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Abstract. Saccharomyces cerevisiae exhibits polarized 
growth during two phases of its life cycle, budding and 
mating. The site for polarization during vegetative 
growth is determined genetically: a and a haploid cells 
exhibit an axial budding pattern, and a/c~ diploid cells 
exhibit a bipolar pattern. During mating, each cell po- 
larizes towards its partner to ensure efficient mating. 
SPA2 is required for the bipolar budding pattern (Sny- 
der, M. 1989. J. Cell Biol. 108:1419-1429; Zahner, J.A., 
H.A. Harkins, and J.R. Pringle. 1996. Mol. Cell. Biol. 
16:1857-1870) and polarization during mating (Snyder, 
M., S. Gehrung, and B.D. Page. 1991. J. Cell Biol. 114: 
515-532). We previously identified mutants defective in 
PEA2 and SPA2 which alter cell polarization in the 
presence of mating pheromone in a similar manner 

(Chenevert, J., N. Valtz, and I. Herskowitz. 1994. Ge- 
netics. 136:1287-1297). Here we report the further char- 
acterization of these mutants. We have found that 
PEA2 is also required for the bipolar budding pattern 
and that it encodes a novel protein with a predicted 
coiled-coil domain. Pea2p is expressed in all cell types 
and is localized to sites of polarized growth in budding 
and mating cells in a pattern similar to Spa2p. Pea2p 
and Spa2p exhibit interdependent localization: Spa2p is 
produced in pea2 mutants but fails to localize properly; 
Pea2p is not stably produced in spa2 mutants. These re- 
sults suggest that Pea2p and Spa2p function together as 
a complex to generate the bipolar budding pattern and 
to guarantee proper polarization during mating. 

C 
ELL polarity is an essential feature of many eukary- 

otic cell types. Neurons and epithelial cells are two 
examples of cells whose polarity is essential for 

their function. The ability to polarize is also critical for the 
budding yeast Saccharomyces cerevisiae to grow and to 
mate (for reviews see Drubin, 1991; Madden and Snyder, 
1992; Chenevert, 1994). During vegetative growth, local- 
ization of all new material at a defined site on the cell sur- 
face leads to formation of the growing bud. During mat- 
ing, the ability to recognize the position of the mating 
partner and polarize towards it results in the local deposi- 
tion of mating-specific proteins and facilitates efficient cell 
and nuclear fusion (for a review see Cross et al., 1988). 

Polarized growth in yeast depends on actin: disruption 
of the actin cytoskeleton by either depolymerizing drugs 
or by mutations leads to unlocalized growth (for a review 
see Welch et al., 1994). Two kinds of filamentous actin 
structures are found in yeast: patches, which cluster at sites 
of growth, and cables, which are found throughout the cell 
body directed towards the growth site (Adams and Prin- 
gle, 1984; Kilmartin and Adams, 1984). It is believed that 
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secretory vesicles are targeted to growth sites by the actin 
cytoskeleton (Johnston et al., 1991). 

During vegetative growth, the position of the bud (and 
thus the direction of polarized growth) is determined ge- 
netically: a and ct haploid cells bud adjacent to the position 
of the previous bud (Chant and Pringle, 1995), in the axial 
budding pattern, and a/a diploid cells bud from either 
pole, in the bipolar budding pattern (Freifelder, 1960; 
Hicks et al., 1977; Sloat et al., 1981). A genetic hierarchy 
has been proposed to organize the actin cytoskeleton 
(Chant and Herskowitz, 1991). The bud site selection 
genes (including RSR1/BUD1, BUD2-10, AXL1, the neck 
filament genes, and many others) are required to position 
a bud at the specified site on the cell surface. The polarity 
establishment genes (such as CDC42, CDC24, and BEM1) 
are required to organize actin towards that site. Finally, 
the genes encoding actin and various actin-binding pro- 
teins are required to build the actin cytoskeleton. These 
gene products are proposed to cooperate to polarize growth 
towards the presumptive bud site: the BUD gene products 
organize the polarity establishment proteins towards the 
chosen site, and the polarity establishment proteins in turn 
organize the actin cytoskeleton. 

In addition to growing vegetatively, yeast cells can mate 
to form a diploid when two haploid cells of opposite mat- 
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ing type (a and or) come in contact (reviewed in Cross et 
al., 1988; Chenevert, 1994). During mating, cells ignore the 
polarity information at the presumptive bud site and po- 
larize instead towards their mating partner (Madden and 
Snyder, 1992; Valtz et al., 1995): the actin and microtubule 
cytoskeletons as well as secretion and new cell surface 
growth are oriented towards the partner (Byers, 1981; 
Ford and Pringle, 1986; Hasek et al., 1987; Tkacz and 
MacKay, 1979). In this instance, the site for polarization is 
determined by an external signal, a gradient of pheromone 
secreted by the mating partner (Jackson and Hartwell 
1990a,b; Segall, 1993; Dorer et al., 1995; Valtz et al., 1995). 
In the absence of a mating partner, mating pheromones in- 
duce polarization towards the presumptive bud site (Mad- 
den and Snyder, 1992; Valtz et al., 1995). The polarity es- 
tablishment proteins, actin, and actin-binding proteins are 
also required during mating to generate an organized actin 
cytoskeleton (for review see Chenevert, 1994). Thus, the 
machinery for polarizing the actin cytoskeleton is common 
during budding and mating, but the sites for polarization 
are chosen by different mechanisms. 

To identify genes involved in polarization during mat- 
ing, we previously screened for mutants which mate poorly 
but which exhibit normal pheromone production and re- 
sponse (Chenevert et al., 1994). These mutants were char- 
acterized for their ability to polarize during mating by ex- 
posing a cells to mating pheromone from a cells. After 
several hours in pheromone, wild-type a cells form pear- 
shaped cells known as shmoos; after several more hours, 
wild-type cells extend a second shmoo tip. Several classes 
of mutants obtained in this screen were distinguished by 
their shmoo morphology. One class formed essentially wild- 
type shmoos after short exposure to pheromone, but over 
time the shmoo tip continued to grow, generating a pea- 
nut-shaped shmoo. The four mutants with this peanut 
morphology fell into two complementation groups; one of 
these complementation groups appeared novel and was 
named PEA2; the other was identified as the known gene 
SPA2. 

SPA2 plays important roles in morphogenesis, but its 
exact functions remain obscure, spa2 deletion mutants 
mate poorly (Gehrung and Snyder, 1990; Chenevert et al., 
1994; Dorer et al., 1995) and form large unpolarized cells 
in the presence of pheromone (Gehrung and Snyder, 
1990). spa2 mutants also exhibit a bipolar budding pattern 
defect (Snyder, 1989; Zahner et al., 1996). Finally, spa2 
mutants display a cytokinesis defect, most evident in dip- 
loid cells (Snyder et al., 1991). SPA2 encodes a 180-kD, 
nonessential protein with predicted coiled-coil domains 
that localizes to sites of polarized growth during budding 
and mating, where it might function in morphogenesis 
(Snyder, 1989; Gehrung and Snyder, 1990; Snyder et al., 
1991). 

Here we report the characterization of the PEA2 gene 
and protein. We analyze the budding and mating pheno- 
types of pea2A strains and the expression and subcellular 
localization of Pea2p using an anti-Pea2p antibody. The 
behavior of Spa2p is also examined using an anti-Spa2p 
antibody. Our results suggest that Pea2p and Spa2p may 
function as a complex during two phases of polarized 
growth: establishment of the bipolar budding pattern and 
polarization during mating. 

Materials and Methods 

Materials 

Spa2p antibodies were a generous gift from Mike Snyder (Yale Univer- 
sity, New Haven, CT). a-Factor, Calcofluor, polylysine, and fluorescent 
secondary antibodies were from Sigma Chemical Co. (St. Louis, MO). 
Horseradish peroxidase-coupled antibodies and Affigel were from Bio- 
Rad Labs (Hercules, CA). Cyanogen bromide-activated Sepharose was 
from Pharmacia (Uppsala, Sweden). 

Yeast Strains and Growth Conditions 
Yeast strains and plasmids are described in Table I. Standard yeast growth 
conditions and genetic manipulations were used as described (Rose et al., 
1990). Cells were grown at 30°C in rich YEPD medium unless otherwise 
noted. 

Quantitative Mating and Shmoo Formation 
Quantitative mating was essentially as described (Chenevert et al., 1994). 
In short, equal numbers of a and c~ cells (3 x 106) were mixed, filtered 
onto 0.45-~m filters, and incubated on permissive YEPD plates for 4 h at 
30°C, allowing all cells to grow. Cells were resuspended in 5 ml minimal 
medium (SD) by vortexing followed by sonication and plated on permis- 
sive YEPD plates to determine total colony-forming units and on selective 
SD plates to determine the total number of diploids. Each experiment was 
carried out in triplicate at least twice. 

Shmoo morphology was determined by the addition of 10-rM a-factor 
to 3 ml log phase cultures. Aliquots were removed at 0, 2, and 6 h. Cells 
were sonicated, fixed to a final concentration of 5% formaldehyde, and 
viewed by differential interference contrast microscopy. 

Budding Pattern Assays 
Calcofluor staining of bud scars was performed as described (Pringle et al., 
1989). a or ~ cells with a total of three or more bud scars were scored as 
axial if all bud scars were adjacent; other patterns were scored as non- 
axial, a/ct cells with a total of three or more bud scars at the two poles were 
scored as bipolar; all other patterns were scored as nonbipolar. For each 
sample, 400 cells were counted for at least two independent experiments. 

Cloning and Sequencing of SPA2 
We previously reported the identification of the mutants J9 and D6 as de- 
fective in SPA2 (Chenevert et al., 1994) but did not describe the cloning 
which led to this conclusion. In brief, a centromere-based library (Rose et al., 
1987) was transformed into the mutant J9 (NVY8), and transformants 
were screened for mating to an enfeebled mating partner carrying the mu- 
tation farl-c (JC31-7D). Of approximately 11,000 transformants screened, 
one plasmid (pNV8) rescued the mating and peanut shmoo morphology 
defects of both mutants D6 and J9 in a plasmid-dependent manner. To lo- 
cate the complementing region within the 10-kilobase (kb) insert of pNV8, 
mini-Tnl0-LUK transposons were introduced (Huisman et al., 1987). In- 
sertions into the complementing open reading frame (ORF) ~ disrupted 
complementing activity. This new library of plasmids was transformed 
into the mutant J9, and transformants were again screened for the ability 
to mate with an enfeebled mating partner. Six plasmids which no longer 
complemented the J9 mating defect contained transposon insertions 
within a 2.8-kb SphI fragment. Sequencing the end of this fragment re- 
vealed SPA2. Deletion of the SPA2 gene in the parent background gener- 
ated a phenotype like that of the original mutant strains, further indicating 
that these mutants carry mutations in SPA2. 

To determine whether the cloned DNA fragment corresponded to the 
mutated locus in the peal-1 mutant, an integrating vector (pNV10) was 
used to introduce a URA3-marked copy of the wild-type fragment into the 
peal-1 mutant; this strain was then crossed to the original peal-1 mutant. 
For 27 tetrads, the peal mutant phenotype was found in the two Ura- seg- 
regants, indicating that the fragment carried the PEA1 open reading 
frame (ORF). 

1. Abbreviation used in this paper: ORF, open reading frame. 
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Table 1. Yeast Strains and Plasmids Used in This Study 

Strain Relevant genotype Source 

JC2-1B MATa HMLa HMRa barl-1 metl-1 ade2-101 ura3-52 Chenevert et al. (1994) 

The following strains are all isogenic to JC2-1B 
NVY6 MATa pea2-1 barl-1 Chenevert et al. (1994) 
NVY7 MATa spa2-1 barl-1 Chenevert et al. (1994) 
NVY8 MATa spa2-1 barl-1 Chenevert et al. (1994) 
NVY139 MA Ta spa2 : : URA3 bar l- I This study 
NVY201 MATapea2::URA3 barl-1 This study 
NVY243 MATa pea2 : : URA3 spa2: : TRP1 trp l-A99 leu2-A1 bar l-1 This study 
NVY192 MATa trp l-A99 leu2-A1 This study 
NVY 193 MATa trp!-/199 leu2-A1 This study 
NVY 199 MATct pea2:: URA 3 trp1- A99 leu2- A1 This study 
NVY200 MATa pea2::URA3 trp1-A99 leu2-A1 This study 
NVY204 MATc~ spa2::TRP1 trpl-A99 leu2-Al This study 
NVY207 MATa spa2::TRP1 trp1-A99 leu2-A1 This study 
NVY222 MATa pea2-2 trpl-A99 leu2-A1 This study 
NVY226 MATa pea2-1 trpl-A991eu2-A1 This study 
NVY230 MATa spa2-1 trpl-A99 leu2-A1 This study 
NVY233 MATa spa2-2 trpl-A99 leu2-A1 This study 
NVY238 MATt~ bnil::URA3 trpl-A99 leu2-zll This study 
NVY239 MATa bnil ::URA3 trp1-A99 leu2-A1 This study 
NVY244 MATa pea2::URA3 spa2::TRP1 trp1-A99 This study 
JPY142 MATa/MATa trp1-A99/trpl-A99 leu2-A1/leu2-A1 This study 
NVY208 MA Ta/MA Ta spa2 : : TRP1/spa2 : : TRP1 trp l - A99/trp1- A99 leu2- A l leu2- A1 This study 
NVY210 MATa/MATa pea2::URA3/pea2::URA3 trpl-A99/trp1-A99 leu2-A1/leu2-A1 This study 
NVY242 MA Ta/MA Ta bni l : : URA 3/bni l : : URA 3 trp1- A 99/trp1- A99 leu2- A1/leu2- A1 This study 

Other strains 
IH1793 MATa lyst IH collection 
JC31-7D MATctfarl-c lysl Cbenevert et al. (1994) 

Plasmid name Description Source 

pNV8 Original J9 (SPA2) complementing clone This study 
pNV 10 AatlI fragment of  pNV8 in YIp5 This study 
pNV21 Original II4 (PEA2) complementing clone This study 
pNV22 SaulflA fragment of pNV21 in pRS316 This study 
pNV23 BamHI-XbaI fragment of  pNV22 in pBLUESCRIPT This study 
pNV34 HindlIl fragment of  pNV22 in YCP50 with XhoI site digested and religated to This study 

generate a frameshift mutation 
pNV35 ApaI-HindlII fragment of pNV22 in pBLUESCRIPT This study 
pNV36 pNV35 with a replacement of the PEA2 ORF with a SalI site introduced by PCR This study 
pNV44 pea2:: URA3 created by introducing the HindlII fragment of YIp31 into the SalI site of pNV36 This study 
YIp31 URA3 in pBR322 IH collection 
p210 spa2:: URA3 Mike Snyder 
p211 spa2::TRP1 Mike Snyder 
p321 bnil::URA3 Charlie Boone 

Cloning and Sequencing of PEA2 

PEA2 was cloned by complementation of its mating defect to a farl-c 
partner. A plasmid (pNV21) which rescued the mating and shmoo mor- 
phology defects of pea2-1 (NVY6) was isolated from a centromeric library 
(Rose et al., 1987) and also rescued both phenotypes of a pea2-2 mutant. 
The complementing plasmid, pNV21, contained an insert of ~13 kb. To 
further define the region carrying the PEA2 gene, a library of partially di- 
gested SauIIIA fragments from pNV21 was constructed and transformed 
into the original pea2-1 mutant. Two complementing plasmids (pNV22a 
and pNV22b) both carrying a 2.3-kb insert were recovered (Fig. 1 C); 
these plasmids contained the same DNA fragment in opposite orienta- 
tions. Sequencing the end of a subclone of pNV22a (pNV23) revealed a 
200-base pair fragment identical to a sequence in the Saccharomyces Ge- 
nome Database. 

To determine whether the cloned DNA fragment corresponded to the 
mutated locus in the pea2-1 and pea2-2 mutants, an integrating vector 
(pNV44) was used to introduce a URA3-marked copy of the wild-type 
fragment into both pea2 mutants; these strains were then crossed to the 

original pea2 mutants. For 18 tetrads, the pea2 mutant phenotype was 
found in the two Ura-  segregants, indicating that the fragment carried the 
PEA2 ORF. 

Two possible ORFs were found in the minimal complementing frag- 
ment, one 1.3 kb and the other 0.6 kb (Fig. 1 B). Because the smaller po- 
tential ORF was contained almost entirely within the larger ORF, but 
with the opposite orientation, it was important to determine which ORF 
encoded PEA2. To eliminate the smaller ORF, a mutation was introduced 
which interrupted the larger ORF at position 1779 but left the smaller 
ORF intact (pNV34). This plasmid failed to complement the mating and 
shmoo morphology defects of pea2-1 and pea2-2, indicating that the larger 
ORF encodes PEA2. These sequence data are available from EMBL/ 
GenBank/DDBJ under the accession number  YO7594; PEA2 is entered 
in the Saccharomyces Genome Database as YER149c. 

Deletion of PEA2 

The PEA20RF was replaced precisely with URA3 in vitro. First, a 2-kb 
ApaI-HindIII  fragment of pNV22 was cloned into pBluescript SK (Strat- 
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agene, La Jolla, CA) digested with ApaI and HindIII to create plasmid 
pNV35. PCR amplification with two primers was used to generate a deriv- 
ative of this plasmid which replaced the exact PEA20RF with a SalI re- 
striction site (pNV36). Each primer began with a 5' SalI site and contin- 
ued with PEA2 flanking sequence, one of which began just 5' to the ATG 
and was oriented towards the promoter, and the other of which began just 
3' to the stop codon and continued towards the 3' untranslated region. 
PCR amplification with these primers yielded the entire plasmid sequence 
of pNV35 lacking the ORF; this fragment was digested with SalI and li- 
gated to create pNV36. Finally, a 1.1-kb HindIII fragment of URA3 (from 
YIp31) was introduced into the SalI site of pNV36 to create the PEA2 dis- 
rupting plasmid pNV44 (Fig. 1 D). 

Preparation of  Pea2p-specific Antibodies 
A peptide corresponding to the final carboxy 20 amino acids of Pea2p, 
preceded by a cysteine, was synthesized by the Biomolecular Resource 
Center (UCSF, San Francisco, CA) and had the following sequence: CK- 
NAEANTSLALNRDDPPDML This peptide was coupled to keyhole 
limpet hemocyanin and antibodies were raised in two rabbits according to 
standard procedures (Caltag Laboratory, Healdsburg, CA). 

The Pea2p peptide described above was coupled to BSA using glutaral- 
dehyde for construction of a Pea2 peptide affinity column (Harlow and 
Lane, 1988). Whole serum was first adsorbed against a cyanogen bro- 
mide-activated Sepharose column coupled to whole cell extract of the 
pea2A strain (NVY201). Flowthrough from this column was then applied 
to a column of Affi-Gel 10/15 coupled to the peptide-BSA conjugate. An- 
tibodies were eluted with 0.2 M glycine, pH 2.5, and collected in 2 M Tris, 
pH 9. The affinity-purified antibody was stored at -80°C. 

Cell Extracts and Western Blots 

Cells were grown to early log phase, centrifuged, washed with water, and 
resuspended in lysis buffer of 50 mM Tris, pH 7.5, 1% SDS, 5 mM DTT, 
1 mM EDTA, and 1 mM PMSF. Samples were heated to 95°C for 5 min, 
mixed with glass beads, vortexed three times for 30 s each, and heated 
again to 95°C for 5 min. Protein concentrations were determined (Mark- 
well et al., 1978) and equal amounts (typically 100 p,g protein) loaded onto 
SDS polyacrylamide gels. Proteins were transferred to nitrocellulose, 
blocked for 2 h in 6% nonfat dry milk in TBST, and incubated overnight 
with a 1:2,000 dilution of the anti-Pea2p affinity-purified antibody or a 
1:20,000 dilution of the anti-Spa2p antiserum (M. Snyder, Yale University, 
New Haven, CT). Immunoreactivity was visualized using the ECL protein 
detection kit (Amersham Corp., Arlington Heights, IL). The immunoblot 
of Pea2p (Fig. 3 A) includes two background bands caused by the second- 
ary antibody: these bands were seen in all protein extracts blotted with 
three different primary antibodies. 

Immuno f luore scence  

Immunofluorescence techniques were essentially as described (Pringle et al., 
1989). Cells were grown to early log phase and fixed with formaldehyde 
for 1 h. Spheroplasted cells were attached to polylysine-coated slides and 
further permeabflized by incubation with 0.2% SDS for five min. Cells 
were blocked in 1% BSA for 1 h, incubated with anti-Pea2p antibodies (1: 
80 dilution) or anti-Spa2p antibodies (1:400 dilution) for 2 h, and finally 
incubated with Cy3-conjugated secondary anti-rabbit antibodies (1:100) 
for 1 h. Cells were photographed on a Zeiss axioscope using TMAX 400 
film. 

Results 

PEA2 Encodes a Novel Protein 

PEA2 was cloned by complementation of the mating de- 
fect of the pea2-1 mutant (as described in Materials and 
Methods). The minimal complementing fragment was 
flanked by two SauIIIA restriction sites (Fig. 1, A and C) 
and carried two possible ORFs, which partially overlapped 
in opposite orientations (Fig. 1 B). To determine whether 
the larger ORF was PEA2, a frameshift mutation which 
affected only the larger ORF was introduced (Fig. 1 B; see 
Materials and Methods). When this plasmid was inte- 

Figure 1. PEA2 encodes  a novel  protein.  (A) Rest r ic t ion map  of  
the PEA2 locus (S, Saul I IA;  A,  ApaI ;  H, Hindl I I ) .  (B) Posi t ion 
of  two O R F s  conta ined  on  the  complemen t ing  plasmid pNV22. A 
f rameshif l  muta t ion  was inser ted  at the  X h o I  site as indicated 
(pNV34) to ascer tain which O R F  conta ined  the  complemen t ing  
activity. (C) PEA2 ORF and f lanking sequences  carr ied on the  
minimal  complemen t ing  p lasmid pNV22. (D) PEA2 dele t ion 
construct ,  which precisely replaces the  PEA2 O R F  with a 1.1-kb 
f ragment  carrying URA3. 

grated into a pea2-1 or pea2-2 mutant, it no longer comple- 
mented the shmoo morphology or mating defect (data not 
shown). These results confirm that the larger ORF is PEA2. 

The PEA2 gene encodes a protein of 420 amino acids, 
with a predicted molecular mass of 48.2 kD and a pre- 
dicted coiled-coil domain. Part of the PEA2 sequence is 
homologous to parts of many myosin molecules. A pro- 
gram which predicts the ability of a given sequence to 
form coiled coils (COILS version 2.1; Lupas et al., 1995) 
was used to analyze the PEA2 sequence (Brown, J., per- 
sonal communication). This sequence clearly indicates an 
ability to form a coiled coil between residue 236 and resi- 
due 327, with a stutter in the heptad repeat at residue 262; 
this analysis was confirmed by visual inspection of the se- 
quence (Brown, J., personal communication). The 5' up- 
stream region does not appear to contain any pheromone 
response elements (PREs). 

PEA2 Is Required for Shmoo Formation and 
Efficient Mating 

To determine the null phenotype of pea2 mutants, we con- 
structed a complete deletion of the PEA20RF (Fig. 1 D). 
a, ct, and a/a pea2A mutants were viable and exhibited no 
growth or morphological defects under the conditions 
studied (YEPD and minimal SD media, 16°C, 30°C, and 
37°C; Fig. 2 ). The pea2d strain was compared to the wild- 
type parent and to the original mutants, pea2-1 and pea2-2, 
for its shmoo morphology and mating. After 2 h in the 
presence of pheromone, wild-type a cells formed pear- 
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Figure 2. Shmoo morphologies of peanut mutants, a cells were treated with c, factor for 0, 2, or 6 h. Cells of isogenic strains were as fol- 
lows: (a-c) wild type (JC2-1B); (d-f)pea2-1 (NVY6); (g-i)pea2A (NVY201); (j-l) spa2-1 (NVY7); (m-o) spa2A (NVY139); (p-r)pea2A 
spa2A (NVY243). 

shaped shmoos (Fig. 2 b). 4 h later, most wild-type cells ex- 
tended a second or third shmoo tip, each relatively tight 
and small (Fig. 2 c). The shmoo tips seen in pea2-1 and 
pea2A mutants were similar to wild-type after 2 h in phero- 
mone although their shmoo tips already appeared slightly 
broader (Fig. 2, e and h). However, after 6 h in phero- 
mone, the pea2-I and pea2A mutants exhibited dramatic 
peanut-shaped morphologies (Fig. 2, f and i). These 
shmoos appeared to have continued growth at the original 
shmoo tip instead of choosing a second site for polariza- 
tion. In addition, the typical pea2-1 and pea2A shmoos had 
much wider necks than normal shmoos; this difference can 
be seen to a lesser degree at the earlier time. There was no 
obvious difference in the kinetics of initial shmoo forma- 
tion between the pea2-1 and pea2A mutants and wild-type 
cells. Similar shmoo morphologies were exhibited bypea2-2 
mutants (data not shown). 

The mating efficiencies of the pea2 mutants were deter- 
mined. Wild-type a cells mated to a wild-type ot partner 
with an efficiency of 52% (Table II). a cells carrying pea2-1, 
pea2-2, and pea2A exhibited a somewhat reduced mating 
efficiency, 26-45% (Table II). A more pronounced mating 
defect was seen when pea2 mutants were mated to an en- 
feebled mating partner carrying farl-c (Chenevert et al., 
1994). Wild-type cells mate to farl-c strains with an effi- 

ciency of 6.5% (Table II). The pea2 mutants exhibited 
mating efficiencies of 0.27-1.2% (Table II). Similar quan- 
titative defects were seen when ct pea2 mutants were 
mated to a strains (data not shown). The mating defect of 
the pea2A mutant confirms that PEA2 is required for effi- 
cient mating. Because the pea2-2 mutant had a similar 
mating defect and shmoo morphology as a pea2 deletion 
strain, we conclude that this allele is functionally null; 
pea2-1 is a weaker allele, as it mates with slighty improved 
efficiency to an ct farl-c mating partner (Table II). 

SPA2 Is Required for Shmoo Formation and 
Efficient Mating 

spa2A mutants have been previously described as unable 
to shmoo, instead forming mostly enlarged, ovoid, unpo- 
larized cells in the presence of pheromone (Gehrung and 
Snyder, 1990). In contrast, the spa2 mutants that we iso- 
lated (which carry mutations spa2-1 and spa2-2) formed 
peanut-shaped shmoos (Fig. 2, j-o).  This difference in phe- 
notype might be due to the nature of the spa2 mutations 
that we isolated or to differences in strain background or 
experimental conditions. To determine the phenotype of a 
spa2A mutant in our strain background, we constructed a 
complete deletion of SPA2 using a knockout plasmid (p210, 
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Table II. Quantitative Mating of Peanut Mutants 

Mating to Mating to 
MATa strain Relevant genotype ct wild type etfarl-c 

% % 

NVY193 WT 52 6.5 

NVY226 pea2-1 45 1.2 

NVY222 pea2-2 26 0.29 
NVY200 pea2A 32 0.27 

NVY230 spa2-1 34 0.82 
NVY233 spa2-2 45 0.46 

NVY207 spa2A 51 0.80 
NVY244 pea2A spa2A 42 1.1 

provided by M. Snyder). The morphology of this spa2A 
strain (Fig. 2, n and o) was indistinguishable from the 
spa2-1 mutant (Fig. 2, k and l) and the spa2-2 mutant (data 
not shown): all formed peanut-shaped shmoos. The spa2A 
mutant also mated at similar levels as the spa2-1 and spa2-2 
mutants, whether mated to wild-type cells (34-51%) or to 
farl-c cells (0.46--0.82%; Table II). 

To explore the difference between unpolarized and pea- 
nut-shaped shmoos, we further characterized the morphol- 
ogy of a spa2A mutant in the original Snyder background 
(MSY604), which was reported to yield a shmooless phe- 
notype in the presence of pheromone (Gehrung and Sny- 
der, 1990). We found that the morphology of this spa2A 
strain depended on two factors: the concentration of pher- 
omone and the length of time of exposure to pheromone 
(data not shown). The spa2A mutant exhibited unpolar- 
ized, ovoid cells at shorter times and at lower concentra- 
tions of pheromone. However, as the cells were left longer 
in pheromone, and in the presence of higher pheromone 
concentrations, peanut-shaped shmoos were seen. Under 
every condition tested, the pheromone-induced morpholo- 
gies of a pea2A mutant in the same background mirrored 
the spa2 morphologies. 

Because the pea2A and spa2A mutants have identical 
phenotypes, it was not possible to carry out an epistasis 
test. However, we did determine whether a cell lacking 
both Pea2p and Spa2p exhibited a more severe phenotype 
by constructing a strain with deletions in both genes. The 
pea2A spa2A double mutant exhibited a shmoo morphology 
(Fig. 2, q and r) and mating efficiencies (42.3% to wild- 
type, 1.1% tofarl-c; Table II) similar to both single mutants. 

PEA2 Is Required for the Bipolar Budding Pattern 

a/et diploid cells that lack Spa2p are defective in bipolar 
budding (Snyder, 1989; Zahner et al., 1996). a/ct diploid 
cells bud in the bipolar pattern, from either end of the cell. 
A newly born diploid daughter cell almost always posi- 
tions its first bud distal to the site where it was attached to 
the mother cell (Chant and Pringle, 1995). Detailed analy- 
sis of a/or spa2/spa2 mutants revealed a subtle variation of 
this pattern: newly born spa2A daughter cells correctly po- 
sition the first bud at the distal pole but exhibit randomly 
placed buds in subsequent cell divisions. This phenotype is 
also exhibited by mutants defective in the BUD6 gene 
(Zahner et al., 1996). Another mutation which specifically 
disrupts the bipolar budding pattern, bnil, causes defects 
in positioning of all diploid buds (Zahner et al., 1996). Mu- 

tants defective in spa2, bud6, and bnil all exhibit wild-type 
axial budding in haploid cells. 

Because pea2 and spa2 mutants exhibit similar defects in 
mating, we were interested in determining if pea2 mutants 
also exhibited defects in their budding pattern. Haploid 
pea2 and spa2 mutants exhibited the axial budding charac- 
teristic of haploid cells, as determined by Calcofluor stain- 
ing of bud scars (Table III). These results show that PEA2 
does not play a role in axial bud site selection and confirm 
that SPA2 is not required for axial budding, as shown pre- 
viously (Zahner et al., 1996). In contrast, the bipolar bud- 
ding pattern clearly depends upon both PEA2 and SPA2. 
The budding pattern of homozygous diploid mutants was 
determined by counting cells with more than three bud 
scars, visualized by Calcofluor staining. Because spa2 mu- 
tants choose the correct position for the first bud, it was 
important to only count cells with multiple bud scars. 
Wild-type diploid cells preferentially exhibited the bipolar 
budding pattern (85% bipolar; 15% nonbipolar). How- 
ever, pea2 mutants were dramatically reduced in their use 
of the bipolar budding pattern (65% nonbipolar) and had 
a defect comparable to spa2 mutants (73% nonbipolar). 
An even stronger defect was seen for another bipolar-spe- 
cific mutant, bnil (87% nonbipolar). 

Having determined that pea2 mutants have a bipolar 
budding pattern defect, we then determined whether these 
mutants (like spa2 mutants) can correctly position the first 
bud (Table IV). Wild-type diploid daughter cells posi- 
tioned the first bud at the pole distal to the birth scar 96% 
of the time, as expected, spa2 diploids exhibited the wild- 
type pattern (89% distal) as did pea2A diploids (94% dis- 
tal). A third bipolar budding pattern mutant, bnil, posi- 
tioned the first daughter bud apparently randomly (36% 
distal, 50% equatorial, and 14% proximal). These results 
show that pea2 and spa2 mutants exhibit the same, specific 
budding pattern defect: mutants defective in either gene 
are defective in bipolar budding, although the first bud is 
correctly positioned. Neither gene is required for the axial 
budding pattern. 

Table 111. Budding Patterns of Peanut Mutants 

Relevant 
Strain genotype Axial Nonaxial 

% % 

NVY192 ct WT 98 2 

NVY 193 a WT 99 1 
NVY 199 ct pea2 A 99 1 

NVY200 a pea2A 98 2 
NVY204 ct spa2A 99 1 

NVY207 a spa2A 99 1 
NVY238 et bnil A 99 1 
NVY239 a bnilA 96 4 

Bipolar Nonbipolar 

% 

JPY 142 a/ct WT 85 15 
NVY210 a/et pea2,5/pea2A 35 65 
NVY208 alet spa2z~/spa2A 27 73 
NVY242 alet bnilA/bnilA 13 87 
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Table IV. 

Pea2p Antibody Specificity 

To further characterize PEA2 and its relationship to SPA2, 
we generated polyclonal antibodies against the carboxy 
terminal 20 amino acids of Pea2p. Affinity-purified anti- 
bodies were tested for specificity on blots of total yeast 
protein (Fig. 3 A). A band of ~-50 kD seen in extracts from 
wild-type cells was missing in pea2A strains. This molecu- 
lar mass corresponded to the predicted size of Pea2p (48 kD). 
A band of the same size was recognized by serum from a 
second rabbit immunized with the same peptide; again, 
this band was recognized in extracts from wild-type cells 
but not pea2A strains (data not shown). Two cross-reacting 
bands were seen in all cell extracts blotted with three dif- 
ferent primary antibodies, which indicates they are due to 
binding of the secondary antibody. These data suggest that 
both antibodies specifically recognize Pea2p. Finally, the 
band recognized by these antisera was missing in extracts 
from pea2-1 strains and was only faintly visible in extracts 
from pea2-2 strains, indicating that these mutations desta- 
bilize Pea2p or lead to production of an unstable fragment. 

Expression of  Pea2p and Spa2p in Peanut Mutants 

PEA2 and SPA2 share several striking features: mutants 
defective in either gene generate similar mating and bud- 

ding pattern defects. To explore their relationship further, 
we examined the behavior of Pea2p in spa2 mutants and 
the behavior of Spa2p in pea2 mutants. As a first step in 
this analysis, we determined the expression levels of each 
protein in several mutant strains. Surprisingly, the spaZA 
mutants did not contain Pea2p (Fig. 3 A). Similar results 
were seen for both spa2 alleles (spa2-1 and spa2-2; Fig. 
3 A). These results indicate that Spa2p is required to pro- 
duce wild-type levels of Pea2p. 

Expression of Spa2p was determined using a polyclonal 
antiserum. A band of ~180 kD (and a collection of degra- 
dation products) detected in wild-type cells was missing 
in a spa2A strain (Fig. 3 B). pea2A strains produced full- 
length, wild-type levels of Spa2p (and the same spectrum 
of breakdown products, Fig. 3 B); the same result was seen 
with extracts from pea2-1 and pea2-2 mutants (data not 
shown). The Spa2p recovered in these extracts was largely 
degraded: several lower molecular weight bands seen in wild- 
type extracts were missing in the spa2A mutant (Fig. 3 B). 
Most importantly, the pattern of degradation products was 
the same in wild-type and pea2A strains. Thus, unlike the 
production of Pea2p in spa2 mutants, Spa2p is produced at 
wild-type levels in the absence of Pea2p. 

Immunolocalization of  Pea2p in Budding Cells 

The affinity-purified anti-Pea2p antiserum was used to lo- 
calize Pea2p within budding a and et haploid and a/~t dip- 
loid cells. The same general pattern of staining was re- 
vealed in all cell types (Figs. 4 and 5) and was the same 
using antibodies from two rabbits (data not shown). No 
immunofluorescent staining was seen in the pea2A strain 
(Fig. 4 b). Taken together, these data indicate that the pat- 
tern of staining shown here reflects the distribution of 
Pea2p. 

In vegetative haploid and a/et diploid cells, Pea2p local- 

Figure 3. Production of Pea2p and 
Spa2p in pea2 and spa2 mutants. (A) 
Presence of Pea2p was determined by 
immunoblotting protein extracts pre- 
pared from isogenic strains NVY193 
(a wild type), NVY200 (a pea2A), 
NVY7 (a spa2-1), NVY8 (a spa2-2), 
and NVY207 (a spa2A). Two back- 
ground bands due to cross-reactivity 
of the secondary antibody are seen in 
all cell extracts (see Materials and 
Methods). (B) Spa2p expression was 
analyzed by immunoblotting protein 
extracts prepared from isogenic 
strains NVY193 (a wild type), 
NVY200 (a pea2A), and NVY207 (a 
spa2A). 
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Figure 4. Localization of 
Pea2p in budding haploid 
cells. Cells of isogenic strains 
JC2-1B (a wild type) and 
NVY201 (a pea2A) were 
grown to early log phase and 
fixed. Localization of Pea2p 
was determined using indi- 
rect immunofluorescence 
with affinity-purified anti- 
Pea2p antibodies. 

ized to sites of polarized growth (Figs. 4 a and 5). In un- 
budded cells, Pea2p staining appeared as a single patch 
(Figs. 4 a and 5 a). We interpret this stained area as the 
presumptive bud site because this region colocalized with 
a clustered ring of actin patches (data not shown). In small 
budded cells, the patch of Pea2p staining was seen to al- 
most fill the bud (Figs. 4 a and 5 b). As the bud enlarged, 

Pea2p remained concentrated at the tip of the bud (Figs. 4 a 
and 5 c). Later in mitosis after nuclear division (as judged 
by DAPI  staining) but before cytokinesis, Pea2p localized 
to the neck between the mother and the daughter cell, ap- 
parently as two rings or patches (Figs. 4 a and 5 d). During 
cytokinesis, the mother and the daughter both inherited a 
patch of Pea2p (Fig. 5, d and e). This general pattern of lo- 
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Figure 5. Localization of Pea2p in budding aJa diploid cells. Wild-type a/ct diploid cells (JPY142) were grown to early log phase and 
processed for indirect immunofluorescence with affinity-purified anti-Pea2p antibodies. Shown here are examples of Pea2p staining in 
unbudded cells (a), small budded cells (b), medium budded cells (c), mitotic cells (d), two cells undergoing cytokinesis (e), and an un- 
budded cell with two patches of Pea2p (f). 

calization is identical to that of Spa2p (Snyder, 1989; Sny- 
der et al., 1991). 

The only detectable difference in Pea2p localization be- 
tween budding haploid and a/a diploid cells is shown in 
Fig. 5 f. Unbudded diploid cells were occasionally seen 
with two patches of Pea2p staining, one at either pole. Our 
interpretation of this pattern is that one patch was inher- 
ited from the mother at the neck region (see Fig. 5 e) and 
the other reflects the presumptive bud site (Fig. 5 a). This 
pattern was not seen in unbudded haploid cells, which 

form a bud adjacent to the previous site of division. If 
Pea2p were to localize to both old and new budding sites 
at the same time, it seems unlikely that we would be able 
to resolve two patches of staining because the previous 
and future bud sites are so close. Cells with two patches of 
staining have been seen for other proteins which localize 
to sites of polarized growth, including Spa2p (Snyder et al., 
1991) and Myo2p (Lillie and Brown, 1994). Similarly, two 
rings of actin patches can occasionally be found in diploid 
cells at either end of the cell, again reflecting the previous 
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Figure 6. Localization of Pea2p and Spa2p in a/a diploid mutants defective in the bipolar budding pattern. Cells were grown to early log 
phase and processed for indirect immunofluorescence using anti-Pea2p antibodies (left column) or anti-Spa2p antibodies (right column) 
for the following isogenic strains: (a-b) JPY142 (a/a wild type); (c-d) NVY210 (a/c~ pea2A/pea2A); (e-j~ NVY208 (a/a spa2A/spa2a); 
and (g-h) NVY242 (a/a bnilA/bnilA). 

The Journal of Cell Biology, Volume 135, 1996 734 



site of cell division and the presumptive bud site (Lillie 
and Brown, 1994). 

Immunolocalization of Pea2p and Spa2p in Mutants 
Defective in PEA2, SPA2, or BNII 

PEA2, SPA2, and BNI1 are required for the bipolar bud- 
ding pattern exhibited by a/tx diploid cells. We next asked 
whether mutations in these genes affected the localization 
of Pea2p and Spa2p in diploid cells. Wild-type a/a cells 
localized Pea2p and Spa2p to sites of polarized growth 
(Fig. 6, a and b). As expected, the pea2A mutant showed 
no Pea2p staining (Fig. 6 c), and a spa2A mutant showed 
no Spa2p staining (Fig. 6 J0- Surprisingly, very little Spa2p 
localized in the pea2A mutant (Fig. 6 d); this result is espe- 
cially striking as this mutant produces wild-type levels of 
Spa2p (Fig. 3 b). No Pea2p staining was seen in the spa2A 
mutant (Fig. 6 e); however, this mutant does not produce 
stable Pea2p (Fig. 3 a). Both Pea2p and Spa2p were prop- 
erly localized in the bipolar budding mutant bnilA (Fig. 6, 
g and h), although fewer cells were stained with either an- 
tibody, and the intensity of the Pea2p staining was mod- 
estly reduced. These results demonstrate that proper local- 
ization of Pea2p and Spa2p depends on the presence of 
both wild-type proteins. Their nonlocalization cannot be 
ascribed to a defective bipolar budding pattern, because 
the bipolar budding mutant bnilA correctly localizes both 
proteins. 

lmmunolocalization of Pea2p and Spa2p in Shmoos 

We were interested in determining the localization of Pea2p 
and Spa2p in shmoos because both PEA2 and SPA2 are 
required for proper shmoo morphogenesis and efficient 
mating. We first determined the localization of Pea2p in 
shmoos. A single patch of Pea2p staining was seen at the 
tip of the growing shmoo (Fig. 7 a). No Pea2p staining was 
seen in a pea2A strain (Fig. 7 c). The localization of Spa2p 
in a wild-type strain was identical to that previously re- 
ported (Snyder, 1989): Spa2p, like Pea2p, was found at the 
tip of the shmoo (Fig. 7 b). Spa2p was not localized in cells 
deleted for pea2 (Fig. 7 d), although the pea2A mutant ex- 
pressed wild-type levels of Spa2p (Fig. 3 b). This result is 
consistent with the nonlocalization of Spa2p in a/et pea2A/ 
pea2A mutants (Fig. 6 d). Occasionally, a small amount of 
Spa2p was found at the shmoo tip; positively staining cells, 
however, were rare (<4%) and showed greatly reduced 
intensity, suggesting that the majority of Spa2p did not 
localize in pea2 mutants. Similar observations were made 
for pea2-1 and pea2-2 mutants (data not shown). Because 
Pea2p is not present in spa2 mutant shmoos (data not 
shown), we did not expect to find any Pea2p immunofluo- 
rescence in these cells, and indeed no staining was de- 
tected (Fig. 7 e). These results strongly suggest that the 
localization of Pea2p and Spa2p in shmoos is interdepen- 
dent, and mirror the results for the localization of these 
two proteins in vegetative a/ct pea2/pea2 and spa2/spa2 
mutants (Fig. 6). 

Discussion 

Budding yeast relies on polarized growth during two 

phases of its life cycle, vegetative growth and mating. We 
have shown here that Pea2p is a novel protein that appears 
to function in close conjunction with Spa2p to contribute 
to cellular polarization during both budding and mating. 
During mating, Pea2p and Spa2p are required for proper 
polarization and efficient mating. During budding, Pea2p 
and Spa2p are required for the bipolar budding pattern of 
a/a diploid cells and appear to define a distinctive class of 
proteins involved in bud-site selection that includes Bud6p. 
Mutations in any of these genes lead to a novel mutant 
budding pattern: a/et diploid cells place the first bud in the 
correct, distal position but place subsequent buds at ran- 
dom positions. Pea2p and Spa2p are localized to sites of 
polarized growth in budding and shmooing cells. Each 
protein relies upon the presence of the other for its local- 
ization. These results suggest that Pea2p and Spa2p func- 
tion together as a complex to generate cell polarity during 
two phases of the yeast life cycle. 

The Role of Pea2p and Spa2p in Generating Polarized 
Morphogenesis during Mating 

Mutants defective in PEA2 and SPA2 show identical de- 
fects in shmoo formation. Wild-type a cells exposed to 
pheromone initially form pear-shaped shmoos with a 
pointed tip. After several hours, they abandon growth at 
the original shmoo tip and initiate a second tip at another 
site on the cell surface, pea2 and spa2 mutants initially 
form a pear-shaped shmoo, although the tip is less pointed 
than that of wild-type cells. After several more hours in 
the presence of pheromone, the defect of these mutants 
becomes increasingly pronounced, leading to a broadened 
and enlarged shmoo which is shaped like a peanut. Mu- 
tants defective in both pea2 and spa2 can initiate a second 
shmoo tip after prolonged incubation (Valtz, N., unpub- 
lished data). 

To understand the possible roles of PEA2 and SPA2, we 
first considered how wild-type cells are thought to orga- 
nize actin at a specific site. During mating, each haploid 
cell polarizes towards its mating partner: the actin cyto- 
skeleton, secretion, and insertion of new cell wall material 
are all organized towards a single site on the cell surface 
(Byers, 1981; Ford and Pringle, 1986; Hasek et al., 1987; 
Tkacz and MacKay, 1979). Polarized morphogenesis is 
also seen in a cells in a uniform field of pheromone (Lipke 
et al., 1976; Tkacz and MacKay, 1979; Field and Schek- 
man, 1980), but instead of polarizing towards a mating 
partner, the cell polarizes adjacent to the previous bud site 
(Madden and Snyder, 1992; Valtz et al., 1995). Generating 
polarity during mating and budding is thought to involve a 
hierarchy of three classes of gene products (Chant and 
Herskowitz, 1991; Chenevert, 1994). The site selection 
proteins mark the site for polarity on the cell surface and 
in turn organize the polarity establishment proteins (such 
as Bemlp, Cdc42p, and Cdc24p) towards that site. The po- 
larity establishment proteins then organize actin and its as- 
sociated proteins. The polarity establishment proteins and 
actin are involved in both budding and mating, whereas 
the site selection proteins are unique to each process 
(Chenevert, 1994). The end result of this morphogenetic 
pathway is polarization of actin at the chosen site, either 
the incipient bud site or the position of the mating partner. 
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Figure 7. Localization of Pea2p and Spa2p in shmoos. Cells were grown to early log phase, treated with pheromone for 2.5 h, and pro- 
cessed for indirect immunofluorescence using anti-Pea2p antibodies (left column) or anti-Spa2p antibodies (right column). Isogenic 
strains were as follows: (a-b) a wild type (JC2-1B); (c-d) a pea2A (NVY201); and (e-f) a spa2A (NVY139). 

There are several possible models for the role of PEA2 
and SPA2 in polarized morphogenesis during mating. 
First, they may function to restrict the area initially se- 
lected for polarization. Thus, although they may function 
in conjunction with the site selection proteins, they would 
not themselves be required for correct site selection. This 
is consistent with the finding that mutants defective in 
SPA2 are not defective in locating the mating partner 
(Dorer et al., 1995). Second, Pea2p and Spa2p may func- 
tion in the organization of actin towards the chosen site; 
mutants lacking either protein may be unable to restrict 
actin structures to the site marked for polarization. A third 
possibility is that these proteins may function to maintain 
a tightly organized polarization site as new proteins and 
cell wall material are inserted; this model predicts that 
Pea2p and Spa2p play no role in choosing a correct site or 
establishing polarized actin in that direction. Finally, the 
enlarged shmoo tip seen in pea2 and spa2 mutants may re- 
flect the mislocalization of a third protein whose localiza- 
tion depends on the presence of Pea2p and Spa2p; this 

unidentified protein could perform any of the functions 
described above. 

The peanut-shaped shmoo morphology of spa2A mu- 
tants reported here differs from the ovoid shmooless phe- 
notype previously described (Gehrung and Snyder, 1990). 
To determine the basis for this difference in phenotype, 
we have examined the spa2A strains described by Snyder 
which exhibit the unpolarized shmooless phenotype (Geh- 
rung and Snyder, 1990). We observed that the degree of 
polarization exhibited by these mutants depended on the 
concentration of pheromone used as well as on how long 
the cells were exposed to pheromone. During shorter ex- 
posures and at lower concentrations, cells exhibited the 
ovoid morphology previously reported. However, extend- 
ing the time in pheromone or increasing its concentration 
resulted in peanut-shaped shmoos. Polarized actin was ob- 
served in the ovoid cells (Gehrung and Snyder, 1990) as 
well as in the peanut-shaped shmoos (Valtz, N., unpub- 
lished data). Taken together, these results indicate that 
SPA2 is not required to polarize actin in the presence of 
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pheromone but is important for the distribution of the ac- 
tin cytoskeleton at the cell surface. 

Precisely Organized Morphogenesis Appears to be 
Essential for Efficient Mating 

Is the morphogenesis defect of pea2 and spa2 mutants re- 
sponsible for their mating defect? Two observations sug- 
gest that these mutants mate poorly due to their defect in 
polarized growth. First, these mutants appear normal for 
other major events that occur during mating, including sig- 
nal transduction, cell cycle arrest, and gene induction 
(Chenevert et al., 1994). Second, similar morphological 
defects are seen in mating mixes of pea2 and spa2 mutants, 
indicating that these defects are not simply an artifact of ex- 
posing cells to pheromone in the absence of a mating partner. 

How might a defect in polarized morphogenesis lead to 
a mating defect? Polarized growth may function to guar- 
antee localized deposition of mating-specific proteins in- 
volved in cell fusion, although the precise role of this po- 
larization remains undefined. It is clear that correctly 
oriented polarization is required for efficient mating, as 
mutants which cannot locate the partner mate inefficiently 
(Jackson and Hartwell, 1990b; Dorer et al., 1995; Valtz et al., 
1995). It may be important not only to choose the correct 
direction, but in addition, to have a precisely organized, 
small area of polarization in order to spatially define a re- 
stricted area for fusion. According to this view, the pea2 
and spa2 mutants are defective in mating because fuso- 
genic proteins are distributed over too broad a region and 
therefore lack a single area with a high enough concentra- 
tion of the relevant proteins. Such an explanation is sup- 
ported by the observation that mating of a spa2 mutant to 
another spa2 mutant is blocked before cell fusion and ac- 
cumulates prefusion zygotes (Gammie, A., and M. Rose, 
M., personal communication). Similarly, a mating reaction of 
a pea2 mutant to a wild-type partner accumulates 25-fold 
more prefusion zygotes than a wild-type mating reaction 
(Dorer, R., and L. Hartwell personal communication). 

PEA2, SPA2, and BUD6 May Cooperate during the 
Establishment of the Bipolar Budding Pattern 

The budding pattern of pea2 and spa2 mutants is curious. 
Wild-type a/et diploid cells bud in the bipolar pattern, in 
which newly born daughters always bud at the pole distal 
to the division site (the site of attachment to the mother; 
Chant and Pringle, 1995). Subsequent buds are positioned 
at either pole. Among the many genes required for this 
pattern, PEA2, SPA2, and BUD6 form a distinct subset 
characterized by the mutant bipolar budding pattern dis- 
played by mutants defective in these genes. This mutant 
pattern is typified by a/a pea2/pea2 mutants, which cor- 
rectly position the daughter's first bud in the wild-type po- 
sition, distal to the division site, but then bud randomly. 

To understand possible roles of PEA2, SPA2, and 
BUD6, we first consider what is known about establish- 
ment of the bipolar budding pattern. Although a direct 
search for genes required for bipolar budding was not car- 
ried out until recently (see below; Zahner et aI., 1996), 
roles for many genes in bipolar budding have been discov- 
ered fortuitously, including RVS161, RVS167 (Bauer et al., 
1993; Sivadon et al., 1995), SUR4, FEN1 (Durrens et al., 

1993), SPA2 (Snyder, 1989), and actin (Drubin et al., 1993; 
Yang, S., and D. Drubin, personal communication). A re- 
cent screen for mutations which disrupt the bipolar bud- 
ding pattern identified several known genes (including 
SPA2 and BNll) and four new genes (BUD6-9; Zahner 
et al., 1996). Mutations in these genes disrupt the bipolar 
budding pattern in five distinguishable ways. (1) a/et bud8~ 
bud8 mutants bud only from the division site pole. (2) ala 
bud9/bud9 mutants bud only from the distal pole, opposite 
the birth scar. (3) a/a bud7zl/bud7A mutants bud randomly 
but form short chains of bud scars reminiscent of the axial 
pattern. (4) a/a bnil/bnil mutants bud randomly. (5) a/or 
pea2zl/pea2A, spa2A/spa2za, and bud6/bud6 mutants all po- 
sition the first daughter bud correctly at the distal pole and 
then bud at random. 

These mutant phenotypes can be explained according 
to a model in which there are two landmarks for bipolar 
budding, one at the distal pole and one at the division site 
(Fig. 8; this model is a variant of model B in Chant and 
Pringle, 1995). Bud8p is a good candidate for the distal pole 
landmark and Bud9p is a good candidate for the division site 
landmark (Zahner et al., 1996). Bnilp and Bud7p may me- 
diate recognition of the pole landmarks by Budlp/Bud2p/ 
Bud5p, which are required for both the bipolar and the axial 
patterns (Chant and Herskowitz, 1991; Chant et al., 1991). 

Our challenge is to explain why Pea2p, Spa2p, and Bud6p 
are not required for positioning a daughter's first bud but 
are required thereafter (see also Zahner et al., 1996). We 
next consider in detail how the two pole landmarks might 
be deposited and possible roles for Pea2p, Spa2p, and 
Bud6p in this process. The landmark found at the distal tip 
of the daughter cell could be initially deposited at the pre- 
sumptive bud site (Fig. 8 a) and remain at the bud tip as 
the cell grows (Fig. 8 b). A second landmark could be de- 
posited at the mother/bud neck at mitosis (Fig. 8 c) and be 
partitioned to both the mother cell and the daughter cell 
(D1) during cytokinesis, marking the site of division (Fig. 
8 d). The first bud produced by this daughter cell (D1) 
emerges at its distal tip (Fig. 8, e and )'). When this cell di- 
vides, some division site landmark would be deposited at 
its distal pole (Fig. 8 g). Thus, after one division, both 
poles of the cell (D1) would be marked with the division 
site landmark (Fig. 8 h); this morphogenetic signal would 
be reinforced at the active pole each time it divides. No 
more distal pole landmark is deposited in a cell (D1) after 
its initial emergence, and the initially deposited distal pole 
landmark may itself decay over subsequent cell cycles. 
Thus, the distal pole landmark is essential for initially 
marking the distal pole, but its marking function is re- 
placed by the division site landmark, which marks both 
poles after the initial bud emerges. 

In this model, Pea2p, Spa2p, and Bud6p might function 
in the deposition of the division site landmark (Zahner et al., 
1996). In the absence of these proteins, the distal pole 
landmark is correctly deposited as a daughter cell emerges 
(Fig. 8, i-l). However, as the newborn daughter cell goes 
on to divide, no division site landmark is deposited. In the 
absence of the division site landmark, a random budding 
pattern is observed in subsequent cell cycles after the ini- 
tial distal pole landmark decays (Fig. 8, m-p). If the distal 
pole landmark decays over time, a preference for distal 
budding in the first few cell cycles would be expected; this 
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Figure 8. Model for establishment of the bipolar budding pattern: two different landmarks mark the two poles. A newly born daughter 
cell (D1) inherits bipolar budding landmarks at two positions during bud emergence. One landmark (indicated as the larger green dot; 
perhaps Bud8p) is deposited at the presumptive bud site (a) and carried to the tip of the growing bud (b) where it remains, resulting in a 
landmark distal to the division site (d). A second landmark (indicated in pink; perhaps Bud9p) is deposited at the mother/daughter neck 
during cytokinesis (c), resulting in a landmark at the division site (d). When the daughter cell (D1) buds for the first time, the bud 
emerges distal to the division site (e and f). At mitosis (g), the original daughter cell (D1) acquires some division site landmark at its new 
division site. The D1 cell now has division site landmark at both poles (h). Additional buds will lead to the continued deposition of the 
division site landmark in the D1 cell. In a pea2 or spa2 mutant, it is hypothesized that a division site landmark is not deposited (i-p). The 
distal pole landmark is deposited in D1 when it first emerges (i and j), but no division site landmark is deposited at mitosis (k). Thus, the 
newly born daughter cell D1 has correctly positioned distal pole landmark (l) and therefore correctly positions its first bud at the distal 
pole (m and n). Again, no division site landmark is deposited at mitosis (o). If the distal pole landmark is itself unstable (indicated as the 
smaller green dot), after one cell cycle D1 would have only its distal pole marked (p). This landmark may be present for only a few more 
cell cycles, leading to a cell with neither pole marked and consequently random budding. 

has been observed for spa2 and bud6 mutants (Zahner et al., 
1996). Another  possibility is that these proteins may per- 
form a more general role in maintaining or stabilizing the 
landmarks at either pole. The landmarks which mark the 
poles of a bipolarly budding cell persist over several cell 
cycles (Chant and Pringle, 1995). These landmarks may be 
deposited as a daughter cell emerges but require further 
modification for stability. Pea2p, Spa2p, and Bud6p may 
function in stabilizing the two pole landmarks. In this 
model, mutants defective in one of these genes would posi- 
tion the first bud correctly simply because the landmarks 
have not yet been destabilized. Finally, it is possible that 
Pea2p, Spa2p, and Bud6p are themselves components  of 
the division site landmark. 

Is there any evidence to suggest that Spa2p, Pea2p, and 
Bud6p function in deposition of the proximal landmark? 
The strongest argument is that mutants defective in these 
genes share a highly specific budding pattern phenotype. 

In addition, Pea2p and Spa2p are located at the mother/  
bud neck during mitosis, when the theoretical division site 
landmark is deposited. It will be interesting to determine if 
Bud6p is also localized to the mother/bud neck during mi- 
tosis as well as to determine if bud6 mutants exhibit the 
shmooing and mating defects of pea2 and spa2 mutants. 

Pea2p and Spa2p May Function as a Complex 

The phenotypes displayed by mutants defective in PEA2 
and SPA2 suggest that they are functionally related genes. 
First, both are required for wild-type shmoo formation as 
well as for efficient mating. Mutants defective in one or 
both genes have identical shmoo and mating defects, which 
suggests that these genes may function in the same aspect 
of polarized morphogenesis during mating. Second, both 
genes were identified in an independent screen (Yorihuzi 
et al., 1994) for mutants defective in shmoo formation (PEA2 
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is identical to PPF2; Dorer, R., and L. Hartwell, personal 
communication). Third, both genes are required for de- 
fault mating in the absence of a pheromone gradient 
(Dorer et al., 1995; Dorer, R., and L. Hartwell, personal 
communication). Fourth, both genes are similarly required 
to establish the bipolar budding pattern in a Jet diploid cells 
after the first daughter bud is positioned (Snyder, 1989; 
Zahner et al., 1996; this study). Fifth, both PEA2 and 
SPA2 are required for filamentous growth during pseudo- 
hyphal development (Mosch, M., and G. Fink, personal 
communication). Thus, for all known roles of one gene, a 
corresponding role has been found for the other. 

The behavior of Pea2p and Spa2p further suggests that 
they interact directly. First, both proteins localize to sites 
of polarized growth. Although direct colocalization of Pea2p 
and Spa2p has not yet been carried out, the localization of 
both proteins to sites of growth as determined by actin 
staining suggests that they do colocalize. Second, the presence 
of Spa2p is necessary for Pea2p production. Third, Spa2p 
does not properly localize in the absence of Pea2p. Finally, 
both Pea2p and Spa2p are predicted to contain coiled-coil 
domains, which are potential sites of interaction. These ge- 
netic and biochemical observations suggest that Pea2p and 
Spa2p may form a complex which performs different roles 
in polarization during many phases of the yeast life cycle. 
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