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ABSTRACT: Cancer is a deadly disease that has long plagued
humans and has become more prevalent in recent years. The
common treatment modalities for this disease have always faced
many problems and complications, and this has led to the
discovery of strategies for cancer diagnosis and treatment. The use
of magnetic nanoparticles in the past two decades has had a
significant impact on this. One of the objectives of the present
study is to introduce the special properties of these nanoparticles
and how they are structured to load and transport drugs to tumors.
In this study, iron oxide (Fe3O4) nanoparticles with 6 nm sizes
were coated with hyperbranched polyglycerol (HPG) and folic
acid (FA). The functionalized nanoparticles (10−20 nm) were less
likely to aggregate compared to non-functionalized nanoparticles. HPG@Fe3O4 and FA@HPG@Fe3O4 nanoparticles were
compared in drug loading procedures with curcumin. HPG@Fe3O4 and FA@HPG@Fe3O4 nanoparticles’ maximal drug-loading
capacities were determined to be 82 and 88%, respectively. HeLa cells and mouse L929 fibroblasts treated with nanoparticles took
up more FA@HPG@Fe3O4 nanoparticles than HPG@Fe3O4 nanoparticles. The FA@HPG@Fe3O4 nanoparticles produced in the
current investigation have potential as anticancer drug delivery systems. For the purpose of diagnosis, incubation of HeLa cells with
nanoparticles decreased MRI signal enhancement’s percentage and the largest alteration was observed after incubation with FA@
HPG@Fe3O4 nanoparticles.
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■ HIGHLIGHTS

• Development of HPG@Fe3O4 nanoparticles for cervical
cancer diagnosis and therapy

• Increasing the cell selectivity by functionalization of
nanoparticles with folic acid (FA)

• High loading efficiency and effective delivery of
curcumin

• Reducing viability of HeLa cells and contribution to
diagnosis via MRI contrast

1. INTRODUCTION
The fourth most common malignant gynecological tumor in
women is cervical cancer. In 2018, cervical cancer caused
311,000 deaths from 570,000 diagnosed cases.1 One-half of the
number of women that died from cervical cancer were aged
≤58 years, and with the women with ages of 20−39 years,
cervical cancer is shown to be the second leading cause of
death. Overall, the incidence rate of cervical cancer has
demonstrated a decrease in recent years, but distant-stage

disease and cervical adenocarcinoma are a threat to the life of
many young women around the world, and these cannot often
be diagnosed by cytology.2 Cervical cancer is more common in
developing countries compared to developed countries.3 In
addition to cytology for detection of cervical cancer, there have
been preventative measures in which vaccination against
human papillomavirus is the most important.4 However,
cervical cancer is still a leading cause of death among
women and new therapeutic strategies should be designed
for its treatment.5 Nanotechnological approaches including the
use of microfluidic devices, high-gravity techniques, micro-
porous smart nanostructures, green methodologies, and
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combinations would be a great help in order to improve the
efficiency, reduce the cost of methods, increase the greenness
factors, and also reduce the time of drug/method discovery.6−9

Curcumin is a naturally occurring compound derived from
rhizome of Curcuma longa.10 As a bioactive compound,
curcumin has been utilized in treatment of various diseases
due to its pharmacological and biological activities including
anti-oxidant, anti-inflammatory, anti-diabetic, neuroprotective,
and more importantly, anti-cancer.11,12 Curcumin has been
administered for treatment of cervical cancer. Curcumin
administration (13 μM) stimulates DNA damage in HeLa
cells and promotes translocation of p53 and H2A.Xser140 with
a route from the cytoplasm to nucleus.13 Curcumin induces
cell cycle arrest at G2/M phases and enhances reactive oxygen
species (ROS) generation to stimulate apoptosis and
autophagy in reducing the viability of cervical cancer cells.14

For potentiating the anti-tumor activity of curcumin, its
combination with emodin has been administered to inhibit
Wnt/β-catenin signaling via TGF-β down-regulation, resulting
in reduction in cervical cancer progression.15 However, owing
to poor bioavailability and rapid metabolism of curcumin, this
phytochemical is not capable of completely eradicating tumor
cells. Therefore, nanoformulations have been developed for its
delivery and boosting cancer suppression.16

The nanoparticle-based precision medicine leads to
formulation of new types of early diagnosis/detection and
treatment methods.17−20 In this regard, the size,21,22 electronic
properties,23,24 zeta potential,25 surface functional groups,26−29

porosity,30−32 and also the potential interactions33 affect the
possible biomedical applications. In addition, all of these
physicochemical parameters should be optimized before
addressing the critical issues in the nanomedicine field, in
which these optimizations showed critical feedbacks in the
diagnosis and treatment perspectives of SARS-CoV-2 as
well.34−36 Iron oxide nanoparticles (IONPs) are extensively
utilized for diagnostic aims and MRI contrast due to their
superparamagnetic tools, and they show various beneficial
characteristics including high solubility and biocompatibility.
The IONPs demonstrate biodegradability, they are distributed
in different organs of the body, and no long-term toxicity has
been reported.37 A recent experiment revealed the role of folic
acid (FA)-modified IONPs in diagnosis of breast cancer.38

Notably, IONPs can be used for curcumin delivery in cancer
treatment. The curcumin-loaded IONPs can suppress SHH
signaling and reduce stemness of pancreatic cancer cells to
mediate their sensitivity to gemcitabine chemotherapy.39

Different studies have evaluated the biocompatibility of
curcumin-loaded IONPs, and it was found that these
nanostructures are distributed in various organs such as the
liver, spleen, and brain.40 They do not induce a significant
increase in enzyme levels the in kidney and liver; therefore,
they can be utilized as promising therapeutic and diagnostic
agents.41

Different nanosystems of iron oxide have been developed in
order to optimize the drug delivery process, one of which is the
polymer nanosystem.42 Applying biocompatible polymers,
including hyperbranched polyglycerol (HPG), in the coating
procedure improves the hydrophilicity and facile attachment of
targeting agents on the polymer’s surface. HPG is recognized
as a favorable new type of polymer, associated with a
biocompatible polyether scaffold, well-defined dendrimer-like
architecture, and abundant functional end groups.43 HPG is
utilized in the current research in order to coat IONPs prior to

incubation with or without FA; FA is under consideration as a
targeting agent in view of the known overexpression of FA
receptors on some cancerous cells.44,45 Folate binding protein
is known as a glycosylphosphatidylinositol (GPI)-anchored cell
surface receptor of folate. FA receptors are observed in small
amounts on normal epithelial cell surfaces in various organs,
including the kidney, thyroid, lungs, and brain. Of note, they
are observed with a high expression ratio in several human
tumors. This overabundance of FA receptors on tumor cells
might be associated with FA’s vital role in cancer cell
proliferation.46 Recent studies showed that the presence of
specific biomarkers on the surface of the nanocarriers would
lead to increasing the efficient targeting; however, (over)
expression of different types of genes should be investigated
before any attempts on this context.47−49 Also, the iron-based
nanoparticles/nanomaterials could be able to mimic the
electron transfer between the cellular membranes; therefore,
they are completely favorable to make strong interactions with
the cells.50−52

It is proposed that anticancer drugs bound to HPG-coated
magnetic IONPs that have FA attached might achieve
increased bioavailability in tumor tissues as a result of targeting
via FA receptors.53,54 A number of studies have applied natural
and synthetic polymers to coat IONPs. Huang et al. utilized
polyethylene glycol-coated nanoparticles in the doxorubicin
transfer process.55 Akbarzadeh et al. evaluated nanoparticles
that were encapsulated into poly(D,L-lactic-co-glycolic acid),
poly (ethylene glycol), and (PLGA-PEG) nanoparticles.56

Appropriate polymer selection directly depends on the
biocompatibility, hydrophilicity, and non-adsorption properties
of the given protein. HPG is defined as a type of hydrophilic
polyether having unique characteristics including high
biocompatibility, minimal toxic effects, and easy synthesis.
HPG also contains several terminal hydroxyl groups that are
available for the binding of targeted ligands.57 The synthesis of
Fe3O4 nanoparticles using the polyol method was carried out
in the current study, and then HPG was added by the anionic
ring-opening polymerization method. HPG coating’s impact
on Fe3O4 nanoparticles’ biocompatibility enhancement was
measured. A covalent bond between FA and polyglycerol’s
terminal hydroxyl groups was then generated. The procedure
of loading curcumin onto the resultant FA-coupled nano-
particles and consequent evaluation of related loading and
releasing efficiencies were then carried out using FT-IR, TEM,
DLS, CHNS, and TGA analyses. The cytotoxicity of
nanoparticles on HeLa cell lines was evaluated, and mouse
L929 fibroblasts as normal cells were used. Finally, the
potential of nanoparticles in diagnosis was evaluated by MRI
contrast.

2. MATERIALS AND METHODS
2.1. Synthesis and Surface Functionalization of Fe3O4.

IONPs were synthesized by a polyol method and coated with
polyglycerol-branched polymers using the looping mechanism. A
magnetic stirrer was used to combine 0.53 g of iron(III)
acetylacetonate (Fe(acac)3) and 30 mL of triethylene glycol)
TREG) components. This mixture was gradually heated until the
boiling point was reached (285 °C). It was kept in an atmosphere of
N2 for about 30 min under reflux conditions since the heating process
was completed within a 3 h period. A black homogeneous solution
was obtained. After reaching room temperature, 20 mL of ethyl
acetate was added. A neodymium magnet was applied in order to
collect the black precipitate. The black precipitate containing
uncoated IONPs was washed with ethyl acetate three times in
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order to remove the additional TREG and was dried under vacuum to
a powder form. HPG coating of the nanoparticles was initiated by the
addition of 4 mL of glycidol to 30 mg of Fe3O4 nanoparticles and a 1
h sonication process. The black compound was mixed using a
magnetic stirring process for 20 h at 140 °C in an atmosphere of N2.
Then, the black gel was combined with 15 mL of deionized (DI)
water in an ultrasonic bath after reaching room temperature. After
exposing this solution to a neodymium magnet, the HPG-coated
IONPs (HPG@Fe3O4) were collected and washed with DI water
three times and then dried in a vacuum to obtain a black solid. FA was
attached to the HPG-coated nanoparticles at concentrations of either
5, 25, or 50% FA. A combination of 5 mg of FA and 100 mg of
HPG@Fe3O4 was dissolved in 5 mL of dimethyl sulfoxide (DMSO)
to form 5% FA-HPG@Fe3O4 (FA-targeted nanoparticles). A total of
1.53 mg of 4-dimethylaminopyridine (DMAP) and 2.955 mg of ethyl
acetate and N,N′-dicyclohexylcarbodiimide (DCC) were added to
HPG@Fe3O4 solution as a catalyst and binder, respectively. The
heating process took place over 36 h to reach the temperature of 50
°C. The solution was then dialyzed in a 12 kDa molecular weight
cutoff dialysis bag to remove the remaining portion of DCC, DMAP,
and FA. The retained FA@HPG@Fe3O4 was dried in a freeze

dryer.58,59 FA@HPG@Fe3O4 nanoparticles prepared with 25 and 50%
FA were generated using the same procedure (Figure 1).

2.2. Curcumin Loading onto HPG@Fe3O4 and FA@HPG@
Fe3O4. Nanoparticles and curcumin were incubated for 24 h at 4 °C
and then placed in a shaker at three ratios (1:1, 2:1, and 1:2) with the
purpose of loading the curcumin on the nanoparticles. The samples
were centrifuged at 4000 rpm for 5 min after 12 h to precipitate the
curcumin associated with the nanoparticles.60,61 The loading
efficiency of drug can be calculated using the following equation:

EE(%)
total amount of CUR free CUR in precipitant

total amount of CUR
100

=
−

× (1)

2.3. Curcumin Release from HPG@Fe3O4 and FA@HPG@
Fe3O4. Curcumin release from HPG@Fe3O4 and FA@HPG@Fe3O4
nanoparticles in phosphate-buffered saline (PBS) at 37 °C was
measured during an 8 day period. The nanoparticles with bound
curcumin were kept in a dialysis bag (MWCO: 12 kDa) containing a
PBS solution for various lengths of time and then centrifuged to
determine curcumin release.62,63 The concentration of released
curcumin was measured by absorbance at 450 nm using UV−Vis.

Figure 1. (A) Synthesis of HPG@Fe3O4 and FA@ HPG@Fe3O4 nanoparticles. (B) Schematic illustration of potential applications of folate-
targeted for cervical cancer treatment.
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The following equation is used in order to calculate the drug release
ratio at the initial curcumin level:

DL(%)
total amount of CUR free CUR in precipitant

mass of final formulation
100

=
−

× (2)

2.4. In Vitro Cytotoxicity Assay. HeLa cells and mouse L929
fibroblasts were incubated with curcumin (free drug) and nano-
particle-loaded curcumin for 24, 48, and 72 h time intervals.
Cytotoxicity was measured in curcumin-treated cells using the 3-
(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide
(MTT) assay. Control experiments were carried out using nano-
particle-free medium. Six replications were considered for each
experiment. An ELISA reader was utilized in order to read the wells’
optical absorption at 492 nm wavelength.

cell viability(%)
OD492 of sample
OD492 of control

100= ×
(3)

2.5. Cell Uptake of Nanoparticles. HeLa cells were used to
determine HPG@Fe3O4 or FA@HPG@Fe3O4 nanoparticle uptake in
three 24-well plates at a density of 2000 cells each well. When the
cells’ growing phase was achieved after 48 h of incubation at 37 °C,
each plate’s medium was replaced with 0.2 mg/mL HPG@Fe3O4 or
FA@HPG@Fe3O4 for 1, 3, and 7 μL of 5 M HCl applied for 1 h; an
MS2000-Skyray inductively coupled plasma-mass spectrometer (ICP-
MS) was used to measure the iron concentration released from the
cells.64

2.6. In Vitro Magnetic Resonance Imaging (MRI) Experi-
ment. T2-weighted signal intensity measurements using a clinical MR
scanner (Siemens Magnetom Avanto, 1.5 T) were used to image cells
following exposure to nanoparticles. After 24 h of seeding HeLa cells
(5 × 105 cells per well) in a 6-well culture plate, various nanocarriers

Figure 2. SEM and TEM images of (A and C) Fe3O4 and (B and D) HPG@Fe3O4 nanoparticles. Size distribution analysis of (E) Fe3O4 and (F)
HPG@Fe3O4 nanoparticles.
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(Fe3O4, HPG@Fe3O4, and FA@HPG@Fe3O4 nanoparticles prepared
with 25 wt % FA) were added to cells at a concentration of 0.20 mg/
mL. The evaluation of dual targeting impacts on T2-weighted signals
was carried out in another experiment through the addition of both
HPG@Fe3O4 and FA@HPG@Fe3O4 nanoparticles at a concentration
of 0.20 mg/mL to cells. After 24 h, the medium was removed, and
consequently, cells were washed three times to eliminate free
nanoparticles. Afterward, 3 mL of PBS was added to each well and
cells were scanned using a 1.5 T MR scanner (TR1000-4000 ms, TE:
15−480 ms).65,66

2.7. Characterizations. The characterizations were conducted
based on our previous publications.20,26 A UV−vis spectrometer
(Perkin Elmer Lambda 25) was used to record absorbance in the
range of 200−800 nm. Fourier transformed infrared spectroscopy
(FT-IR) spectrum was obtained using a JASCO FT-IR-460
spectrometer in the range of 400−4000 cm−1. The morphology of
synthesized nanoparticles/nanomaterials was observed by a field
emission scanning electron microscope (FESEM, TESCAN MIRA-3)
under an acceleration voltage of 30−250 kV. Transmission electron
microscopy (TEM) analysis was done using a TEM JEOL at 300 kV.
2.8. Statistical Analysis. MTT data were obtained from a

variance analysis of two constant effects followed by Tukey’s test. The
level of significance was considered to be 0.05.

3. RESULTS AND DISCUSSION

3.1. Characterization of Nanoparticles. SEM and TEM
images were obtained for IONPs (Figure 2A−D). IONPs
prepared without HPG coating showed a uniform size of 5−6
nm (Figure 2E). HPG-coated nanoparticles were somewhat
larger, with a size in the range of 10 nm (Figure 2F). HPG-
coated nanoparticles displayed improved water dispersibility

and limited agglomeration that are of important for the
purpose of drug delivery (Figure 2C,D).
FT-IR analyses were used to characterize HPG-coated

nanoparticles treated with 5, 25, and 50% FA. FA-adorned
nanoparticles demonstrated a significant increase in the
vibrational peak rate of 1100, 2900, and 3300 cm−1 for O−
H, C−H, and C-O-C bonds, respectively (Figure 3A). An
increase in the peak rate of O−H demonstrates the increased
hydrophilicity of HPG-coated nanoparticles treated with FA.67

The addition of FA to HPG-coated nanoparticles reduced the
peak rate of 1100 cm−1. Since the overlap between the primary
amines of FA and hydroxyl group makes them invisible,68

differences are observed in the 3400−3500 and 1560−1640
bands. The peak rate at 1650 cm−1 represents the CO amide
group, while the peak rate at 1700 cm−1 represents the ester.
FA-targeted samples with the peak rates of 1400 and 1620
cm−1 belong to pethidine ring and amino-benzoic acid motif,
respectively. The peak rate of the CC bond in six-carbon
rings treated with FA was observed in the 1640 band. They
could be regarded as the increased peak rates of cover
samples.69

Figure 3B shows the thermal behavior patterns of Fe3O4 and
HPG@Fe3O4 nanoparticles. Fe3O4 nanoparticles show a
weight reduction of 12% at elevated temperatures, in
accordance with the removal of TREG (i.e., 8%) by the
weight ratio of Fe3O4:TREG (11.56:1). Weight reduction was
continued until the temperature of 285 °C was reached (the
boiling point of TREG) and was not changed until heating to
700 °C. The results of FT-IR (Figure 3A) and elemental

Figure 3. (A) FT-IR test results of HPG-coated nanoparticles treated with 5, 25, and 50% (top trace) folic acid. (B) TGA curves for Fe3O4 and
HPG@Fe3O4 nanoparticles.
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analysis, which confirm the existence of organic molecules of
TREG on the Fe3O4 surface, imply that the magnetic core of
the Fe3O4 nanoparticles is stable despite reaching high
temperatures. TGA of HPG@Fe3O4 nanoparticles showed a
larger weight reduction at elevated temperatures (i.e., 86.85%),
related to the surface polymer degradation.70,71

Table 1 provides a list of results of the elemental analysis of
HPG-coated and uncoated Fe3O4 nanoparticles. It can be
observed that 5.85 and 1.17% of particles’ weights are,
respectively, related to C and H elements. Since Fe3O4 and
surface-adsorbed TREGs (C6H14O4) constitute Fe3O4 nano-
particles, it could be concluded that the remaining weight% in
the elemental analysis (except C and H), i.e., 92.98%, is
attributed to Fe and O (from TREG and Fe3O4). Thus,
weights% of Fe and O are, respectively, determined to be 63.75
and 28.35%. The number ratio of compounds is determined to
be C (6):Fe (23):O (34) based on considering the mentioned
weight% ratio. Therefore, 7.5:1 and 11.56:1 are, respectively,
determined for Fe3O4:TREG’s number and weight ratio.
However, the existence of such a small amount of TREG,
which is obtained from the elemental analysis results, supports
the conclusions of FT-IR analysis. It should be noted that

weights% of Fe3O4 nanoparticles’ C and H atoms calculated
after performing the process of HPG grafting are, respectively,
determined to be 31.11 and 10.07 (Table 1). The C:(Fe + O)
ratio is determined to be 31.11:58.82. In this case, C and H are
attributed to PG, while TREG and O are attributed to PG,
TREG, and Fe3O4. The core of HPG@Fe3O4 is made from
Fe3O4, while its shell consists of both TREG and PG.
Therefore, it can be concluded that the Fe3O4:TREG:PG’s
weight% ratio is 35.98:4.9:59.12, while HPG@Fe3O4’s weight
ratio of the core:shell is 35.98:64.02.

3.2. Curcumin Loading and Release. The profiles of
curcumin loading and release from HPG@Fe3O4 or FA@
HPG@Fe3O4 nanoparticles are shown in Figure 4A,
respectively. Curcumin loading was greatest in HPG@Fe3O4

nanoparticles lacking any FA (85−90% loading), as shown in
Figure 4A. FA@HPG@Fe3O4 nanoparticles that had been
prepared using 5% FA showed more curcumin loading than
nanoparticles prepared with 25 or 50% FA. The data are
consistent with the hypothesis that FA attachment to the
nanoparticles impairs the ability of curcumin to permeate into
the nanoparticles.

Table 1. Elemental Analysis of Fe3O4 and HPG@Fe3O4
a

sample C (wt %) ± SD H (wt %) ± SD N (wt %) ± SD S (wt %) ± SD

Fe3O4 5.85 ± 0.00 1.17 ± 0.00 0.00 ± 0.00 0.00 ± 0.00
HPG@Fe3O4 32.33 ± 0.12 12.17 ± 0.63 0.00 ± 0.00 0.00 ± 0.00

aData represented as mean ± SD (n = 3).

Figure 4. (A) Diagram of loading efficiency for encapsulation of curcumin on 5, 25, and 50% folic acid-coated nanoparticles. (B) In vitro release
curve of curcumin release from polyglycerol-coated nanoparticles and 5, 25, and 50% folic acid-targeted nanoparticles.
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The rate of curcumin release from HPG@Fe3O4 or FA@
HPG@Fe3O4 nanoparticles is shown in Figure 4B. HPG@
Fe3O4 nanoparticles release a higher percentage of their bound
curcumin (75%) than FA@HPG@Fe3O4 nanoparticles (45−
60%) in vitro. When increasing the concentrations of FA (5,
25, and 50% FA) used to prepare FA@HPG@Fe3O4
nanoparticles, curcumin was released more completely when
5% FA was used and released least effectively when 50% FA
was used.
3.3. Cultured Cell Viability Following Exposure to

Curcumin. The impact of curcumin (free drug) and
curcumin-loaded nanoparticles was evaluated in vitro in
HeLa cells and mouse L929 fibroblasts. Figure 5 depicts
Hela cells (A and B) and L929 cells (C and D) before and after
incubation with MTT reagents. The morphology of cells has
not changed after exposure to nanoparticles. However,
nanoparticles have negatively affected the cell wall that impairs
electrostatic interactions among cells and leads to aggregation
of cells that is observed for both normal and cancer cells
(Figure 5B,D).
The cell viability data presented in Figure 6 (HeLa cells) and

Figure 7 (L929 cells) indicate that curcumin-loaded HPG@
Fe3O4 nanoparticles did cause considerable cell toxicity to
tumor cells (Figure 6), but they showed low and negligible
toxicity to normal cells (Figure 7). Furthermore, the toxicity
toward cancer cells is time-dependent and more toxicity is
observed after 72 h compared to 24 h on HeLa cells (Figure

6). HeLa cells treated with curcumin-loaded FA@HPG@
Fe3O4 nanoparticles showed a higher toxicity than the same
cells incubated with curcumin-loaded HPG@Fe3O4 nano-
particles. Therefore, functionalization of nanoparticles with FA
can promote their selectivity toward cancer cells that is of
interest for reducing cancer cell viability (Figure 7). In mouse
fibroblast L929 cells, incubation with curcumin-loaded FA@
HPG@Fe3O4 nanoparticles had a similar effect, with cell
viability decreased most when FA@HPG@Fe3O4 nano-
particles prepared with 5% FA were employed. The data in
Figures 6 and 7 provide evidence that curcumin-loaded FA@
HPG@Fe3O4 nanoparticles are more cytotoxic than curcumin-
loaded HPG@Fe3O4 nanoparticles in both cultured cell lines.
In addition, as shown in Figures 6 and 7, the cell viability data
were generated when HeLa cells (a) and L929 cells (b) were
incubated with free curcumin. It is noteworthy that both cell
lines were influenced by free curcumin, but with a distinct time
profile from the data generated using curcumin-loaded HPG@
Fe3O4 or FA@HPG@Fe3O4 nanoparticles. Free curcumin was
cytotoxic to both HeLa cells and L929 cells in a 24 h or 48 h
incubation, but both cell lines appeared to recover from the
cytotoxic effects of free curcumin after 72 h. In contrast, the
cytotoxic action of curcumin-loaded onto either HPG@Fe3O4
nanoparticles or FA@HPG@Fe3O4 nanoparticles was ob-
served most strongly after 72 h incubation.

3.4. HeLa Cell Uptake of HPG@Fe3O4 or FA@HPG@
Fe3O4 Nanoparticles. One of the challenges in cancer

Figure 5. HeLa cell line’s optical microscopy images related to (A) before and (B) after MTT treatment. L929 cell line’s optical microscopy images
related to (C) before and after (D) MTT. The scale bar is 50 μm.
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therapy is low internalization of anti-cancer agents in tumor
cells. Furthermore, anti-tumor compounds, especially plant
derived-natural compounds such as curcumin, suffer from poor
bioavailability and use of nanocarriers improves its therapeutic
index via elevating tumor cell internalization.72 The aim of the
current work is to enhance cancer cell internalization of
curcumin using FA-adorned HPG@Fe3O4 nanoparticles. HeLa
cells were incubated with HPG@Fe3O4 or FA@HPG@Fe3O4

nanoparticles for 5, 10, and 15 days, and nanoparticle uptake
was measured following acid lysis of the cells (Figure 8A−C).
An MS2000-Skyray inductively coupled plasma-mass spec-
trometer (ICP-MS) was used to measure the iron concen-

tration release from the cells.67,73 Cellular uptake ranged from
1.5 to 1.7% for HPG@Fe3O4 nanoparticles. Cellular uptake
ranged from 1.8 to 2.2% for FA@HPG@Fe3O4 nanoparticles.
Therefore, it appears that surface modification of HPG@Fe3O4

nanoparticles with FA promotes their internalization in cervical
cancer cells and this property is of importance for effective
cancer therapy. Figure 8D shows the internalization of FA-
adorned HGP@Fe3O4 nanoparticles into cervical cancer cells
by binding to the folate receptor.

3.5. In Vitro MRI of HeLa Cells Incubated with HPG@
Fe3O4, FA@HPG@Fe3O4, and Fe3O4 Nanoparticles. The
T2-weighted MRI phantom images of HeLa cells incubated

Figure 6. Viability of HeLa cells after exposure to nanoparticles for (A) 24, (B) 48, and (C) 72 h treatment times. Nanoparticles exert their
cytotoxicity in a time- and concentration-dependent manner to reduce viability of cancer cells. The lowest viability is observed after 72 h and
exposure to HGP@Fe3O4 nanoparticles.
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with HPG@Fe3O4, FA@HPG@Fe3O4, and Fe3O4 nano-
particles for 24 h can be observed in (Figure 9), and
quantitative data are shown in Figure 9. Applying eq 4, the
post-incubation MRI images of the cells achieved through
using IONPs are calculated:

enhancement(%)
signal intensity (sample) signal intensity (control)

signal intensity (control)

100

=
−

× (4)

The results obtained from the increase in contrasts between
various types of nanoparticles are provided in Figure 9. A

reduction of MRI signal enhancement’s percentage was
observed in HeLa cells incubated with each type of
nanoparticle, with the largest change observed in cells
incubated with FA@HPG@Fe3O4 nanoparticles, with 12%
targeting ratio (−30.7%). These data are consistent with HeLa
cell uptake and viability findings (Figure 9). Based on the
literature,74 this type of hyperbranched polymer-coated Fe3O4

nanoparticle is promising due to the trends in the bio-magnetic
properties and the slopes between the signal intensities. Fe3O4

nanoparticles have attracted considerable attention due to their
significant bio-magnetic properties, but their interactions to the
physiological microenvironments and the possible aggrega-
tions/agglomerations inhibit/limit their applications. There-

Figure 7. Toxicity evaluation of nanoparticles on L929 fibroblasts as normal cells after (A) 24, (B) 48, and (C) 72 h treatment times. Based on the
results, they demonstrate partial toxicity toward normal cells and their overall biocompatibility is promising.
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fore, using a hyperbranched bioactive and bioavailable

polymers could reduce these limitations and increase the

constructive interactions.

4. CONCLUSIONS AND REMARKS

There are novel targeted nanodrugs and delivery systems
associated with the ability of increasing the anticancer drugs’
loading and delivery efficiency that can activate the drug-
release mechanism. Several investigations were carried out with
the purpose of designing and forming anticancer drug-carrier

Figure 8. FA@HPG@Fe3O4 uptake through HeLa cells. (A−C) Cellular uptake of nanoparticles by HeLa cells. (D) Schematic representation of
FA-adorned HPG IONPs in internalizing in cells and release of curcumin for cervical cancer therapy.

ACS Applied Bio Materials www.acsabm.org Article

https://doi.org/10.1021/acsabm.1c01311
ACS Appl. Bio Mater. 2022, 5, 1305−1318

1314

https://pubs.acs.org/doi/10.1021/acsabm.1c01311?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.1c01311?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.1c01311?fig=fig8&ref=pdf
https://pubs.acs.org/doi/10.1021/acsabm.1c01311?fig=fig8&ref=pdf
www.acsabm.org?ref=pdf
https://doi.org/10.1021/acsabm.1c01311?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


nanosystems.75,76 The current study describes the synthesis
and characterization of small and stable magnetic IONPs, with
narrow size distribution, and complexed with HPG hydroxyl
groups using the polyol method. The HPG grafting is
performed to produce a physiologically stable nanoscale
delivery system with high water solubility. FT-IR, TGA, and
CHNS elemental analysis confirmed the Fe3O4, HPG@Fe3O4,
and FA@HPG@Fe3O4 syntheses, and the nanoparticles’ small
size was verified using size analysis. A considerable enhance-
ment of drug aqueous solubility was achieved as a result of the
existence of a weak permeation of hydrophobic−hydrophobic
linkage into the polyglycerol’s ether backbone. Curcumin
loading experiments with the nanoarchitectures confirmed its
consequent in vitro release kinetics. The MTT assay revealed
the high cytotoxicity of curcumin-loaded FA-adorned HPG@
Fe3O4 nanoparticles on HeLa cells and reduction in viability of
cancer cells after 24, 48, and 72 h. FA@HPG@Fe3O4
nanoparticles were able to increase the T2-weighted signal
intensity during the MRI process. The addition of FA to the
poly-hydroxylated HPG@Fe3O4 nanoparticles did increase
nanoparticles’ cellular uptake, which leads to the enhancement
of the nanocarrier’s therapeutic potential. The FA@HPG@
Fe3O4 nanoparticles can bind and release curcumin, and
potentially other candidate drugs, for cancer diagnosis and
therapy. The MRI test revealed the role of nanostructures in
diagnosis of cervical cancer cells; hence, the nanoparticles
developed in the current work are promising candidates for
treatment and diagnosis of cervical cancer.
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