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Abstract: α-glucosidase is responsible for the hydrolysis of complex carbohydrates into simple
absorbable glucose and causes postprandial hyperglycemia. α-glucosidase inhibition is thus the ideal
target to prevent postprandial hyperglycemia. The present study was therefore designed to analyze
the effects of various compounds isolated from Dryopteris cycadina against α-glucosidase including
β-Sitosterol 1, β-Sitosterol3-O-β-D-glucopyranoside 2, 3, 5, 7-trihydroxy-2-(p-tolyl) chorman-4-one 3,
Quercetin-3-0-β-D-glucopyranoside (3/→0-3///)- β-D- Quercetin -3-0- β –D-galactopyranoside 4 and
5, 7, 4/-Trihydroxyflavon-3-glucopyranoid 5. The in vitro spectrophotometric method was used for
the analysis of test compounds against possible inhibition. Similarly, molecular docking studies were
performed using the MOE software. These compounds showed concentration-dependent inhibition
on α-glucosidase, and compounds 1 (IC50: 143 ± 0.47 µM), 3 (IC50:133 ± 6.90 µM) and 5 (IC50: 146 ±
1.93 µM) were more potent than the standard drug, acarbose (IC50: 290 ± 0.54 µM). Computational
studies of these compounds strongly supported the in vitro studies and showed strong binding
receptor sensitivity. In short, the secondary metabolites isolated from D. cycadina demonstrated
potent α-glucosidase inhibition that were supported by molecular docking with a high docking score.

Keywords: Dryopteris cycadina; isolated compounds; α-glucosidase inhibition; molecular docking

1. Introduction

Diabetes is characterized by persistent endocrine disorder of multiple etiologies caused by a
comparatively low or complete absence of insulin [1]. It is characterized by hyperglycemia [2] with
the irregular metabolism of carbohydrates, proteins, fats, and electrolytes due to a lack of insulin or
the insensitivity of target cells to insulin [3], which results the elevation of blood sugar, leading to
hyperglycemia [4]. Hyperglycemia is the initial metabolic disorder of type 2 diabetes mellitus and if
left untreated may develop into serious complications like damaged organs and systems, particularly
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the eyes, kidneys, nerves, blood and cardiovascular system [5,6]. The major defect that occurs in early
diabetes is postprandial hyperglycemia, which mainly occurs due to excessive eating, obesity, age
and lack of exercise [7–9]. α-glucosidase (EC 3.2.1.20) is a hydrolytic enzyme, mainly secreted by cells
lining in the brush borders of epithelial cells of small intestine [10,11]. α-glucosidase mainly target
α-1→4 glycosidic linkages and is responsible for the hydrolysis of complex carbohydrates into simple
absorbable glucose. α-glucosidase belong to the sub-subclass hydrolases that cause the hydrolysis
of various substances in the body [12,13]. In the 1970s, α-glucosidase hydrolases were discovered
that were used to recover postprandial hyperglycemia, and which were officially approved as an
antidiabetic drug later in the 1990s [14,15]. In this context, more potent and tolerable agents could
account for the effective management of the disease.

Dryopteris cycadina is a medicinal plant from the Dryopteridaceae family. The Dryopteris genus
consists of 250 species of ferns and are mostly distributed in the temperate northern hemisphere of
Eastern Asia [16]. A literature survey revealed numerous medicinal uses of the Dryopteris species in
folk medicine [17]. It is helpful in the treatment of rheumatism, epilepsy, pain [18], and as a remedy
for snake bites and fungal infections [19], as well as diabetes management. The isolated compounds
from this plant are flavonoid glycosides, which possess antioxidant, antibacterial and antitumor
properties, and HIV-1 reverse transcriptase inhibitory activity [20,21]. The chemical constituents
in D. cycadina includes steroids, phenols, phenolic glycosides, flavonoid glycosides, flavonoids,
terpenoids, phenylpropranoids and others [22,23]. Kaempferol-3, 4/-di-O-α- L-rhamnopyranoside and
Kaempferol-3,7-di-O-α- L-rhamnopyranoside isolated from the D. cycadina plant showed remarkable
antinociceptive activity [24,25].

Based on the strong pharmacological, phytochemical and traditional uses of different species of
Dryopteris, and it’s potential as an antidiabetic, the current study was designed to test compounds 1–5
isolated from D. cycadina against α- glucosidase for possible inhibition, and computational studies
were carried out to test receptor binding sensitivity.

2. Results

2.1. Effect of In Vitro α-Glucosidase Activity

Compounds 1–5 isolated from D. cycadina, as seen in Figure 1, were screened for in vitro
α-glucosidase inhibitory activity. Compound 1, at a concentration of 500 µM, exhibited the maximum
α-glucosidase inhibitory activity of 92.9% (Figure 2), while its half maximal inhibitory concentration
was observed as 143 ± 0.47µM, as seen in Table 1. The maximum inhibition of compound 2 was 92%
and was observed at 500 µM, as seen in Figure 2, with an IC50 value of 314 ± 4.58 µM, see Table 1.
Compound 3 showed marked inhibitory activity against α-glucosidase at various concentrations,
with a maximum inhibition of 94% at 500 µM, see Figure 2. The half maximal concentration (IC50)
was calculated as 133 ± 6.90 µM, as shown in Table 1. The inhibitory activity showed by compound 4
against α-glucosidase was 87.2%, and was observed at a concentration of 500 µM, see Figure 2, and had
an IC50 value of 298 ± 0.67µM, as seen in Table 1. Compound 5 demonstrated excellent inhibition of
97.1% at 500 µM, as seen in Figure 2, and its calculated IC50 was 146 ± 1.93 µM, see Table 1.

Table 1. Half-maximal inhibitory concentrations of test compounds (1–5) isolated from Dryopteris
cycadina.

α- Glucosidase

Compounds IC50 ± SEM (µM)
1 143 ± 0.47
2 314 ± 4.58
3 133 ± 6.90
4 298 ± 0.67
5 146 ± 1.93

Acarbose 290 ± 0.54

Values are expressed as mean ± SEM of three independent readings.



Molecules 2019, 24, 427 3 of 11
Molecules 2018, 23, x FOR PEER REVIEW  3 of 11 
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Figure 1. Structure of test compounds 1–5 isolated from Dryopteris cycadina.

2.2. Effect of Molecular Docking

Compound 1, with a docking score of −16.097 (Table 2) displayed significant hydrogen bonding
interactions with the four catalytic residues of Arg-442, Asp-215, Asp-352 and Gln-182 of the receptor
α-glucosidase, as seen in Figure 3. Compound 2, with a docking score of −7.756, as seen in Table 2,
showed one binding interaction with α-glucosidase. The hydrogen binding interaction was found
with amino acid Asn-415 of α-glucosidase, see Figure 4. One arene–arene and eight hydrogen
binding interactions were observed in compound 3 with a docking score of −22.480. The active
site residues such as Arg-315, Asp-307, His- 280, Lys-156, Ser-240 and Thr-310 indicated hydrogen
binding interactions, while Tyr-158 exhibited an arene–arene interaction with α-glucosidase, as seen in
Figure 5. The docking score of compound 4 was −12.931, indicating that two different interactions
were found, that is, one hydrogen bond and other arene–arene interaction with the active site residue
Arg-442 and Tyr 158, as seen in Figure 6. Compound 5, with a docking score of −15.752, had one
arene–arene and three hydrogen binding interactions—Asp-242, Lys-156, Pro-312 and Tyr-158—with
the active site residue of the receptor (Figure 7).
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3. Materials and Methods

3.1. Materials

α-glucosidase (EC3.2.1.20) was obtained from Sigma Aldrich, and acarbose was obtained from
Bayer, Pakistan. An ELISA Micro Plate Reader (Emax) from Molecular Devices and isolated compounds
1–5 from D. cycadina were used.

3.2. Assay Protocol

The α-glucosidase (Saccharomyces cerevisiae) inhibitory assay was carried out with slight
modifications according to the method described in [21,26,27]. For the evaluation of α-glucosidase
inhibitory activity, 10 µl of freshly prepared phosphate buffer (pH 6.8) were plated in triplicate for
a micro-well plate with the help of a micropipette. Then, 30 µL of α-glucosidase enzyme with a
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concentration of 0.017 units/mL of 70% ethanol and 10 µL of test compound solution were added to
the same well plate. The plates were then incubated for 15 min at 37 ◦C and an initial reading was
taken at 405 nm using the ELISA micro plate reader. Furthermore, 100 µl of 0.7mM PNPG substrate
was added to each well of the plate and again incubated at 37 ◦C for 30 min, forming a yellow color.
The final reading was taken again at λ max 405 nm using the ELISA plate reader. A total of 70% ethanol
was used as a negative control, whereas acarbose was used as a positive control. Each reading was
taken in triplicate. The percent inhibition was calculated using the following formula, % inhibition =
[(A negative control − A test sample)/A negative control] × 100, where A is absorbance.

3.3. Half-Maximal Inhibitory Concentration of Compounds (IC50)

The compound that exhibited a 50% or greater inhibition on α-glucosidase was subjected to
IC50 determination. The half-maximal inhibitory concentration (IC50) of the active compounds
was determined by preparing various amounts of test solution—like 500 µM, 250 µM, 125 µM
and 62.5 µM—and their inhibitory studies were determined using the method described earlier.
The half-maximal inhibitory concentration values were determined using the Graphpad Prism
version 7.0 software (San Diego, CA, USA. All values are represented as mean ± SEM.

3.4. Computational Study

The three-dimensional structure for α-glucosidase of Saccharomyces cerevisiae has not yet been
solved. Thus, the three-dimensional structure of α-glucosidase was generated using the Molecular
Operating Environment (MOE 2010.11) software and the molecular docking study was performed
on the same software. The MOE-Dock was used as the docking software implemented in MOE and
ligplot was implemented in MOE for the purpose of visualizing the interaction between protein and
ligand. The primary sequence of the α glucosidase was retrieved using Uniprot (Universal Protein
Resource) (http://www.uniprot.org/) in Federal Acquisition S Streamlining (FASTA) format and
the target sequence was then kept in the text-file for further evaluation [28]. The accession number
of α glucosidase of Saccharomyces cerevisiae was P07265. Then Protein-BLAST was performed to
identify homologs in the PDB (RCSB Protein Databank) [9,29,30]. Hence, the crystal structure of
Saccharomyces cerevisiae (PDB Id: 3A47_A), which has 72% sequence identity to the target protein,
was selected as the template for the target protein sequence for the prediction of the tertiary structure
of the target protein. The amino acid sequence of the target protein in FASTA format was copied
and pasted into the sequence editor of the MOE software. Then the template protein was loaded
into the same MOE software. Prior to docking, the 2D structures of all inhibitors were drawn using
the Cambridge Soft Chem3D Ultra Version 10.0 by Cambridge Soft Corp, MA, USA. Protein-ligand
docking studies were performed using the MOE 2009.10 software package. Ligands were optimized
using the default parameters of the MOE-DOCK software, including energy minimization, protonation
and the removal of nonpolar hydrogens. Now the entire ligand database was docked into the binding
pocket of the protein using the triangular matching docking method. Ten different conformations of
each ligand–protein complex was generated, each possessing its specific docking score. The docking
process was repeated for the validation of the docking method for the type of interaction. Finally,
the two- and three-dimensional images of each complex were analyzed and taken.

3.5. Statistical Analysis

All the data are expressed as the mean ± SEM of three independent readings. The IC50 values
were calculated using the Graph Pad Prism version 7.0 software (San Diego, CA, USA), while the
docking studies were performed using the MOE (2009-10) software.

4. Discussion

The present study revealed a significant in vitro α-glucosidase assay that was strongly
complimented by computational studies. In vitro α-glucosidase assay is a simple, economical and

http://www.uniprot.org/


Molecules 2019, 24, 427 8 of 11

time-saving method for the analysis of the inhibitory potential of various compounds. In the present
study, the inhibitory activity of isolated bioactive constituents was determined by measuring its
spectrophotometric absorbance at a wavelength of 405 nm using ELISA. Besides this, the color change
of the reaction mixture from deep yellow to light yellow also indicated significant inhibition of the
α-glucosidase [30,31].

Compound 3 was found to be the most active compound, with an IC50 value of 133 ± 6.90 µM,
and thus elicited marked inhibitory activity against α-glucosidase. It could be attributed to π-electrons
of the hydroxyphenyl ring, and the hydrogen bonding interactions of the two pyran rings were
engaged to create strong interactions with the amino acids of the α-glucosidase. Compound 1 exhibited
a significant inhibitory effect, with an IC50 value of 143 ± 0.47 µM. However, previous studies showed
it to be inactive [32]. Compound 1, which had a docking score of -16.097, exhibited excellent binding
interactions with the active residues of the amino acids. The activity of this compound may be
attributed to the interaction of the hydroxyl group of the tetrahydropyran group with the active sites of
the enzyme, such as Arg-442, Asp-215, Asp-352 and Gln-182, as seen in Figure 3. It is assumed that the
strong inhibitory activity of this compound may be attributed to the interaction of the hydroxyl group
of the tetrahydropyran group with the active sites of the enzyme. Compound 5, with an IC50 value
of 146 ± 1.93 µM, exhibited marked inhibitory activity against α-glucosidase due to the hydrogen
bonding interaction of the pyran ring. Moreover, thee chromen ring also showed two hydrogen
bonding interactions and a π-electron interaction with the receptor atoms. Compound 4 and 2 showed
lesser α-glucosidase inhibitory activity, with an IC50 value of 298 ± 0.67 and 314 ± 4.58 µM, lower
than the standard acarbose (290 ± 0.54 µM), respectively. In compound 2, the weak inhibitory activity
was due to the single bond interaction of the oxygen atom of the phenanthrene ring with the receptor
atoms, while compound 5 exhibited weak α-glucosidase inhibitory activity due to weak bonding
interactions of the chromen ring with receptor atoms.

The Molecular Operating Environment (MOE) docking program (Molecular operating
environment MOE. 2008. C.C.G.I.M, Quebec Canada, MOE-Dock, Chemical Computing Group.
1998. Inc., Montreal Quebec Canada), was used to examine the binding modes of the test compounds
against the α-glucosidase enzyme. The binding modes of all test compounds (1–5) isolated from
D. cycadina against α-glucosidase enzyme was examined by molecular docking studies, and the results
are provided in Table 2. The docking studies illustrated that the order of bioactivity of the tested
compounds followed the same trend as was observed for the IC50 values. All the compounds interacted
chemically with the active site as well as catalytic residues of the α-glucosidase. Based on the docking
results, compounds 1, 3 and 5 were considered to be the most active compounds, as seen in Table 2.
The most active conformer for each compound was selected based on the (S) score from the docking
results. A lower (S) score indicates a stable pose and good interactions [33]. The order of activity of
these compounds was 3 > 1 > 5 > 4 > 2, which follows the same trend as the in vitro biological assay,
seen in Table 1.

Compound 3 (IC50 136 ± 1.10 µM) −22.480 acted at different interaction sites with α-glucosidase
amino acid residues. The residue Tyr-158 showed arene–cation interactions with π-electrons of the
hydroxyphenyl ring. Moreover, the amino acid residues Arg-315, Asp-307, His- 280, Lys-156, Ser-240
and Thr-310 of the two pyran rings were engaged in making strong hydrogen binding interactions, as
seen in Figure 5. Compound 5 (IC50 143 ± 0.47 µM) −15.752 interacted with the α-glucosidase residue
i.e., Pro-312 by a hydrogen bonding interaction of the pyran ring. Moreover, the chromen ring also
showed two hydrogen bonding interactions and a π-electron interaction with receptor atoms, such
as Asp-242, Lys-156 and Tyr-158, as seen in Figure 7. Compounds 4 (IC50 298 ± 0.67 µM) and 2 (IC50

314 ± 4.58 µM) showed poor α-glucosidase interactions with amino acid residues of α-glucosidase,
for example compound 4 −12.931 exhibited a weak interaction with the chromen ring and the active
site residue Arg-442 and Tyr 158, whereas compound 2 −7.756 exhibited poor α-glucosidase inhibitory
activity and had a single interaction of the phenanthrene ring with Asn-415 of the active site of the
enzyme, as seen in Figure 4. Due to the limited quantity of compounds 1–5, kinetic studies were not
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performed. It is suggested that kinetic studies are conducted in the future to determine the mechanism
of these compounds.

5. Conclusions

In short, over the years, natural products have shown outstanding therapeutic potential [34–39].
In our study, compounds 1–5 isolated from D. cycadina possessed strong α-glucosidase inhibition when
studied at different concentrations with an overall, concentration-dependent effect. These compounds
elicited marked potency in terms of the IC50 values and were better than the standard drug used,
acarbose. Similarly, in molecular docking studies these compounds exhibited strong binding potentials,
which supported the in vitro experimental findings. In this context, further detailed studies are
recommended to explore the mechanisms, safety and clinical aspects of these molecules.
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