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Abstract

Asthma is a life-threatening and chronic inflammatory lung disease that is posing a true

global health challenge. The genetic basis of the disease is fairly well examined. However,

the molecular crosstalk between microRNAs (miRNAs), target genes, and transcription fac-

tors (TFs) networks and their contribution to disease pathogenesis and progression is not

well explored. Therefore, this study was aimed at dissecting the molecular network between

mRNAs, miRNAs, and TFs using robust computational biology approaches. The transcrip-

tomic data of bronchial epithelial cells of severe asthma patients and healthy controls was

studied by different systems biology approaches like differentially expressed gene detec-

tion, functional enrichment, miRNA-target gene pairing, and mRNA-miRNA-TF molecular

networking. We detected the differential expression of 1703 (673 up-and 1030 down-regu-

lated) genes and 71 (41 up-and 30 down-regulated) miRNAs in the bronchial epithelial cells

of asthma patients. The DEGs were found to be enriched in key pathways like IL-17 signal-

ing (KEGG: 04657), Th1 and Th2 cell differentiation (KEGG: 04658), and the Th17 cell dif-

ferentiation (KEGG: 04659) (p-values = 0.001). The results from miRNAs-target gene pairs-

transcription factors (TFs) have detected the key roles of 3 miRs (miR-181a-2-3p; miR-

203a-3p; miR-335-5p), 6 TFs (TFAM, FOXO1, GFI1, IRF2, SOX9, and HLF) and 32 miRNA

target genes in eliciting autoimmune reactions in bronchial epithelial cells of the respiratory

tract. Through systemic implementation of comprehensive system biology tools, this study

has identified key miRNAs, TFs, and miRNA target gene pairs as potential tissue-based

asthma biomarkers.
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Introduction

Respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and

coronavirus have become a global concern due to the increased morbidity and mortality rates

associated with them [1–3]. Asthma is a major non-communicable, life threatening, chronic

inflammatory lung disease, that is characterized by repeated obstruction of the airways and air-

way hyper-responsiveness (AHR). In asthma, bronchial tubes secrete extra mucus, making

breathing very difficult [4]. In 2019, around 262 million people were affected, and an estimated

461,000 deaths occurred due to asthma [5]. People of varied age groups are affected by asthma,

which is often believed to start during childhood [6]. Asthma can be mild to severe based on

the degree of clinical symptoms like mild cough, shortness of breath, tightening of the chest,

and wheezing. Dust, cold air and exposure to pollen can trigger asthma attacks in affected

patients [2, 7]. Both adaptive and innate immune systems are known to play an important role

in asthma pathogenesis [8]. The therapeutic treatment of asthma involves the use of corticoste-

roid inhalers, bronchodilators, leukotriene modifiers and anti-E, anti–IL5, anti–IL4/IL13 anti-

bodies, coupled with lifestyle modifications to reduce the exposure to environmental allergens

[9].

The molecular pathogenesis of asthma is complex due to the involvement of multiple

genetic, physiological, and environmental factors [10]. The large scale genome-wide associa-

tion studies (GWAS) conducted on asthma patients, have highlighted the contribution of

many single nucleotide polymorphisms (SNPs) in genes that are known to be expressed pre-

dominantly in the bronchial epithelial and immune cells (TSLP, IL33, GSDMB, IL1RL1 and

ADAM33) [10]. Gene expression plays a pivotal role in controlling various cellular functions,

including cellular growth, differentiation, inflammation, cell death, and immune function.

Gene expression studies of asthmatic people have provided evidence that transcriptomic

changes are crucial to initiating or promoting the cascade of immune reactions [11].

MicroRNAs (miRNA) are a small and conserved class of 18–25 nucleotide long noncoding

RNA molecules that regulate post transcriptional gene expression by controlling mRNA degra-

dation or translational repression. Over the last decades, miRNAs have emerged as potential

diagnostic and therapeutic biomarkers for different complex diseases like cancers, cystic fibro-

sis, -thalassemia, and Duchenne muscular dystrophy [12].

Altered mRNA and miRNA expressions have been widely observed in asthma conditions

[10, 13]. For example, gene expression studies have identified differential expression of chemo-

kine (C-X-C motif) receptor 2 (CXCR2); alkaline phosphatase isozyme (ALPL); Charcot- Ley-

den crystal protein (CLC); carboxypeptidase A3 (CPA3); deoxyribonuclease I-like3

(DNASEIL3) and IL-1β (IL1B) in asthma pathogenesis [14, 15]. Similarly, several miRNAs,

such as miR-27b-3p, miR-513a-5p, miR-22-3p, miR-19a, miR-133a, miR-221, miR-3162-3p,

that regulate both adaptive and innate immune systems via expression of key genes that play a

pivotal role in the pathogenesis of asthma have been reported. Additionally, miR-148a, miR-

148b, and miR-152 targeting HLA-G, an asthma susceptibility gene, are also widely reported

[16] as the contributors. However, the molecular cross talk between the mRNA-miRNA

expression changes is notwell characterised.

A better understanding of the factors contributing to changes in gene expression is vital in

deciphering the detailed molecular pathology of asthma or other complex diseases. Various

differential gene expression studies have been conducted in asthma, but a clear understanding

of the molecular function has not yet been achieved. Given the close functional association of

miRNAs and mRNAs in regulating various cellular functions and biological processes, we

believe that understanding the interactions between these two classes of RNAs may provide

further insights into the pathophysiology of asthma. last two decades have witnessed the power
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of computational biology methods in studying global expression changes from diverse range

of human tissues and diseases. Lack of extensive information from the literature has led us to

examine the shared differentially expressed miRNAs (DEMiRs) and their target genes (DEGs)

between normal and asthmatic tissues of adults to identify potential asthma biomarkers by

employing robust bioinformatic gene network analysis and advanced statistical tools.

Materials and methods

Data curation

The gene expression omnibus (GEO) database was data source for collecting the public

domain transcriptomic datasets. We downloaded two mRNA datasets, of which, GSE43696

expression series consisted of transcriptomics data of bronchial epithelial cells collected from

38 severe refractory asthma patients and 20 healthy control samples [17] generated on Agilent

Human GE 4×44K V2 Gene Expression microarrays. The second series, GSE64913, consisted

of transcriptomics data of epithelial brushings obtained from severe asthma patients (N = 17)

and healthy volunteers (N = 23) [18], which was generated on Affymetrix HG U133 plus 2.0

GeneChips. The GSE25230 dataset consists of the miRNA expression profiles of human bron-

chial epithelial cells from seven healthy donors and seven asthma patients [19] generated on

the Affymetrix microarray platform. The details of clinical characteristics of the subjects, sam-

ple collection, processing, total RNA isolation, and microarray steps can be found in the corre-

sponding research articles cited above [17–19].

Identification of DEGs and DEMiRs

Differentially expressed genes (DEGs) between asthma and healthy control samples were ana-

lysed with the Bioconductor package in the R program. The raw expression datasets were pro-

cessed with R. The raw intensity signals of the expression data were uploaded into the

Bioconductor-Affy package to standardize and reduce the data noise. The median values of

raw signal intensities were standardized to baseline using the Robust Multichip Average

(RMA) algorithm [20]. The student t-test was used to calculate statistically significant DEGs

between normal and asthmatic samples. Benjamini and Hochberg’s false discovery rate (FDR)

was set at p =<0.05 to select key genes and to eliminate false positive data [21].

Functional annotation of DEGs

The DEGs (log2 fold change > 1; FDR 0.05) were functionally analysed using ClueGO 2.2.6

version [22] and CluePedia 1.2.6 [23]version. ClueGO investigates the distribution of target

genes across Gene Ontology (GO) terms and pathways to create the annotation network. Clue-

Pedia is a Cytoscape plugin that provides pathway insights by combining experimental and in-
silico data [23]. CluePedia, a ClueGO plugin, performs linear and non-linear statistical calcula-

tions from experimental data to find new biomarkers from the pathway data [22]. The P value

was calculated in the ClueGO tool using right-sided hypergeometric tests with Benjamini-

Hochberg adjustment for multiple test correction [22]. A statistically significant deviation

from the expected distribution was indicated by an adjusted P value of 0.001, and the corre-

sponding GO terms and pathways were enriched for the target genes. ClueGO [22] was used

to calculate the strength of the association between the terms, using a corrected kappa statistic

score threshold of 0.4. Similarly, relationship between the selected terms was defined based on

their shared genes. The GO terms were represented as nodes in the network, and the size of

the nodes reflected their enrichment significance. The network was generated automatically

using the organic layout algorithm supported by the Cytoscape [24]. The visualized network
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functional groups were represented by their most significant terms and provides an insightful

view of their interrelationships [25]. The DEGs were then enriched with different GO terms of

biological process (BP), molecular function (MF), and cellular component (CC), as well as

KEGG pathways.

Identification of MiRNA target genes

The R package multiMiR was employed to retrieve the DEmiR target genes. It contains a wide

collection of validated and predicted miRNA–target interactions and their associations with

drugs and diseases. It is composed of murine and human datasets from 14 external databases,

which include three validated, eight predicted, and three drug- or disease-related miRNA–tar-

get databases [26]. Of these, we only considered three databases (miRecords, miRTarBase, and

TarBase) for analysis of the predicted target genes [27].

Construction of miRNA-mRNA network

We have used the miRNet online tool [28] to predict and construct the miRNA-mRNA cluster

network. The miRNet constructs networks miRNA-protein coding genes, miRNA-lncRNA,

miRNA-circRNA, and miRNA-sncRNA, and supporting the statistical and functional inter-

pretation of the data [29]. Furthermore, we used the starBase tool to identify the competitive

endogenous RNAs [30]. The miRNA-mRNA co-expression interactions network was con-

structed using CoMeTa [31] and miRSig [32].

Identifying the miRNA-target gene and TFs

Post-transcriptional regulation of gene expression is executed by miRNAs [33], while tran-

scription factors (TFs) play a pivotal role in activation or repression of the transcription rate at

the pre-transcriptional stage [34]. Hence, we employed the Cytoscape 3.7.1 tool to visualize the

interactions between miRNAs and their potential target genes to understand the miRNA–tar-

get regulatory network.

Regulatory network analyses of miRNAs-TFs-target genes

TFs were identified using the iRegulon computation tool in the gene sets of DEGs and the tar-

get DEGs. iRegulon is a database of approximately 10,000 TF motifs, and is used to detect the

enriched TF motifs in the regulatory regions around each gene. Each candidate TF is linked to

enriched TF motifs and is used to identify the appropriate subset of the direct target genes. In

Cytoscape, iRegulon (ver. 1.3, http://apps.cytoscape.org/apps/iRegulon) [35] plugin was used

to analyse and predict TF-target gene interaction pairs in the PPI network. The TF-target

interaction networks with a Normalized Enrichment Score (NES) of > 4 were selected for

downstream analysis. Then, we used the over representation enrichment analysis (ORA)

method to predict the miRNAs-target genes. Threshold settings of count number� 2 and p

value of< 0.05 were applied. Finally, the Cytoscape was used to construct the miRNAs-TFs-

target regulatory network [36].

Binding interaction of miRNA-target genes

The RNA hybrid tool (https://bibiserv.cebitec.uni-bielefeld.de/rnahybrid/) was used to find

the binding affinity between the miRNA and its target gene using the minimum free energy

hybridization method. This is executed in domain mode, where short RNA sequences are

hybridized to the best fitting pose of the longer RNA sequences. This webserver is primarily

built to predict miRNA target genes. Initially, sequences of miRNA and its target genes (3
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´-UTR, 5´-UTR, and coding sequences) were retrieved from the Ensembl genome browser

(https://asia.ensembl.org/index.html). The default parameters used in the analysis were as fol-

lows; helix constraint of 2–8, no G: U in seed sequence, and>-18 kcal/mol of minimum free

energy threshold. Seed complementarity and high base-pairing stability were considered for

reducing the false positive predictions.

Results

Identification of DEGs

The differentially expressed genes were identified across all the three expression datasets. Two

of which are comprised of mRNA (GSE64913, GSE43696) and one is miRNA (GSE25230)

data (see methods for details). The mRNA expression profile revealed the upregulation of 673

genes (258 genes in GSE64913 and 412 genes in GSE43696) and the downregulation of 1030

genes (259 genes in GSE64913 and 771 genes in GSE43696). The volcano plots and heatmap of

DEGs are illustrated in Fig 1A–1C. A total of 163 overlapping genes (both up- or down- regu-

lated) were identified across these two datasets, as shown in the Venny plot (Fig 1D). In the

third dataset (GSE25230), a total of 71 differentially expressed miRNAs (DEMs), including 41

up and 30 down- regulated miRNAs, were identified.

The functional enrichment analysis of DEGs

To provide further insights into the mechanism and the functional significance of these

DEGs, we used the ClueGO plugin, as detailed in the methods section. The enrichment of

DEGs under different GO categories like molecular function (MF), cellular component

(CC), and biological process (BP) in addition to the KEGG pathways was analyzed using Cir-

cos plot representation, keeping the p-value < 0.05 as the threshold significance value (Fig

2). In the BP-associated category, the most significantly enriched GO terms were exocrine

system development (GO: 0035272) with a p-value = 0.0118, response to mineralocorticoid

(GO: 0051385) with a p-value = 0.0007, cell adhesion mediated by integrin (GO: 0033627)

with a p-value of 0.000145, and in the cellular component category, most of the DEGs were

localized in the Golgi lumen, platelet alpha granule (GO: 0005796, GO:0031091) with a p-

value of <0.005. Under the molecular functions category, most DEGs were enriched in phos-

phatidylinositol 3-kinase binding, protein phosphatase 1 binding, and chemokine activity

(GO: 0043548, GO: 0008157, GO: 0042379) with a p-value of <0.00014. The DEGs were

found to be enriched in key pathways like IL-17 signaling (KEGG: 04657), Th1 and Th2 cell

differentiation (KEGG: 04658), and the Th17 cell differentiation (KEGG: 04659), with a p-

value of <0.00025 (Fig 2).

Computational evaluation of miRNA enriched target genes

We used miRTarBase to obtain the set of validated miRNA-target gene lists that include

380,639 miRNA target gene interactions (MTIs). We combined MTIs of 2,599 miRNAs and

15,064 target genes. Furthermore, we obtained the 41 (out of 71 miRNA) DEMs targeting 7017

genes in the above validated MTIs (Table 1). To identify the target-enriched miRNAs and

their regulatory roles, we subsequently applied two complementary statistical approaches as

described in the methods section. The hypergeometric statistical test revealed that 37 DEMs

(15 up- and 12 down-regulated) were inversely correlated (FDR<0.10) with the DEGs, imply-

ing miRNA-DEGs functional co-relationship (Fig 3).
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miRNA-target gene interaction network

To better understand the role and functions of miRNAs and their target genes, we investigated

the miRNA-DEGs protein subnetworks associated with the 37 miRNAs and their inversely

correlated target DEGs. A total of 82 nodes and 322 interaction pairs in the PPI-miRNA

Fig 1. The mRNA and miRNA expression analysis of asthma patients. a) volcano plots for three differential gene expressions in 3

datasets (2mRNA and 1miRNA). Scattered points represent genes: the x-axis is the fold change for the ratio of control vs asthma, whereas

the y-axis is the -log10 or P-value. Colored dots are the significantly differentially expressed genes. b) Mean difference (MD) plot showing

log2-fold change versus average log2 expression values of differentially expressed mRNA or miRNA (significantly expressed mRNA or

miRNA highlighted with colored dots). c) Heat map of top significant expressed mRNA and miRNA represented by red and blue color,

respectively; white color indicates the median level (Generated from https://software.broadinstitute.org/morpheus) d) Venn plot

representing shared gene in two datasets (mRNA) and shared miRNA target genes from one dataset.

https://doi.org/10.1371/journal.pone.0271262.g001
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Fig 2. The Circos plot representation of GO-Annotation terms of differentially expressed genes. a) biological process b) cellular components

c) molecular function d) KEGG pathways (Cricos plot generated from http://mkweb.bcgsc.ca/tableviewer/).

https://doi.org/10.1371/journal.pone.0271262.g002

PLOS ONE System biology approach in discovery of new asthma biomarker

PLOS ONE | https://doi.org/10.1371/journal.pone.0271262 October 20, 2022 7 / 21

http://mkweb.bcgsc.ca/tableviewer/
https://doi.org/10.1371/journal.pone.0271262.g002
https://doi.org/10.1371/journal.pone.0271262


network were identified (Fig 4). In each module, hub miRNAs (module and miRNA p-

value > 0.85) were used as input nodes to measure the node localization degree. The miR-

NA-PI network analysis resulted in four miRNAs (hsa-mir-335-5p, hsa-mir-193b-3p, hsa-mir-

181a-5p, and hsa-mir-203a-3p) with a centrality of>315. The hsa-miR-335-5p showed the

highest degree of centrality score>2627 with target genes: ATE1, KLF9, CA12, FHL1, NTRK2,

SCD, ST8SIA4, CDON, PPP1R9A, LRRC8A and PPP1R3B. In contrast, hsa-mir-193b-3p, hsa-

mir-181a-5p, hsa-mir-203a-3p showed approximate centrality scores of 853, 562, and 315,

respectively, and they were found to interact with LRRC8A, CA12, ST8SIA4, DOCK10,

NTRK2, ABL1, ACVR2B, AKT2, and DLX5 genes (Table 2).

Binding affinity between miRNA-mRNA duplex

RNA hybrid webserver was utilized to display significant hybridization between potential viral

precursor miRNAs and complementary templates of the potential human miRNAs. Their cor-

responding minimal free energy of hybridization is given in Table 3. The minimal free energy

of hybridization was ranged between -15.9 kcal/mol to −33.7 kcal/mol. Based on the sequence

similarity, hybridization, and calculated minimum free energy (MFE), five potential miRNAs

(hsa-miR-193b-3p, hsa-miR-203a-3p, hsa-miR-335-5p, hsa-mir-155-5p, and hsa-miR-181a-2-

3p) were predicted as biomarkers for further analysis of transcriptional factors.

miRNAs-TFs-target regulatory network analyses

To further identify transcriptional factors and regulatory elements of miRNA, we constructed

the miRNAs-TFs-target regulatory network using the Cytoscape. The network was constructed

using four miRNA (hsa-miR-193b-3p, has-miR-203a-3p, hsa-miR-335-5p, hsa-mir-155-5p

and hsa-miR-181a-2-3p) and their target DEGs. Our results showed that hsa-miR-181a-2-3p;

hsa-miR-203a-3p; hsa-miR-335-5p have indirect interactions with 6 TFs (TFAM, FOXO1,

GFI1, IRF2, SOX9 andHLF) and direct interactions with 32 co-regulators (DEGs) (Fig 5;

Table 4).

Discussion

In the current work, we employed numerous bioinformatic tools to systemically analyze the

gene expression data and to identify the regulatory and co-expression networks between the

miRNAs and their target gene pairs in asthma. Our functional enrichment analysis showed

Table 1. The top differentially expressed miRNAs and their target genes based on miRbase target scores.

No. miRNA Name Target Gene Target Rank Target Score

1 hsa-miR-203a-3p CAB39 5 99

2 hsa-miR-203a-3p THSD7A 6 99

3 hsa-miR-335-3p FUT9 32 99

4 hsa-miR-181c-5p REPS2 35 99

5 hsa-miR-559 RMND5A 16 99

6 hsa-miR-30d-3p ROR1 18 98

7 hsa-miR-181c-5p IL2 54 98

8 hsa-miR-888-5p CTR9 4 98

9 hsa-miR-203a-3p CLOCK 28 97

10 hsa-miR-203a-3p AQP4 29 97

11 hsa-miR-877-3p KIF5B 11 97

12 hsa-miR-335-3p ANTXR2 74 97

https://doi.org/10.1371/journal.pone.0271262.t001
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that most of the DEGs were significantly enriched in ‘response to mineralocorticoid’ under

GO- biological processes category [37–41]. It is supported by the fact that, cortisol resistance

in asthma conditions has been proposed and the involvement of the 11beta-HSD-2 enzyme

has been suggested. Another GO term enriched is integrin, is supported by several studies

[42]. A recent report has shown that integrinα7 protein is significantly increased in severe

asthma [42]. Similarly, various integrins are shown to have a role in asthma pathophysiology

[43]. Interestingly, targeting the integrin α7β1 signaling pathway has been proposed recently

as an anti-asthma therapy [42]. In the molecular function category, the term ‘phosphatidylino-

sitol 3-kinase (PI3K)’ was highly enriched which is supported by various studies. Since, PI3K

has a central role in in inflammation and hyperresponsiveness of asthma pathophysiology, and

hence, it is an attractive molecular target for asthma [44].

The molecular function term, ‘protein phosphatase 1 (PP1)’ was significantly enriched. The

PP1 muscle-specific glycogen-targeting subunit (PPP1R3A) is thought to play a role in muscle

Fig 3. Inverse correlation expression of top four miRNA and its target genes in asthma patients.

https://doi.org/10.1371/journal.pone.0271262.g003
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glycogen regulation and is implicated in asthmatic airway obstruction and hyperresponsive-

ness. PP1 is a regulatory protein in bronchial smooth muscle that regulates airway hyperre-

sponsiveness (AHR), and it is regulated by protein CPI-17 [45]. Furthermore, fluctuations in

CPI-17 signals have been reported to occur in asthma [46]. Interestingly, the role of miR-133a

in bronchial smooth muscles (BSM) in the context of PP1 and protein CPI-17 has been

reported in asthma pathogenesis [47]. Chemokine activity is another enriched GO term in our

analysis and its role is supported by several reports [48]. Various chemokines have been impli-

cated in asthmatic responses. In particular, targeting chemokines and their receptors has been

proposed as a new drug target against the asthma [48].

Fig 4. Interaction network between top differentially expressed miRNAs (yellow square) and its target genes (pink

circles).

https://doi.org/10.1371/journal.pone.0271262.g004

Table 2. The miRNA network centrality scores and its target gene pairs.

Label Degree Betweenness Target Accession miRNA Seq (5‘-3‘) UTR length

hsa-mir-335-5p 2627 7179475.778 ATE1 MIMAT0000765 UCAAGAGCAAUAACGAAAAAUGU 3259

hsa-mir-193b-3p 853 2801907.098 CCND1 MIMAT0002819 AACUGGCCCUCAAAGUCCCGCU 3207

hsa-mir-181a-5p 562 1748817.585 MTF2 MIMAT0000256 AACAUUCAACGCUGUCGGUGAGU 2070

hsa-mir-203a-3p 315 947555.247 DLX5 MIMAT0000264 GUGAAAUGUUUAGGACCACUAG 346

hsa-mir-181a-5p 29 73578.09654 SCD MIMAT0000256 AACAUUCAACGCUGUCGGUGAGU 3903

hsa-mir-155-5p 18 6132.725 PCDH7 MIMAT0000646 UUAAUGCUAAUCGUGAUAGGGGUU 3952

https://doi.org/10.1371/journal.pone.0271262.t002
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The KEGG pathway annotations of DEGs have revealed the importance of the IL-17 signal-

ing, T helper 1 (Th1) and T helper 2 (Th2) cell differentiation, and Th17 cell differentiation in

asthma. The deregulation of important signaling pathways is known to play an important role

in a variety of inflammatory diseases. Various studies in human and murine models have sug-

gested the role of IL-17 in airway hyperresponsiveness, while in humans, an increase in IL-17

levels has been observed in asthma [49]. Moreover, it should be noted that the IL17 mediated

signaling pathway also regulates mRNA stability. Based on this, we propose future study to

understand its role in miRNA-mRNA functional network stability during asthma progression

[50].

Another identified pathway is involved in the Th1 and Th2 cell differentiation, whose

imbalance causes dysregulation of cytokine profiles [51]. Interestingly, drugs like mangiferin

can exert an anti-asthmatic effect by modulating Th1/Th2 cytokine imbalance. Moreover, sev-

eral let-7 family miRNAs namely, miR-1, mir-19, miR-126, miR-155, and miR-221, that regu-

late Th2 inflammatory responses by downregulating IL-13 and VEGF, are known for their

association with asthma pathogenesis [52]. Our analysis is consistent with the recent reports

that Th17 cells play an important role in asthma pathogenesis [53]. A recent study has revealed

that hsa-miR-223-3p is a neutrophil-derived microRNA with a prominent regulatory effect on

Th17 signaling and endoplasmic reticulum (ER) stress in severe asthma [52]. All these observa-

tions conclude that asthma is a chronic airway inflammatory disease characterized by T-helper

cell immune responses and other immunological inflammatory responses [52].

The discovery of miRNAs has had a profound effect on the understanding of gene expres-

sion and is now considered to be part of the epigenetic machinery. It has led to the addition of

a new level of gene regulation, adding a layer of complexity to the central dogma. Due to their

gene regulatory functions, miRNAs affect various cellular functions, including cell growth,

metabolism, cell death, and animal development. As per miRBase [54], human genome has

around 1917 hairpin precursors and 2654 mature miRNAs, several of which have already been

implicated in human disease [55]. The miRNAs regulate various signaling pathways in humans

and, thus, deregulation of miRNAs can lead to various diseases, including cardiovascular dis-

ease, cancers, rheumatoid arthritis and asthma. The multi-target action of miRNAs enables

them to regulate the entire signaling network consisting of various signaling molecules, genes,

and TFs, thus regulating disease pathology. Mechanistically, miRNA mainly binds to the 3’-

untranslated region (3’-UTR) of the target mRNA through imperfect base pairing, which

downregulates gene expression or inhibits translation [56]. Similarly, the binding of miRNAs

Table 3. The miRNA and target gene binding locations and their binding scores.

miRNA Target Gene Target Seq miRNA Seq MFEs�

hsa-miR-335-5p ATE1 50UGCAUGXXUGGUAUUUUUUGUCUUGU30 30XUGUAAAAAGCAAUXXXAACGAGAACU50 -20.5 kcal/

mol

hsa-mir-193b-3p CCND1 50AAGCAGGACUUUGAGGCAAGUGUGGGCACXX3’ 30XUGCCCCUGAAACUXXXXXXXXXCCCGGUCAA5’ -33.7 kcal/

mol

hsa-miR-181a-2-

3p

SCD 50XGUGGCUGUGGGUGUGGGUGGGAGUGUG30 30UGAGUGGCUGUCGCAAXXXXXXCUUACAA50 -26.6 kcal/

mol

hsa-miR-181a-2-

3p

MTF2 50XXXAAUGGGCAGCUUUGGAXGUA30 30UGAGUGGCUGUCGCAACUUACA50 -21.2 kcal/

mol

hsa-mir-203a-3p DLX5 50AUGGUGCCUUGAAAUCUAUGACCUCAACUUUUCAA30 30GAUCACXXXXXXXXXXXXXXCAGGAUUUGUAAAGU50 -15.9 kcal/

mol

hsa-mir-155-5p PCDH7 50AAAUUCCXAUUCUUAAAGAGGCGGUUAGCACXXX30 30XUUGGGGAUAGXXXXXXXXXUGCUAAUCGUAAUU50 -22.2 kcal/

mol

� minimum free energy

https://doi.org/10.1371/journal.pone.0271262.t003
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to the 50 UTR and coding regions of mRNA has silencing effects on gene expression. Interest-

ingly, some studies have also shown miRNAs up-regulate gene expression [57]. Moreover, it is

widely known that a single miRNA can target several genes and single gene may be the target

of multiple miRNAs, which shows a complex relationship between miRNAs and gene expres-

sion [58].

Fig 5. Regulatory networks of the TFs, miRNAs, and target genes. (A) Network of 2 transcription factors and hsa-

181a; (B) network of 1 transcription factor and hsa-miR-203a; (C) network of 2 transcription factors and hsa-miR-335.

Green color oval represent TFs. Pink ovals represents target genes regulated by miRNAs and TFs, target genes

regulated by the miRNAs are represented by blue oval.

https://doi.org/10.1371/journal.pone.0271262.g005

Table 4. The miRNAs, transcription factors and target gene network enrichment score.

miRNA #

Rank

Motif id AUC NES Cluster

Code

Transcription factor Target genes

hsa-miR-

193b-3p

6 transfac_pro-

M01099

0.207306 4.4455 M3 RORC, RORB, RORA, GATA6, GATA2, GATA4,

GATA3, GATA1, GATA5, YY1

PLAG1, ERBB4, FLI1, MAPK10,

KCNJ2, FHDC1
7 homer-M00057 0.202074 4.31071 M4 FLI1, ETV2, ETV1, ELK4, ELK1, GABPA, ETS1, ETV4,

ERF, ETV3, ETV5, ELF4, ETV6, ERG, ETV7, FEV,

ELK3, ETS2, EHF, ELF2, ELF3, ELF1, ELF5, GABPB1,

SPIB

FLI1, PLAG1, LRRC8A, RAPGEF6

9 hdpi-IRF1 0.199178 4.2361 M6 IRF1 PLAG1, KCNJ2, ERBB4, MAPK10,

FLI1, LYRM2
10 tfdimers-

MD00575

0.19404 4.10372 M7 HMGA2, HMGA1, SOX17, ETV7, GABPB1, ETV6,

ELF2, ELF4, SPIB, SOX4, ELK4, ELK1, FLI1

PLAG1, DCAF7, FLI1, ERBB4,

FHDC1, MAPK10
has-miR-

203a-3p

4 hdpi-ZRSR2 0.228635 4.51536 M3 ZRSR2 -

6 tfdimers-

MD00426

0.223045 4.37454 M5 GFI1 -

7 transfac_pro-

M02271

0.208748 4.01429 M3 HOXA5 -

hsa-miR-

335-3p

1 hdpi-TSNAX 0.233799 5.66978 M1 TSNAX ATRNL1, PCDH7, PLCB4, LRP2,

TEAD1
2 tfdimers-

MD00494

0.228436 5.5196 M2 TBP, SOX9 PCDH7, TOX3, GUCY1A2, PLCB4,

ATRNL1, ZBTB10
3 hdpi-

HIST2H2AB

0.222896 5.3645 M3 HIST2H2AB ATRNL1, THSD7A, PLCB4,

ZMYM4, SCN3B, TEAD1,

GUCY1A2, PCDH7, CACNB4
8 jaspar-

MA0043.1

0.186143 4.33543 M6 HLF, DBP, NFIL3, TEF PER3, TEAD1, PLCB4, PCDH7,

RAD23B
10 tfdimers-

MD00527

0.184824 4.2985 M7 IRF7, IRF6, ZEB1, IRF4, IRF2, IRF5, IRF8, IRF3, IRF1,

POU5F1, IRF9, MYB, E2F1, STAT2, STAT1, SPI1

PCDH7, LRP2, CACNB4, SCN3B,

ATRNL1, PLCB4
hsa-miR-

181a-2-3p

1 yetfasco-1622 0.157069 4.76021 M1 FOXO1, FOXO3, FOXC2, FOXA2, FOXO4 ZBTB20, FLI1, ACVR2B, HEG1,

EEF1A1, SOX6, NETO2
3 hdpi-TFAM 0.145071 4.28686 M3 TFAM, LAS1L TFAP2D, NETO2, ZBTB20, MMD,

FLI1, KLHL3, SOX6, PRDM6,

SORBS1, HTR2C, SULF1
5 tfdimers-

MD00013

0.142554 4.18753 M4 MYB, YY1, TCF4, TAL1, TCF3, TBX5, NR3C1, ZFP42,

PGR, MAFA, NR2F2, NR2F1

TFAP2D, PELI2, SOX6, DGKG,

ACVR2B, SULF1, SORBS1
6 tfdimers-

MD00396

0.137283 3.97957 M5 STAT6, CEBPB, DBP, STAT1, TCF3, ELF2, TCF4, ELK1,

ELK4, ETV7, GABPB1, FLI1, ETV6, ELF4, SPIB

ZBTB20, HEG1, FLI1, SOX6,

SULF1, MMD, SORBS1, KLHL3,

PELI2
9 hdpi-THAP5 0.133624 3.83523 M8 THAP5 MMD, PRDM6, ZBTB20, TFAP2D,

SLC9A5, HEG1
10 hdpi-LAS1L 0.131028 3.7328 M3 LAS1L, TFAM TFAP2D, FLI1, NETO2, ZBTB20,

MMD, KLHL3, SOX6, PRDM6,

SULF1, SORBS1, RAB9B, HTR2C

https://doi.org/10.1371/journal.pone.0271262.t004
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Numerous miRNAs are found to be involved in asthma, which includes downregulated let-

7 family, miR-375, miR-193b, as well as upregulated miR-21, miR-223, miR-146a, miR-142-

5p, miR-142-3p, miR-146b, and miR-155. Interestingly, most of these miRNAs affect Th2 and

Th1 cytokine secretion in the bronchial smooth muscle cells, affecting other inflammatory

responses [59]. In severe asthma, miR-221 regulates smooth muscle proliferation and miR-28-

5p, and miR-146a/b which activate circulating CD8+ T cells [60]. MicroRNA expression has

also been shown to be influenced by inhaled steroids [61]. Taken together, these studies indi-

cate that miRNAs are important regulators of asthma pathogenesis.

Identification of miRNA target genes (mRNA) is a daunting task and has largely been over-

come using advanced computational programs [62]. In silico prediction is a powerful tool to

further validate the results in the absence of appropriate functional data. Indeed, our RNAhy-

brid webserver-based prediction suggested a stable complex between the miRNA and the cor-

responding target mRNA (Table 3). The minimal free energy of hybridization ranged from

-15.9 kcal/mol to −33.7 kcal/mol which suggests that a stable RNA duplex complex formation

is necessary for the miRNA function. The formation of miRNA-mRNA duplexes has a big

impact on gene expression and diseases progression. Binding of miRNA may inhibit mRNA

translation, leading to gene downregulation. Competition among different miRNA for the tar-

get mRNA binding site can also have functional consequences. Similarly, improper RNA fold-

ing is also known to alter potential miRNA binding sites, thus affecting normal cellular

function that could lead to disease [63, 64]. Furthermore, we also believe that the SNPs affect-

ing the miRNA seed pairing region between the miRNA and the target gene should also be

studied as any change in these seed regions can affect the miRNA biogenesis and function as

these regions are important for the RNA secondary structure and stability of miRNA-target

mRNA pairing. Interestingly, in one study, a SNP in the seed region of miR-499a-3p which

was important for the miRNA-mediated silencing mechanism plays contributes to the suscep-

tibility of asthma in children and adolescents with bronchial asthma [65].

Our miRNAs-TFs-target regulatory network analysis has detected the potential miRNAs

namely, hsa-miR-193b-3p, hsa-miR-203a-3p, hsa-miR-335-3p, hsa-miR-181a-2-3p and hsa-

mir-155-5p (Table 4; Fig 5). Their functional significance in the context of the proposed targets

is described. To illustrate, hsa-miR-193b-3p has been reported to be involved in several dis-

eases like leukemia, Amyotrophic Lateral Sclerosis (ALS), and chronic diseases like localized

cutaneous leishmaniasis (LCL). It is also differentially expressed in cigarette smokers. How-

ever, based on our analysis, its target gene, cyclin D1 (CCND1) is upregulated in asthma

serum-sensitized human airway smooth muscle. Moreover, an association of the CCND1

genotype with the asthma susceptibility has been observed [66]. These results suggest that hsa-

miR-193b-3p may regulate asthma by regulating the cell cycle [67] (Table 4).

The miR-203a-3p has been reported to be involved in several cancers, which include colo-

rectal cancer [68], hepatocellular carcinoma [69] and bladder cancer [70]. In asthma, miR-

203a-3p has been shown to regulate TGF-β1-induced epithelial–mesenchymal transition

(EMT) by regulating the SMAD3 signaling pathway [71]. Moreover, downregulation of miR-

203a-3p is reported in bronchial epithelial cells and has been suggested to be a potential target

for the treatment of asthma [72]. Based on our analysis (Table 4), miR-203a-3p interacts with

an IL-4 induced transcription factor (TF) and the DLX5 gene [73]. Notably, IL-4 is a T helper

2 (Th2)-derived interleukin and that Th2 linked inflammatory response is linked to asthma

pathogenesis [74], which is consistent with our KEGG pathway findings (Fig 2).

Another miRNA, hsa-miR-335-5p, has been implicated in several cancers, including colo-

rectal cancer [75], gastric cancer [76], and uterine sarcoma [77]. The hsa-miR-335-5p is

reported as a biomarker for inflammation related to knee osteoarthritis [78]. ATE1 is a target

of hsa-miR-335-5p (Table 4), which is an arginyl-transferase and has been linked to higher
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metabolic rate and fat [79], while in asthma, obesity and the high body mass index (BMI) are

considered as risk factors [80]. These data suggest that hsa-miR-335-5p may regulate ATE1 in

obese asthmatic people. Interestingly, obese asthmatics have severe symptoms and poorer

response to many asthma medications [81].

The hsa-miR-181a-2-3p has been proposed as a biomarker for sepsis and its associated lung

injury [82]. It is involved in several inflammatory responses linked to bronchial and lung tissue

[83] and is also increased in the mouse model of asthma [84]. MTF2, a target of hsa-miR-181a-

2-3p, has been linked to the PI3K pathway in asthma [85] and is consistent with our GO analy-

sis where the term ‘PI3K’ was highly enriched (Fig 2). Importantly, PI3K role in asthma is well

documented [44]. Another target protein, stearoyl-CoA desaturase (SCD) is an important reg-

ulator of fat metabolism and is implicated in obesity [86]. Interestingly, reduced levels of SCD

and altered fatty acid metabolism have been reported in asthma [87] (Table 4).

The hsa-mir-155-5p is a multifunctional, proinflammatory, oncogenic miRNA that regu-

lates the immune response, chronic inflammation, and autoimmunity [88]. It regulates Th2

cells and hence has a role in asthma; it is altered in severe asthma [89, 90]. The hsa-mir-155-5p

targets a well-known asthma gene, PCDH1, which encodes protocadherin-1, which is mainly

expressed in the bronchial epithelium and lungs. PCDH1 is essential in the pathogenesis of

asthma [91]. Interestingly, two miRNAs identified in our study, hsa-miR-335-5p and hsa-

miR-155-5p (Table 4), were associated with long-term lung function change on inhaled corti-

costeroid (ICS), which is critical in asthma treatment and has prognostic value [89]. Based on

our extensive analysis, our data suggests a causal link between the miRNAs’ mediated regula-

tion of target genes in asthma pathogenesis. We sincerely acknowledge the limitations associ-

ated with the pooling of analyzed transcripts, low probe specificity, and sample hybridization

efficiency factors as we used secondary data from the publicly available databases.

In conclusion, differentially expressed miRNAs and mRNAs that play a potential role in

asthma development are identified. The current study presents the functional landscape of

human microRNA–mRNA-TF interactions in asthmatics using comprehensive bioinformatic

analysis of publicly available microRNA and mRNA expression data sets. This study identified

miRNAs (hsa-miR-193b-3p, hsa-miR-203a-3p, hsa-miR-335-5p, hsa-miR-181a-2-3p, hsa-

miR-155-5p), which regulate important genes and TFs in asthma pathogenesis. This study is

believed to be among the few studies in asthma that use diverse computational analyses to

identify miRNA-mRNA and TFs and the functional enrichment of biological pathways

involved in asthma. Our results also indicate that genes working at the upstream of a pathway

are functionally more important as a minor change in their expression can have a wider effect

downstream in any given disease pathology [92]. Better understanding of regulatory networks

between disease-causing genes, miRNAs, and TFs, is important for understanding the molecu-

lar pathology of asthma. Our study holds the promise of the possible development of novel

asthma biomarkers and therapeutic options.
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