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Abstract
The recently emerged coronavirus disease 2019 (COVID-19) has rapidly evolved into a pandemic with over 10 million infections and
over 500 thousand deaths. There are currently no effective therapies or vaccines available to protect against this coronavirus
infection. In this review, we discuss potential therapeutic options for COVID-19 based on the available information from previous
research on severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). Substantial efforts are
underway to discover new therapeutic agents for COVID-19, including the repurposing of existing agents and the development of
novel agents that specifically target SARS-coronavirus 2 (SARS-CoV-2) or host factors. Through the screening of compound
libraries, various classes of drugs, such as ribavirin, remdesivir, lopinavir/ritonavir, and hydroxychloroquine have been identified as
potential therapeutic candidates against COVID-19. Novel antiviral drugs for SARS-coronavirus 2 are being developed to target viral
enzymes or functional proteins, as well as host factors or cell signaling pathways.
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Introduction

Coronaviruses (CoVs) belong to the Orthocoronavirinae
subfamily, Coronaviridae family, and Nidovirales order, and
are the largest enveloped positive-sense single-stranded RNA
viruses that can infect humans, livestock, bats, and many other
wild animals.1,2 Currently, there are only seven CoVs that can
infect humans and cause respiratory diseases. The four human
CoVs, HCoV-229E, HCoV-NL63, HCoV-OC43, and HKU1,
can only cause mild upper respiratory tract infections. Severe
acute respiratory syndrome CoV2 (SARS-CoV-2), which was
first detected in Wuhan, China, at the end of 2019, and SARS-
CoV as well as Middle East respiratory syndrome CoV (MERS-
CoV), which emerged in 2002 and 2012, respectively, can infect
the lower respiratory tract and cause severe pneumonia in
humans.3,4
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SARS-CoV-2 belongs to the genus Betacoronavirus and its
genome is about 30kb, with 10 open reading frames. Viral
infection is initiated from the surface spike glycoprotein, which
binds to angiotensin-converting enzyme 2 (ACE2) to enter the
cells, similar as the mechanism of SARS-CoV.5 Upon entry into
the cells, the viral polyproteins, pp1a and pp1ab, are translated to
produce non-structural proteins for the formation of the
replicase-transcriptase complex, which is responsible for tran-
scription of the subgenomic RNAs and replication of the viral
genome. The structural proteins are synthesized and assembled to
form mature virions. Ultimately, the new virions are released
from the cells by exocytosis (Figure 1).
The novel respiratory disease caused by SARS-CoV-2 was

named officially coronavirus disease 2019 (COVID-19) by the
World Health Organization. A recent mathematical modeling
research showed that the doubling time of the number of infected
persons in Wuhan was 2.3–3.3 days and the effective reproduc-
tive number (R) was 5.7, which indicates that its transmissibility
is much higher than that of SARS.6 The virus spread so quickly
that it was declared a global pandemic by the World Health
Organization. As of July 1, 2020, there are globally over 10.3
million reported infections and more than 506,000 deaths.7

Clinically, some patients may be asymptomatic, or develop
symptoms that range from mild to severe. Respiratory symptoms
such as fever, cough, myalgia or fatigue, pneumonia, dyspnea, or
hypoxemia are the most commonly reported clinical manifesta-
tion. Some cases worsen and present with serious complications,
including acute respiratory distress syndrome (ARDS), septic
shock, metabolic acidosis, coagulation dysfunction, or even
death.8,9 The lack of effective antiviral treatment as well as the
high morbidity rate associated with this disease highlights the
need for the discovery of novel drugs. In this review, we discuss
the discovery and the development of potential therapeutic
options for COVID-19 based on the available information from
previous researches on SARS and MERS.
Potential therapeutic options for COVID-19

Currently, the major therapeutic measures for COVID-19 are
supportive care and prevention of complications, such as ARDS,
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Figure 1. Replication cycle of SARS-CoV-2. SARS-CoV-2: severe acute respiratory syndrome-coronavirus 2.
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organ failure, and secondary nosocomial infections. Substantial
efforts are underway to discover new therapeutic agents for
COVID-19. These investigations can be divided into two
categories, which include the screening of compound libraries
for currently available agents that may have antiviral effect on
COVID-19 and the development of novel agents that specifically
target SARS-CoV-2 or host factors.
Currently available agents

It would typically take several years to develop a new drug
for COVID-19 and obtain approval for clinical use. Scientists
have focused on the potential to repurposing existing
antiviral agents that are approved or being developed for
the treatment of other viral diseases, as they have known
pharmacokinetic and pharmacodynamic properties, dosages,
and side effects. Many compounds have strong inhibitory
effects against CoVs in cell culture or in animal models, but
the results of in vitro and animal experiments do not
necessarily translate into efficacy in humans. Through rapid
high-throughput screening, various classes of drugs that have
been identified as potential candidates for the treatment
of COVID-19, which include: (a) directly acting antivirals;
(b) host-targeting antivirals; (c) immune-modulatory or
immune-suppressive treatments; and (d) biologics targeting
the virus.
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Directly acting antivirals. Ribavirin, a broad-spectrum
antiviral drug, exhibits moderate anti-viral activity against
SARS-CoV and MERS-CoV infections in vitro.10,11 However,
other studies also found that ribavirin has no significant effective
inhibitory effect on the replication of SARS-CoV and causes
severe adverse events such as hemolysis and reduced hemoglobin
concentration.12,13 Given its toxicity, the use of ribavirin to treat
COVID-19 should be considered with serious caution.
Remdesivir is a nucleotide analog RNA-dependent RNA

polymerase (RdRp) inhibitor initially developed as a delayed
RNA-chain terminator against Ebola virus and Marburg viruses,
however, it has not been approved for marketing anywhere.14

Remdesivir has “broad-spectrum” anti-coronavirus activity due
to its effectiveness against many human and zoonotic CoVs in
vitro, including HCoV-NL63, HCoV-OC43, HCoV-229E,
mouse hepatitis virus, SARS-CoV, MERS-CoV, and SARS-
CoV-2.15–17 The first COVID-19 patient treated with intrave-
nous remdesivir in the USA showed improved condition without
obvious adverse effect.18 One recent cohort study observed 68%
clinical improvement in severe COVID-19 patients treated with
remdesivir on a compassionate-use basis. However, adverse
events, including increased levels of hepatic enzymes, diarrhea,
rash, renal impairment, and hypotension, were reported in 60%
of the patients.19 In addition, it is too early to conclude on the
efficacy of remdesivir against COVID-19. There are two ongoing
phase III randomized, double-blind clinical trials in China to
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evaluate the efficacy and safety of intravenous remdesivir
therapy in patients with COVID-19 (NCT04252664 and
NCT04257656).
HIV-1 protease inhibitors, such as lopinavir/ritonavir, dar-

unavir/cobicistat, emtricitabine/tenofovir, azvudine, saquinavir,
and nelfinavir are potential drug candidates for the treatment of
COVID-19. Nelfinavir strongly inhibited the replication of the
SARS-CoV in vitro.20 By using an in silico approach, lopinavir/
ritonavir and saquinavir produced strong interactions with the
active site of SARS-CoV-2 3C-like protease (3CLpro).21 An
open-label study suggested that lopinavir/ritonavir plus ribavirin
appears to be associated with improved clinical outcomes for
SARS patients.22 Besides, successful cases of MERS treatment
with a triple combination therapy of lopinavir/ritonavir,
ribavirin, and interferon-alpha 2a have been reported.23–25

However, the efficacy of lopinavir/ritonavir is unconvincing
because of the concomitant use with ribavirin and/or interferon.
Recently, the use of lopinavir/ritonavir treatment in a random-
ized, controlled, open-label trial involving 199 patients with
COVID-19 showed no significant benefit in either overall
mortality or reduction of viral loads beyond standard care.26

Currently, there are other multiple ongoing studies exploring the
use of lopinavir/ritonavir for the treatment of COVID-19.
Several other anti-viral drugs are also being investigated,

including favipiravir, umifenovir (Arbidol), triazavirin, balox-
avir, and marboxil, which are predominantly designed against
various influenza subtypes, as well as danoprevir/ritonavir,
sofosbuvir/ledipasvir, and sofosbuvir/daclatasvir, which are
typically used in management of hepatitis C virus infections.27

A small-sample clinical study showed that danoprevir/ritonavir
was able to improve the clinical symptoms and reduce the viral
loads in COVID-19 patients.28

Host-targeting antivirals. Hydroxychloroquine and chloro-
quine, which are traditional antimalarial drugs, have exhibited
effective inhibitory effect against the replication of CoVs in vitro,
including SARS-CoV, MERS-CoV, and SARS-CoV-2.17,29,30 By
increasing endosomal pH and disturbing the glycosylation of cell
surface receptors, these medications provide an important
defense against viral entry and replication.31 A recent research
proposed that hydroxychloroquine and chloroquine may bind to
gangliosides with high affinity, thus preventing SARS-CoV-2
from binding with the ACE-2 receptor.32 Some small studies and
one subjective report have reported the effectiveness of
hydroxychloroquine or chloroquine for the prevention and
treatment of COVID-19. The beneficial outcome of hydroxy-
chloroquine plus azithromycin for the treatment of COVID-19
patients has also been demonstrated.33 However, the lack of
randomization and blinding, and the small sample size make
these data unconvincing. A notable concern is the adverse events
potentially linked to the use of hydroxychloroquine or chloro-
quine and azithromycin in patients with COVID-19, which
include QT interval prolongation and arrhythmia. A recent study
reported that cohorts of COVID-19 patients treated with
chloroquine/hydroxychloroquine ± azithromycin all experienced
QT interval prolongation.34 In addition, patients receiving
hydroxychloroquine plus azithromycin were more likely to have
cardiac arrest.35

Drugs that can regulate neurotransmitters, such as chlorprom-
azine, are anti-MERS-CoV and anti-SARS-CoV agents, and their
effects are mediated by the ability to inhibit clathrin-mediated
endocytosis.36 The male sex appears to have a higher mortality
rate for COVID-19 according to epidemiologic data in several
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countries. China, South Korea, and Italy reported that 73%,
59%, and 70%, respectively, of the COVID-19 deaths were
men.37–39 Treatment with estrogen seems to be an ideal
prevention and therapeutic strategy against COVID-19, as it
was able to alleviate inflammatory reactions and decrease viral
titers in animal experiments.40

Other agents, such as dipyridamole (an anti-coagulation
agent), leflunomide, and teriflunomide (dihydroorotate dehydro-
genase inhibitors), are also potential therapeutic candidates for
COVID-19, as they have been able to inhibit SARS-CoV-2
replication in cell culture models.41–43 Anti-tumor agents that act
as inhibitors of poly-ADP-ribose polymerase 1, such as CVL218,
which is currently in a Phase I clinical trial, exhibited effective
inhibitory activity against SARS-CoV-2 replication, without
obvious cytopathic effects in both animal models and cell
culture.44

Immune-modulatory or immune-suppressive therapies.
Interferons can help to restore innate immune responses in host
cells.45 They have also been found to be potent replication
inhibitors of SARS-CoV and MERS-CoV.46,47 The combina-
tion of interferon with other antivirals, such as ribavirin and/or
lopinavir-ritonavir have been used to treat patients with SARS
and MERS, as well as COVID-19. Some case studies have
reported that the combination of interferon-a and ribavirin
with lopinavir/ritonavir resulted in improved outcomes.23–25

Thus, the use of interferon in combination with other effective
antivirals should be evaluated in clinical trials.
The immunosuppressive drug Cyclosporine A displays broad-

spectrum antiviral activity by binding to cellular cyclophilins,
which play an important role in viral infection. It has been
reported that Cyclosporine A can block the replication of CoVs of
all genera, including SARS-CoV and avian infectious bronchitis
virus.48

The severity and outcome of COVID-19 might be associated
with an excessive inflammatory response “cytokine storm.”
Immune-modulatory or immune-suppressive agents such as
corticosteroids, intravenous immunoglobulin, and interleukin-6
antagonists are potential therapeutic candidates for COVID-
19.49 In addition, meplazumab (anti-CD147) inhibited viral
entry, which indicates that it could efficiently improve clinical and
virologic outcomes in COVID-19 patients.50 Moreover, immune
stimulation, such as with the use of an anti-PD-1 antibody
(camrelizumab), recombinant interleukin-2, and recombinant
human granulocyte colony-stimulating factor, is being investi-
gated.27

Biological therapies. The plasma of recovered COVID-19
patients may contain high-titer neutralizing antibodies. Conva-
lescent plasma therapy has been successfully used in the treatment
of SARS andMERS, and hence, it might be a promising treatment
option for COVID-19 patients.51,52 One clinical study performed
with 10 patients, showed the clinical benefit of convalescent
plasma therapy.53 Besides, mesenchymal stem cells might relief
the symptoms of ARDS in COVID-19 patients through its
immunomodulatory and tissue repair effects.
Novel agents

In addition to the aforementioned potential antiviral thera-
peutics, the development of novel antiviral drugs that specifically
target SARS-CoV-2 and host-dependent factors should also
be considered. Theoretically, these drugs would exhibit better
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anti-CoV activity in vitro and/or in vivo; however, these drugs
first need to be evaluated in animal studies and human trials and
this might take several years.
Novel anti-viral drugs for CoVs are mainly targeted against

viral enzymes or functional proteins to prevent the synthesis and
replication of RNA. In addition, they target structural proteins to
block the virus from binding to the host cell surface receptors, or
inhibit the virus’s self-assembly process and virulence factors to
restore the host’s innate immunity.

Viral enzymes. Initial analyses of genomic sequences of SARS-
CoV-2 showed that four significant functional proteins, 3CLpro,
papain-like protease (PLpro), RdRp, and helicase are highly
conserved in SARS-CoV-2, MERS-CoV, and SARS-CoV,
especially in the functional region.54 The primary function of
the coronaviral proteases PLpro and 3CLpro is to process two
large viral polyproteins, pp1a and pp1ab, which is required for
the release and mutation of non-structural proteins.55,56 In
addition, PLpro also exhibits the ability to counteract host innate
immunity through deISGylation and deglycosylation to block the
production of important cytokines.57,58 Various kinds of SARS-
CoV PLpro inhibitors have been identified, including natural
products, thiopurine compounds, naphthalene-based inhibitors,
zinc ion, and zinc conjugate inhibitors, but none has been
approved by FDA for clinical practice.55 Disulfiram, initially
developed for the treatment of alcohol dependence, has been
reported to inhibit the PLpro of MERS and SARS in vitro, but
clinical studies are lacking.59 In addition, computational
screening also showed that a series of existing molecules, such
as ribavirin, chloramphenicol, and levodropropizine, may have
high binding affinity to PLpro, which suggests their potential use
in the treatment of COVID-19.60 Recently, the crystal structure
of 3CLpro of SARS-CoV-2 has been reported and new
a-ketoamide inhibitors have been designed as anti-CoV agents.61

Through virtual screening, numerous classes of 3CLpro
inhibitors have been reported. For example, ledipasvir and
velpatasvir are particularly promising therapeutic candidates
against COVID-19, with minimal side effects.62

RdRp can catalyze viral RNA synthesis from an RNA
template, which makes it an attractive antiviral target. Nucleo-
side analogs can inhibit the activity of RdRp in a broad spectrum
of RNA viruses. Recent computer modeling showed that
ribavirin, remdesivir, sofosbuvir, galidesivir, IDX-184, and
tenofovir can tightly bind to the RdRp of SARS-CoV-2, which
suggests their potential ability to combat SARS-CoV-2.63

Nonetheless, the use of nucleoside analogs to treat COVID-19
should be closely monitored, because resistance to nucleoside
analogs due to mutations in RdRp has been reported for many
other RNA viruses. Small interfering RNA (siRNA) molecules
have been used to inhibit the replication of SARS-CoV in vitro,
and hence, siRNAs that target SARS-CoV-2 RdRp could serve as
another potent treatment option for COVID-19.64

Helicase is one of the most important CoV replication
enzymes, which can separate double-stranded nucleic acid into
single strands using ATP generated from the hydrolysis of
nucleoside triphosphate. Several chemical inhibitors, such as
Bananins, 5-hydroxychromone derivatives, and triazole deriva-
tives, can inhibit the activities of ATPase and helicase in SARS-
CoV and MERS-CoV infections in cell culture experiments.65,66

However, the toxicity associated with the inhibition of cellular
ATPases or kinases limits the development of these compounds.
Two novel inhibitors, SSYA10-001 and aryl diketoacids, appear
more promising as they can inhibit helicase in a broad range of
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CoVs without affecting the activity of ATPase.67,68 More animal
model experiments are needed to evaluate their efficacy and
safety.

Viral nucleic acids. Drugs targeting nucleic acids generally
have broad-spectrum activity against various types of viruses.
Mycophenolate mofetil is an inhibitor of the synthesis of inosine
monophosphate dehydrogenase and guanine monophosphate,
which is showing potent antiviral activity against MERS-CoV.69

DNAzymes or ribozymes targeting the viral genome of SARS
have been shown to effectively inhibit viral replication.70 A small-
compound inhibitor, K22, which specifically targets the synthesis
of membrane-bound coronaviral RNA and the formation of
double membrane vesicles, was able to inhibit a broad range of
CoVs, including MERS-CoV.71

Structural proteins. Coronavirus spike glycoprotein consists
of two functional subunits (S1 and S2); it is responsible for cell
receptor binding, tissue tropism, and pathogenesis of viral
infections. It is the primary antigenic target in the design of
therapeutics and vaccines. The S1 subunit is further divided into
the receptor-binding domain (RBD) and the N-terminal domain,
which play essential roles in virus-cell receptor binding.5 A
variety of neutralizing antibodies (nAbs) that target S1-RBD and
S1-N-terminal domain are induced to inhibit viral infections.72

The RBD of SARS-CoV-2 is closely related to that of SARS-CoV,
and hence, the potential cross-neutralizing effects of SARS-CoV
nAbs against SARS-CoV-2 infection could be investigated.73

CR3022, the SARS-CoV RBD-specific monoclonal antibody, is
able to bind to the SARS-CoV-2 RBD by recognizing a conserved
epitope that does not overlap with the ACE2 binding site.74

Similarly, it has been elucidated that the human 47D11 antibody
can neutralize both SARS-CoV-2 and SARS-CoV in VeroE6
cells.75 In addition, SARS-CoV RBD-specific polyclonal anti-
bodies are cross-reactive with the SARS-CoV-2 RBD to neutralize
SARS-CoV-2 infections in vitro.76 Sera obtained from conva-
lescent SARS patients or animals are also able to specifically
cross-neutralize SARS-CoV-2.77 These findings open avenues for
the development of SARS-CoV nAbs as candidate therapeutics or
vaccines to treat or prevent SARS-CoV-2. Cocktails comprising
antiviral antibodies targeting the different epitopes of the spike
protein are another promising therapeutic strategy to cope with
SARS-CoV-2 and its escape-mutant strains. The S2 subunit can
mediate the virus-cell fusion, and it contains an N-terminal fusion
peptide, heptad repeat 1 (HR1) and HR2 domains, a
transmembrane domain and a cytoplasmic domain. EK1C4,
an inhibitor of coronavirus fusion, targets the HR1 domain of the
S2 subunit and exhibits a strong inhibitory effect against SARS-
CoV-2 in vitro and in vivo.78 Another class of anti-CoV agents
that target the spike glycoprotein comprises the carbohydrate-
binding agents, which do not inhibit virus-cell attachment, but
rather affect viral entry at a post-binding stage.79

Other structural proteins, such as membrane, envelope, and
nucleocapsid proteins, and some essential accessory proteins of
virion assembly are also potential antiviral targets. siRNAs
could be designed to knock-down these proteins, and their
antiviral effects have been demonstrated in SARS-CoV
infection.80 Alternatively, an increasing number of anti-
bacterial, anti-viral, anti-tumor, anti-asthmatic, and anti-
inflammatory agents have shown relatively good binding
affinity for these targets.60

Host-dependent targets. Host factors involved in the viral
life cycle have been identified as potential targets of anti-CoV
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agents. SARS-CoV-2 utilizes ACE2 for viral entry in a way
similar to SARS-CoV.N-(2-aminoethyl)-1-aziridine-ethanamine,
a small-molecule inhibitor, can inhibit the catalytic activity of
virus-cell fusion mediated by ACE2 and spike protein in vitro.81

Synthetic peptides derived from critical segments of ACE2 also
exhibited anti-viral activity against SARS-CoV infections.82 The
entry of SARS-CoV-2 into host cells is through endocytosis,
which involves PIKfyve, TPC2, and cathepsin L.83 The inhibitors
of these proteases are potential anti-viral candidates. The
endosomal cysteine proteases cathepsin B and L and the cellular
serine protease TMPRSS2 are also employed by SARS-CoV-2 to
mediate the cell surface entry pathway. Camostat mesylate, a
serine protease inhibitor, which is active against TMPRSS2,
combined with E-64d, an inhibitor of cathepsin B and L,
displayed full inhibition of SARS-CoV-2 infection in lung cells.77

Recent studies found that SARS-CoV-2 spike glycoprotein
harbors a peculiar furin-like cleavage site at the boundary
between the S1 and S2 subunits, which distinguishes the virus
from SARS-CoV and SARS-related CoVs.5,84 The use of
decanoyl-Arg-Val-Lys-Arg-chloromethylketone to inhibit furin
has been shown to block MERS-CoV entry into the host cell in
vitro.85 This suggests that the inhibition of furin-like enzymes
may be a potential antiviral strategy. In addition, another study
showed that the interferon-inducible gene, lymphocyte antigen 6
complex locus E, potently restricts multiple CoV infections by
interfering with virus-cell fusion, including SARS-CoV-2, SARS-
CoV, and MERS-CoV.86

Host cell signaling pathways in relation to coronavirus
infection have also been identified as potential targets for anti-
CoV treatment. Phosphoinositol 3-kinase/serine-threonine ki-
nase/mammalian target of rapamycin (mTOR) signaling
responses play important roles inMERS-CoV infection.87 Recent
research showed that the mTOR pathway in conjunction with
AMP activated protein kinase may help to control cell injury,
oxidative stress, mitochondrial dysfunction, and the onset of
hyperinflammation, which are significantly associated with
COVID-19.88 Therefore, targeting the mTOR pathway is a
promising antiviral strategy that can be explored for the
development of therapeutics for COVID-19. Considering that
CoVs are capable of hijacking type I interferon antiviral
responses through structural and nonstructural proteins, the
flagellin-TLR5 axis could provide a potential avenue to restore
host innate immunity to fight against COVID-19.89
Outlook

The development of effective novel antiviral agents may take
several months or years. The best way to deal with COVID-19 is
the control of the source of infection through early detection,
diagnosis, reporting, isolation, and supportive treatments. In
addition, publishing of epidemic information should be con-
trolled to avoid unnecessary panic. Looking ahead, the most
feasible approach against COVID-19 is the repurposing of
existing antiviral agents and the evaluation of their efficacy in
clinical trials. In the long term, there is an urgent need for the
development of novel broad-spectrum antiviral agents and
vaccines against a wide range of CoVs.
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