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A B S T R A C T

The main goal of this article is to demonstrate the impact of environmental and socio-economic factors on the
spreading of COVID-19. In this research, data has been collected from 70 cities/provinces of different countries
around the world that are affected by COVID-19. In this research, environmental data such as temperatures,
humidity, air quality and population density and socio-economic data such as GDP (PPP) per capita, per capita
health expenditure, life expectancy and total test in each of these cities/provinces are considered. This data has
been analyzed using statistical models such as Poisson and negative binomial models. It is found that a negative
binomial regression model is the best fit for our data. Our results reveal higher population density to be an
important factor for the quick spread of COVID-19 as maintenance of social distancing requirements are more
difficult in urban areas. Moreover, GDP (PPP) and PM2.5 are linked with fewer cases of COVID-19 whereas PM10,
and total number of tests are strongly associated with the increase of COVID-19 case counts.
1. Introduction

In December 2019, a new RNA virus strain from the family Corona-
viridae emerged in Wuhan, the capital of Hubei province (Wu et al.,
2020). This novel virus is a betacoronavirus and designated as
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2)
causing a pneumonia disease called coronavirus disease 2019
(COVID-19) (Gorbalenya et al., 2020). Though SARS-CoV-2 has a low
mortality rate (about 2.3%) compared to other coronaviruses like
SARS-CoV (about 10%) and MERS-CoV (about 35%), the reproduction
number or transmission rate of SARS-CoV-2 virus is very high
(2.24–3.58) (Ceccarelli et al., 2020; Zhao et al., 2020) causing rapid
spreading and becoming a pandemic. Though fever, fatigue and dry
cough are the most common symptoms, some patients can develop severe
and even fatal complications such as Acute Respiratory Distress Syn-
drome (ARDS) (Wang et al., 2020a, 2020b).

Coronaviruses are enveloped viruses which predominantly deputize
through outright contiguity with respiratory droplets of an infected
person (generated through coughing and sneezing). By touching one's
own face (i.e. eyes, ears, nose, and mouth) after touching a surface
contaminated with the virus a distinct person can also be infected.
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Enveloped viruses can survive for several hours on different surfaces,
however they show sensitivity to heat, detergent and desiccation
compared to non-enveloped viruses (Howie et al., 2008). Therefore,
environmental factors may have a great impact on the transmission of
infectious disease by affecting the survival of coronavirus on surfaces or
in the air (Casanova et al., 2010). High temperature and high relative
humidity environments reduced the transmission of SARS coronavirus
(Chan et al., 2011). Ma et al. (2020) found that both 1 unit increase of
temperature and absolute humidity were related to a decrease in
COVID-19 deaths. Some other studies (Hongchao et al., 2020; Oliveiros
et al., 2020; Tosepu et al., 2020; Wang et al., 2020a, 2020b) also support
a relation between environmental factors and COVID-19 such as spread
decreases with increase in temperature. Along with these factors popu-
lation density and mobility can trigger the spreading of this virus (Oztig
and Askin, 2020).

The main goal of this research is to provide scientific evidence based
on statistical modeling regarding the spreading of the SARS-CoV-2 under
the changing circumstances of humidity, temperatures, population den-
sity, GDP (PPP), life expectancy, health expenditure, total tests, air
quality index, and particulate matters such as PM2.5 and PM10.
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2. Materials and methods

In this research,datacontaining the totalnumberof infectedcases,death
count by COVID-19, population density, GDP (PPP) per capita, per capita
health expenditure, life expectancy, total test, monthly average humidity,
average high and low temperatures have been collected from 126 cities/
provinces of 42most affected countries around the world from January 18,
2020 to April 24, 2020. Weather data was collected from AccuWeather
(http://www.accuweather.com/) inorder to get reliable data. Such reliable
data is important inorder toget the correct andaccurate researchfindings to
understand the impact of weather on spreading the COVID-19. Also, popu-
lation data like area, population density were collected from worldometer
(www.worldometers.info/population). In addition, socio-economic data
like GDP (PPP) per capita in 2017, life expectancy of people of different
country and total number of COVID-19 test are collected fromworldometer
(http://www.worldometers.info/population) anddata for per capitahealth
expenditure in2017 iscollected fromKnoema(https://knoema.com/atlas).
Also, air quality index, and particulatematters such as PM2.5, PM10 data are
collected from plume labs (https://air.plumelabs.com/en/).

USA, France, and a few other countries counted suspected COVID-19
cases as a COVID-19 death to include uncounted fatalities due to the lack of
massivetestingcapacity.Belgiumevenincludedflu-likesymptomaticdeaths
asCOVID-19death.Countriesarestill strugglingtoscale thetestingcapacity.
Duetothis limitation,weverifiedourdatausingmultiplesources likegoogle
coronavirus (COVID-19) statistics data, worldometer (www.worldometers.
info/coronavirus) and COVID-19 related pages of government website for
different countries. These sources are presented in the appendix.

We had missing values of death count and infected cases for some
cities. We really don't know why they were missing. In our study, we
were careful to make our recommendations and refrained making pre-
dictions due to this scarcity of the data. Since the presence of missing
values in the data can reduce the statistical power of a study, it can lead
us to invalid conclusions along with biased estimates. Therefore, we have
considered the case deletion method, the most common approach to
Figure 1. Distribution of COV
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handle the missing data instead of applying other imputation techniques
like maximum likelihood method. After handling missing values, we
ended up with 24 countries and 70 cities/provinces. We performed our
statistical analysis using these cities/provinces. Our implementations can
be reproduced using the code and data made available at our GitLab
repository https://gitlab.com/Jishan/covid-19-research-2020.git.

Twodifferentmodels suchasnegativeBinomial, andPoissonmodels are
considered in this research. These models are assessed using the Akaike In-
formation Criterion (AIC), Cragg & Uhler's (Oztig and Askin, 2020) pseu-
do-R2, residualdeviance, andPearson statistic.Wehaveusedglm() function
to fit the Poisson and glm.nb() function to fit the negative Binomial model
within the R software (https://cran.r-project.org/src/base/R-4) package
MASS (R Core Team, 2017). Two-sided statistical tests were considered
along with 5% significance level.

2.1. Data observation

Figure 1 shows the distribution of the number of infected people in 70
cities/provinces. Our initial observations suggest that there could be a
relationship between the environmental parameters and expansion of
COVID-19 across the different geographical locations. Most of the cities/
provinces where outbreaks occurred such as Madrid, New York etc., had
low temperature and/or low to moderate humidity probably because
coronavirus can survive longer on surfaces or respiratory droplets at this
environmental condition. Places with relatively high humidity and high
temperature such as Banten, Central Luzon etc., showed comparatively
less infected people. Another factor, population density and mobility
alone can trigger the infection rate logarithmically irrespective of envi-
ronmental condition. S~ao Paulo, Riyadh etc. cities had high temperature
and high humidity but many infected people due to population density
and mobility. In cold regions, population density can exacerbate the total
COVID-19 infection along with the environment. According to the data
analysis, our observation illustrates that there could be a remarkable
connection between the environmental, socio-economic parameters and
ID-19 Infected population.

http://www.accuweather.com/
http://www.worldometers.info/population
http://www.worldometers.info/population
https://knoema.com/atlas
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Figure 2. Distribution of Infected case.
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the nature of the COVID-19 virus. In the next section, we will present
statistical analysis and try to understand the above mentioned behavior.
2.2. Statistical analysis

In this paper, a generalized linear model (GLM) framework (Agresti,
2015) for count data has been deployed to analyze the effects of popu-
lation density, GDP (PPP), health expenditure, life expectancy, total
COVID-19 tests, humidity, temperatures and air pollutants on the
spreading of COVID-19.

In the Poisson regression model, it is assumed that the variance and
mean of the dependent variable are the same. However, this assumption is
not always true, especially while studying the environmental risk to
human health due to the fact that the variance is higher than average
causing the overdispersion of the data. It is challenging to handle over-
dispersion in the modeling of count response variables like the number of
COVID-19 confirmed cases. In our data, the variance of the infected cases
is 1,279,339,997 andmean is 14,924.97 - variance is larger than themean.
Also, fromFigure2,we see that our responsevariable, the count of infected
cases is highly skewed. This indicates that our data may be overdispersed.
It is convenient touse anegativebinomialmodel to estimate theparameter
due to the presence of overdispersion of the data. Therefore, in this study,
we have considered the negative binomial model and compared our re-
sults with the Poisson model as well to detect overdispersion in our data.

3. Results

3.1. Dataset descriptive analysis

In this work, we considered 70 cities/provinces around the world that
had the confirmed cases of COVID-19. Figure 3 shows all explanatory
variables through normalized heat map representations. The color scale
on the right represents the intensity of the variables according to the
saturation level of this scale. For example, New York had the highest
number of COVID-19 confirmed cases which is shown in this figure with
a highly saturated blue color.

Now,Pearsoncorrelationcoefficientsare computedasshowninFigure4
to determine the possible effects of collinearity. It shows that the Pearson
LogðμiÞ¼ β0 þ β1logð1 þ PopDensityÞþ β2 logð1 þGDPPPPÞþ β3 L

þβ7 AvgLowþβ8 AQIþβ9 PM1þβ10 PM2þ β11 logðTotalTestÞ
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correlation between explanatory variables along with the significance
measure. Therewas a strong positive correlation between average high and
low temperatures. GDP (PPP), and health expenditure were positively
correlated. It was also noticeable that air pollutants PM10, and PM2.5 had
positive correlation as well. However, the presence of high correlation
among predictor variables does not violate any assumptions of GLMs.

In the following, we presented the summary statistics for infected
cases, population density, GDP (PPP) per capita, per capita health
expenditure, life expectancy, total test, humidity and average high and
low temperatures as shown in Table 1. It is to be noted that the average
number of confirmed infected cases was 14,925, the mean value of
population density was 4,043.4 per km2, the mean values of humidity,
average high and low temperatures were 65.28%, 20.42 �C and 9.41 �C.

3.2. Selection and adjustment of the regression models

Sincethedependentvariable,COVID-19casecount ishighly-skewedand
non-continuous, standard linear regression models such as ordinary least
squares regression are not appropriate for this count data. Therefore, the
Poisson log-linearmodelwouldbeourfirst-choicemodeling technique.The
expected COVID-19 infected case count (μi parameter) in the Poisson log-
linear model is estimated as

logðμiÞ¼
Xp

j¼1

βjxij or logðμiÞ ¼ xT
i β (1)

where, β is a vector of estimated coefficients of exploratory variables
including the logarithm of the population density, GDP (PPP) per capita,
per capita health expenditure, life expectancy and total test along with
humidity, average high temperature, average low temperature, AQI,
PM2.5, and PM10. For the sake of simplicity, we referred population
density as PopDensity, GDP (PPP) per capita as GDPPPP, per capita
health expenditure as HealthExpend, average high temperature as
AvgHigh, average low temperature as AvgLow, PM10 as PM1, PM2.5 as
PM2 during the model building.

It is assumed in Poisson distribution that the mean and the variance
are equal to the μi parameter. However, this assumption was not satisfied
for the data used in this study. The greater ratio of variance to mean leads
to overdispersion. The problem of overdispersion is evident from the
Poisson model fit as the ratio of residual deviance and degrees of freedom
is 9311.293 which is greater than the dispersion parameter limit 1.
Pearson statistic and the deviance statistic were used as well to assess the
overall performance of the fitted model. In Table 2a, the p-values suggest
that the Poisson model is not adequate suggesting a poor fit. We cannot
even trust the p values due to the presence of substantial overdispersion
in our Poisson model. Since the negative-binomial (NB) model is a
different generalization of the Poisson that allows for over-dispersion, we
apply the NB model to overcome this problem of over dispersion. A
gamma-distributed error term (Oztig and Askin, 2020) is included to Eq.
(1) to relax the Poisson model assumption by introducing additional
randomness as

logðμiÞ¼ xT
i β þ εi (2)

where εi follows a gamma distribution with mean 1 and variance α.
The NB model has a mean μi and variance μi þ αμ2i , where α is the

overdispersion parameter which is used as a measure of dispersion.
Therefore, we have considered the following NB regression model,
ifeExpectancyþ β4 logðHealthExpendÞþ β5 Humidityþ β6 AvgHigh



Figure 3. Normalized explanatory variables by cities/provinces.
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In the NB model, we have found that the ratio of residual deviance
and degrees of freedom is approximately equal to the dispersion
parameter limit 1. The high Pseudo-R2 values in Table 2b clearly indicate
no evidence of lack-of-fit. It is to be mentioned here that the AIC score for
the NB model was 1373.1.
3.3. Negative binomial model assessment

Diagnostic plots were used to check the performance of the negative
Binomial model. In Figure 5, the jackknife deviance residuals vs. the
fitted values are displayed on the top left panel, and normal QQ plots of
the standardized deviance residuals are shown on the top right panel. The
dotted line of the normal QQ plots represents the expected line if the
standardized residuals are normally distributed (Davison and Snell,
1991). Cook statistics are shown in the bottom two panels. The bottom
left plot shows the Cook statistics vs. the standardized leverages. The
horizontal line is drawn at 8/(n-2p), and the vertical line is drawn at
2p/(n-2p), where n represents the number of observations and p repre-
sents the number of estimated parameters. Points above the horizontal
line may be points which have high influence on the model. On the other
hand, high leverage points correspond to the right side of the vertical
line. We had 70 cities with COVID-19 confirmed cases, and 11 parame-
ters were estimated. Here, we get a pretty accurate picture from the
Figure 5 that our model is adequately describing the over dispersion in
the count data when we use the negative binomial regression, but we
may have some issues with extreme data points. Since the deletion of
extreme data points may cause the other problems of over-fitting, it is not
convenient to delete the outliers to increase the goodness-of-fit and
power of explanation. However, we investigated these extreme data
points in Figures 6 and 7 to detect the influential observations using the
4

Cook distance. In Figure 6, we see from the influence plot that observa-
tions 30 (Jakarta, Indonesia), and 45 (Khyber Pakhtunkhwa, Pakistan)
stand out with large positive residuals whereas observations 16
(Guangdong, China) have large negative residuals. Observations 42
(Mexico City, Mexico), and 58 (Riyadh, Soudi Arabia) have a large
leverage. However, it is evident from the residuals vs leverage plot
(Figure 7) that none of them are influential observations. We evaluated
our model without these outliers as well to see their impact. We found
that outliers had no impact on the model performance as well. It does
make sense because Jakarta had really extreme values of AQI, PM2.5, and
PM10, Mexico had high values of AQI, PM2.5, and PM10 values were not
available for Khyber Pakhtunkhwa, and Riyadh had low humidity with
high values of AQI, PM2.5, and PM10.

Table 3 shows the associations of GDP (PPP) per capita, life expec-
tancy, per capita health expenditure, total test, population density, hu-
midity, average high temperature, average low temperature, AQI, PM2.5,
PM10 with COVID-19 infected incidence. The results show that popula-
tion density (Coefficient estimate: 0.135; 95% CI: (0.019, 0.255), p-value
¼ 0.021), and GDP (Coefficient estimate:�1.631; 95% CI: (�2.931,
�0.375), p-value ¼ 0.021), PM10 (Coefficient estimate:0.017; 95% CI:
(0.002, 0.033), p-value ¼.011), PM2.5 (Coefficient estimate: �0.022;
95% CI: (�0.037, �0.006), p-value ¼ 0.001), total test (Coefficient es-
timate: 0.809; 95% CI: (0.610, 1.008), p-value ¼ 0.000) were signifi-
cantly associated with COVID-19. The results indicate that the “baseline”
average, infected case count is 8142.499. We can interpret the other
exponentiated coefficients multiplicatively as well.

Our results clearly demonstrate that for every unit increase in GDP,
we estimated a significant decrease in COVID-19 infected case count of
80.4%. There is evidence to suggest that the percent change in the
incident rate of COVID-19 infected case count is a 2.2% decrease for



Figure 4. The pair wise plot along with Pearson correlation coefficients of infected cases, population density, GDP (PPP) per capita, life expectancy, per capita health
expenditure, and total test along with humidity, average high temperature, average low temperature, AQI, PM2.5, and PM10.
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every unit increase in PM2.5. However, for every unit increase in popu-
lation density, we could expect to see a 14.5% rise in COVID-19 infected
case count. It is noticeable that each unit increase in PM10 multiplies the
COVID-19 infected case count by 1.017, a 1.7% increase. It is to be
mentioned that the number of tests played a significant role to rise in the
infected cases. It is even clearer from our result that for every unit in-
crease in total test, we estimated a significant increase in COVID-19
infected case count of 124.6%.

4. Discussion

In this study, we attempted to answer the question of why some cit-
ies/provinces have higher numbers of COVID-19 infected people
compared with others. In this study, we found from Table 3 that the
population density, and GDP, PM10, PM2.5, and total tests were signifi-
cantly associated with the COVID-19 confirmed infected cases.

Since COVID-19 is a highly contagious virus, population density can
contribute to the spread of this virus (Coşkun et al., 2020). Oztig and
Table 1. Summary statistics for different parameters.

Variables Mean SD Min Max

Infected cases 14925 35767.86 181 263000

Population density (/km2) 4043.4 10563.71 6.0 71263.0

GDP (PPP) per capita 29715 17902.62 5539 66307

Life expectancy 77.98 5.01 67.79 85.03

Per capita health expenditure 2322.7 2917.15 45.0 10224.0

Humidity (%) 65.28 12.92 26.00 90.00

Avg high temperature (�C) 20.42 9.05 6.00 38.09

Avg low temperature (�C) 9.414 9.48 �3.230 26.25

AQI 50.4 45.47 19.0 274.0

PM2.5 32.17 40.18 0.00 148

PM10 31.92 40.66 0.00 170

Total test 815174 2021204 3359 9800000
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Askin (2020) examined the link between human mobility and the num-
ber of COVID-19 infected people in countries. They reported that coun-
tries that have higher population density (IRR ¼ 2.403, p < 0.01) are
found to be more likely to have higher numbers of COVID-19 infected
cases than other countries. We also found statistically significant evi-
dence that an increase of 1 unit in population density is associated with
an 14.5% increase in the COVID-19 infected case count. It is difficult to
maintain social distance in densely populated metropolitan cities and
countries with tourist attractions. New York, New Jersey, Lombardy,
Hubei, Madrid and Catalonia were the epicenter of the COVID-19 due to
their dense population. New York, Lombardy, Madrid and Catalonia are
popular tourist destinations as every year millions of tourists visit these
cities. Taking the number of tourists into account when modeling the
association between population density and COVID-19 could substan-
tially improve the performance of our models. However, we did not
consider the number of tourists as an explanatory variable due to the lack
of reliable data.

Our results also indicate a positive association between the PM10 and
high numbers of COVID-19infected patients. It was surprising to see that
countries with high values of air pollutants PM2.5 are less likely to have
more COVID-19 cases than other countries. Associations between short-
Table 2a. Goodness-of-fit (GOF) results for the Poisson model.

Test Value df p-value

Deviance 540055.4 58 0

Pearson 774514.4 58 0

Table 2b. Goodness-of-fit (GOF) result for the negative-binomial (NB) model.

Metric Value

Pseudo-R2 0.858



Figure 5. Diagnostic plots for the negative Binomial model.
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term PM2.5 exposure and poor infectious disease outcomes for influenza,
pneumonia, and acute lower respiratory infections were reported by
several previous studies (Croft et al., 2020; Horne et al., 2018). There-
fore, we were expecting to see the positive association of PM2.5 with
COVID-19 like previous studies. Unfortunately, our study design cannot
provide clear insight into the mechanisms underlying the negative rela-
tionship between PM2.5 and COVID-19 infected case counts. We think
that socio-economic indicators played a significant role here. For
example, Jakarta, Indonesia had 140 μg/m3 for PM2.5. In contrast, they
have conducted only 27,075 tests due to the lack of testing equipment.
We have seen from our results that the numbers of tests administered to
individuals are significantly associated with the increased number of
COVID-19 infected cases.
Figure 6. Influence plot for the negative binomial model.
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To stop the spread of the COVID-19, it is required to test more people
and enable contract tracing. It is also equally important to incorporate
mitigation techniques such as “Stay at Home” orders, frequent hand
washing, and social distancing. However, it is quite impossible to
implement such mitigation techniques for a country like India due to the
widespread poverty and unequal distribution of income compared to a
wealthy nation like Switzerland. Thus, we have attempted to explore the
relationships between COVID-19 incidence with the socio-economic in-
dicators such as GDP (PPP) per capita, life expectancy, and per capita
health expenditure. We have found statistically significant evidence that
GDP is associated with a decrease in the COVID-19 incident rate. It makes
sense as people living in countries with higher GDP are likely to attend a
Figure 7. Residuals vs Leverage plot for the negative Binomial model.



Table 3. Estimation results of negative binomial regression.

Effect Estimate Std. Error 95% CI IRR p-value

(Intercept) 9.005 6.901 (�3.055,21.307) 8142.499 0.197

log(PopDensity) 0.135 0.057 (0.019, 0.255) 1.145 0.021

log(GDPPPP) �1.631 0.685 (�2.931,�0.375) 0.196 0.021

LifeExpectancy 0.024 0.057 (�0.087, 0.136) 1.024 0.676

log(1 þ HealthExpend) 0.610 0.326 (0.015, 1.226) 1.840 0.067

Humidity 0.003 0.011 (�0.023, 0.028) 1.003 0.767

AvgHigh �0.063 0.047 (�0.165, 0.038) 0.939 0.184

AvgLow 0.062 0.041 (�0.020, 0.144) 1.064 0.136

AQI 0.003 0.004 (�0.005, 0.013) 1.003 0.431

PM10 0.017 0.006 (0.002, 0.033) 1.017 0.011

PM2.5 �0.022 0.006 (�0.037, �0.006) 0.978 0.001

log(TotalTest) 0.809 0.091 (0.610, 1.008) 2.246 0.000

The significance of bold in the table refers to the variables with P < 0.05.
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larger number of social events and to spend more time travelling foreign
countries possibly paving the way for easier virus diffusion. Also, the
higher efficiency of national health systems allow them to administer
more tests and that could affect the number of COVID-19 confirmed
cases.

We observed fewer COVID-19 cases in warmer cities like Delhi and
Mecca. Seasonal flu epidemics usually occur yearly during the colder
months. COVID-19 is primarily spread from person to person through
close contact. We can become infected from respiratory droplets when an
infected person coughs, sneezes, or talks. Therefore, seasonal flu symp-
toms such as coughs and sneeze may contribute to the spread of the
COVID-19 virus in the colder months (Mandal and Panwar, 2020).
However, we did not find any evidence of association between COVID-19
cases and temperature. We believe that the proper mitigation techniques
like flu vaccine alone could lower the COVID-19 cases during the flu
seasons by limiting respiratory droplets. Our results were not convincing
enough to infer that areas with average high temperatures are less likely
to see the surge of massive COVID-19 cases. Also, average low temper-
ature could drive the spread of virus through respiratory droplets.
However, our model shows there is very little or no role of humidity in
the outbreak of COVID-19. These findings are aligned with the review
study conducted by Mecenas et al. (2020).

Since COVID-19 vaccines or effective drugs are still under develop-
ment, identifying the environmental and socio-economic factors that
intensify the spread of this virus would be helpful to design a better
strategy to lower the spread as well for a future pandemic. Moreover,
people from developing countries like Bangladesh may have to wait for
two to three years to get the vaccine due to the tremendous demand of
the vaccine. Already, Germany and the USA have signed a resolution that
frontline health care workers will be vaccinated first. Motivated by this
fact, we attempted to find the environmental and socio-economic factors
that could intensify the spread of the COVID-19 virus in our study.
5. Conclusion

This work is by far the first attempt that selects a model by comparing
two statistical models to understand the spreading of COVID-19. We
found that the negative binomial provides the best fit to the data
compared to the Poisson model. Our model infers that temperatures and
humidity did not show any significant effect on the spreading of the
virus. But population density has performed an extensive role for the
spreading of COVID-19 in different countries. In addition, cities with
higher population density pose extreme risk, which provides useful
guidelines for policymakers and the public to control the COVID-19
pandemic. Most importantly, our research showed that GDP and PM2.5
7

has a positive effect on the slowdown of spreading of COVID-19 infection
whereas PM10 and total tests significantly contributed to the rise of
COVID-19 infection.
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