentiation of LPCs into hepatocytes (Laszlo
et al., 2008). Nevertheless, the molecular mechanisms underlying
the LPC differentiation response have yet to be fully under-
stood.

IS THERE A CELLULAR MICRO-ENVIRONMENT
CHAPERONING LPC MIGRATION?
LPCs are believed to originate from the canals of Hering (CoH),
which is lined proportionately by cholangiocytes and hepato-
cytes (see Figure 1). It serves to conduct bile from the bile
canaliculi to the terminal bile ducts located in the portal tracts
(Saxena and Theise, 2004). Because the CoH constitutes the
biliary-hepatocytic interface, it makes biological sense that LPCs,
being bipotential cells, are located in this niche. The LPC neigh-
borhood includes epithelial (hepatocytes and cholangiocytes)
cells, hepatic stellate cells, immune cells (i.e., Kupffer cells),
and the extracellular matrix (ECM). The proximity of these
cells suggests that crosstalk is important, and occurs not only
under basal, homeostatic conditions, but also during injury and
repair. Indeed, during liver injury, soluble factors released by one
cell type act in a autocrine and paracrine manner to regulate
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FIGURE 1 | During acute liver injury, hepatocyte (and cholangiocyte)

apoptosis, and necrosis occur. With minor injury, restoration of
hepatocyte mass and function is mediated by the replication of
remaining healthy hepatocytes (and cholangiocytes). During a major
insult, massive, and confluent hepatocyte loss occurs. There are
insufficient healthy remaining hepatocytes mass to restore hepatic
function; as such, the liver progenitor (LPC) or liver stem cell
compartment is activated in an attempt to restore epithelial cell mass,
architecture, and function. The bipotential LPCs reside in the Canals of
Herring (CoH), located in the niche of the biliary-hepatocytic interface,

and are able to infiltrate along the liver plate and differentiate into
hepatocytes and cholangiocytes. LPCs are surrounded by epithelial cells,
non-parenchymal cells such as hepatic stellate cells, as well as immune
cells and extracellular matrix. These regenerative processes are
triggered and regulated by the plethora of cytokines, growth factors and
metabolic signals. Resurrection of morphogenic signals (i.e., Hedgehog,
Wnt, Notch) also occurs, particularly during massive injury, to invoke the
liver progenitor cell compartment. In brief, these molecules act in
concert to ensure that sufficient regeneration occurs, and yet, not
exceed normal homeostatic requirements.

the growth and differentiation of a neighboring cell compart-
ment (Parola and Pinzani, 2009). We reported that Hh ligands
which are over-expressed during acute and chronic liver injury
could directly stimulate LPCs to secrete chemokines that lead
to the additional recruitment of inflammatory cells which par-
ticipate in the regeneration or repair process (Omenetti et al.,
2009). Inflammatory cells produce a range of cytokines and
chemokines. SDF-1 attracts CXCR4+ T cells, which express TNF-
like weak inducer of apoptosis (TWEAK), that in turn stimu-
lates LPC response by engaging its receptor Fn14 (Alison et al.,
2009).

Recent studies further show that the expansion of the LPC
compartment occurs in association with ECM remodeling (Van
Hul et al., 2009; Lorenzini et al., 2010; Lozoya et al., 2011),
while failure of ECM remodeling lead to impaired ability of the

liver to activate LPCs (Kallis et al., 2011). In this study, laminin-
LPC interactions were shown to be critical for LPC-mediated
repair. Separately, Van Hul and co-workers observed that ECM
deposition and activation of matrix-secreting cells occurred, not
only before the increase in number of LPCs, but also in front of
LPCs along the porto-venous gradient of lobular invasion (Van
Hul et al., 2009). During migration, LPCs are embedded within
ECM and are chaperoned by alpha-smooth muscle actin (alpha-
SMA)-positive cells (Van Hul et al., 2009). In addition to a direct
effect of Hh on LPC, Hh pathway activation could also enhance
LPC proliferation, indirectly, through the activation of hepatic
stellate cells into matrix-producing myofibroblasts (Choi et al.,
2009). These findings in mice support our study in man, where
we showed that LPC expansion (ductular reaction) occurred in
context of the fibrogenic response (Dechene et al., 2010). We
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propose that short term accumulation of collagen matrix might
be a physiological repair response that precedes parenchymal
cell reconstitution. Similar to findings in mice, the fibrous tissue
scaffold is the LPC niche that facilitates LPC activation and
differentiation.

Further studies will be needed to understand if, and how
ECM composition could modulate LPC responses after ALF,
and whether modifying individual components of ECM could
regulate LPC proliferation and differentiation.

IS THERE A CORRELATION BETWEEN LPC ACTIVATION AND
CLINICAL PARAMETERS IN ALF?
Currently used ALF scoring systems such as the KCC, MELD,
and BiLE reliably predict death, but are poor at predicting sur-
vival (Polson and Lee, 2005). None of these systems take into
account the histological changes that occur during ALF. The role
of histology and presence or absence of hepatocyte cell death has
only recently come to fore. We recently reported that a CK18
M65 (marker of cell death)-based MELD score could predict sur-
vival from ALF with greater sensitivity and specificity (Bechmann
et al., 2010). Among individuals with acute alcoholic hepatitis, a
condition with high mortality, expression of LPC markers cor-
related positively with clinical severity and short-term mortality
(Sancho-Bru et al., 2012).

A similar study of 74 patients with ALF or sub-acute liver
failure demonstrated a positive correlation between histopatho-
logical findings (of hepatocyte loss, the number of proliferating
hepatocytes and the number of LPCs) and clinical severity by
the MELD score. The fact that the number of LPCs was not rel-
evantly different between mild (30%) and moderate (30–50%)
hepatocyte loss, but significantly increased upon severe (50–75%)
or very severe (>75%) injury, clearly indicates that LPC com-
partment activation requires a high parenchymal injury threshold
prior to its recruitment (Katoonizadeh et al., 2006). Importantly,
surviving patients exhibited significantly fewer hepatocyte losses,
less LPC activation and more mature hepatocyte proliferative
activity, compared with those who either died or needed a liver
transplant.

The cumulative data show that the degree of LPC activation
and expansion of LPC compartment correlates strongly with the
extent of hepatic injury and severity of ALF. Further studies will
certainly be needed to evaluate if liver histology would improve
prognostication (or predicting survival) for patients with ALF.

COULD LPCs REPRESENT A FUTURE CELL THERAPY OPTION
IN ALF?
Whether the LPC response is simply a bystander effect as a result
of the rich cytokine milieu, or whether it is an incomplete or
unsuccessful attempt at liver regeneration remains to be seen.
However, the significance of LPC activation during recovery from
acute liver injury remains subject of controversy. Lineage tracing
models utilizing reporter mouse models might represent a feasi-
ble tool to quantify the contribution of LPC during regeneration
(Malato et al., 2011; Espanol-Suner et al., 2012; Diehl and Chute,
2013).

At present, the only curative treatment for patients with
fulminant hepatic failure is an ELT. However, this is significantly

limited by the shortage of suitable donor organs. As such, hepa-
tocyte (cell) transplantation has been evaluated as an alternative
for those ineligible for liver transplantation, or as a bridge to liver
transplant. This is particularly attractive because cryopreserved
cells are readily available. However, the number of cells that can
be delivered (via the portal vein) is limited by the risks of portal
hypertension (Weber et al., 2009a,b), and their large size lead to
reduced cellular engraftment (Fox et al., 1998). LPC, on the other
hand, are small in size, and are capable of differentiating into both
hepatocytes and cholangiocytes (Sandhu et al., 2001). It would be
important to study if enhanced expansion of the LPC compart-
ment, with or without changes in the LPC niche, could lead to
amelioration of ALF.

Previously, the limiting factor in the study of LPC has been
the inability to identify, isolate or purify these cells in a reliable
fashion. Recently, Cardinale and colleagues successfully isolated
multipotent stem/progenitor cells from the human biliary tree
by extended cell culture techniques (Cardinale et al., 2011) and
demonstrated that these progenitor cells are capable of giving
rise to hepatocytes, cholangiocytes, and pancreatic islets. We
have similarly developed a LPC isolation protocol for mouse
and human liver tissue, but using fluorescence-activated cell
sorting (FACS). Our technique was based on the observation
that progenitor cells express high levels of aldehyde dehydro-
genase (ALDH) activity. FACS-ALDH positive LPC in culture
could give rise to functional hepatocyte-like cells as illustrated
by albumin and urea secretion and cytochrome P450 activ-
ity. These novel methods of LPC isolation could well pave the
way for the development of future ALF therapies (Dollé et al.,
2012).

A non-parenchymal cell population that might have an
implication in liver regeneration are hepatic stellate cells. Their
contribution to liver regeneration was recently confirmed with
pancreatic stellate cells that were transplanted via tail vein injec-
tion into rats that were previously subjected to 70% PH and
substantially contributed to organ reconstitution by differen-
tiating into epithelial cells. The contribution of stem cells in
tissue repair remains controversial, but prevailing evidence sug-
gest that bone marrow or adipose tissue derived MSCs might
contribute to liver regeneration through differentiation (Sato
et al., 2005; Aurich et al., 2007; Chamberlain et al., 2007).
Hepatic stellate cells could possibly fulfill a dual role as support-
ive cells producing a connective tissue scaffold facilitating LPC
expansion and migration on the one hand and as progenitor
cells on the other (Yang et al., 2008a; Kordes and Haussinger,
2013).

The inter-relationship between liver and non-liver progeni-
tor or stem cells (i.e., bone marrow derived), and their roles in
liver regeneration after ALF remains complex and poorly under-
stood. Further studies will be necessary to understand and tap this
potential source of new liver cells. Administration of granulocyte
colony stimulating factor (G-CSF) during myocardial infarction
for example, leads to the mobilization and differentiation of
HSC to a committed lineage (Theiss et al., 2013). Therefore,
a potential attempt to enhance liver regeneration during ALF
might be a mobilization of bone marrow progenitor cells by an
administration of G-CSF.
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CONCLUSIONS
Further studies will be needed to understand the role of the LPC
response during ALF. Cumulative data to date suggest that the
LPC compartment is activated when there is confluent loss of
hepatocyte mass, that lead to insufficient regenerative capacity of
residual hepatocytes. The cytokine storm that ensues during acute
liver injury, in combination with growth factors, morphogens,
hormones, and neurotransmitters, all act in concert to dictate
the LPC response. LPC activation and differentiation appears to
require ECM, and forms the LPC niche. Hence, modulating the
ECM composition and/or enhancing the LPC response could be
useful strategies to promote liver regeneration.

Observational studies from cohorts of patients with ALF show
that the amount and type of LPC activation/expansion corre-
late with severity of liver injury, and clinical outcomes. This is
unsurprising as hepatocyte cell death is intricately associated with
liver repair (i.e., the greater the injury, the greater the attempt

at repair). Currently used scoring systems have not been able to
reliably predict those who may survive from ALF. Future studies
will be needed to evaluate if the degree of LPC response and/or
ECM accumulation could be useful biomarkers of regenerative
capability, thus improving clinical decision making in ALF.
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