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Hypoxia and oxidative stress are the common causes of various types of kidney injury. During recent years, the studies on hypoxia
inducible factor- (HIF-) 1 attract more and more attention, which can not only mediate hypoxia adaptation but also contribute to
profibrotic changes. Through analyzing related literatures, we found that oxidative stress can regulate the expression and activity
of HIF-1α through some signaling molecules, such as prolyl hydroxylase domain-containing protein (PHD), PI-3K, and
microRNA. And oxidative stress can take part in inflammation, epithelial-mesenchymal transition, and extracellular matrix
deposition mediated by HIF-1 via interacting with classical NF-κB and TGF-β signaling pathways. Therefore, based on
previous literatures, this review summarizes the contribution of oxidative stress to HIF-1-mediated profibrotic changes during
the kidney damage, in order to further understand the role of oxidative stress in renal fibrosis.

1. Introduction

The balance of oxygen consumption and supply is essential
for all mammalian organs, providing fuel for various physi-
ological metabolic processes and maintaining homeostasis
[1]. Kidney, an active metabolic organ, is a great need for
oxygen. Thus, there is no doubt that the kidney is also sus-
ceptible to hypoxic damage.

There are increasing evidences shown that a variety of
pathological factors such as hyperglycemia, hypersaline,
hypertension, and infection can induce renal hypoxia and
aggravate oxidative stress [2]. Meanwhile, it is demonstrated
that acute kidney injury (AKI) and various chronic renal dis-
eases (CKD) are associated with hypoxia and oxidative
stress, which are more likely to develop into renal fibrosis
eventually [3, 4]. Therefore, we have reasons to believe that
hypoxia and oxidative stress may play an important role in
the destruction of renal tissue, irreversible loss of kidney
function, and the progression of renal fibrosis [5, 6].

Hypoxia inducible factors (HIFs), critical nuclear tran-
scription factors, involved in maintaining O2 homeostasis

were firstly discovered by Semenza in 1992, which have
received extensive attention due to their significant role in
cellular adaptation to hypoxia in recent years [7, 8]. Based
on the difference of α-subunits, HIFs are divided into three
subtypes, HIF-1, HIF-2, and HIF-3. The function of HIF-1
and HIF-2 is currently being intensively investigated. An
increasing evidence finds that HIF-1 during kidney dam-
age not only mediates hypoxia adaptation but also is associ-
ated with inflammation, epithelial-mesenchymal transition
(EMT), and extracellular matrix (ECM) deposition, partici-
pating in the profibrotic changes [9–12]. And oxidative stress
has been also reported to play an important role in this
process [2]. HIF-2α plays a dominant role in erythropoietin
production [13–15]. Schietke et al. also found that constitu-
tional transgenic overexpression of HIF-2α in distal tubular
cells in mice resulted in renal fibrosis [16]. Besides, a recent
study has shown that SIRT1 can attenuate renal fibrosis by
repressing HIF-2α. The effects of HIFs may be cell type and
context dependent. HIF-2α may also be a candidate for
studying renal fibrosis [17, 18]. However, HIF-3 is less well
known. Other studies have shown that HIF-3α can act as a
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target gene of HIF-1 and negatively regulate the activity of
HIF-1 and HIF-2 [19].

The present review is aimed at summarizing the profi-
brotic role and molecular regulation of HIF-1α on kidney
damage, illustrating the interaction between HIF-1α and
oxidative stress, and providing new insights for renal injury
and aberrant tissue repair.

2. The Progression of Renal Fibrosis

Renal fibrosis is the final outcome of various kidney injuries
and diseases. Although the reasons for fibrogenesis are
diverse in different kidney diseases, the pathological process
is similar. Usually, renal fibrosis can be artificially divided
into four overlapping stages named as priming, activation,
execution, and progression, respectively, according to differ-
ent characteristics. Priming, the earliest stage of fibrogenesis,
inflammatory cells can infiltrate into the kidney and be acti-
vated to secrete a variety of factors, such as chemokines,
cytokines, and reactive oxygen species because of tissue
damage. And then, secreted cytokines stimulate cells to
undergo transformation and transdifferentiation to a myofi-
broblast phenotype, which expresses α-smooth muscle actin
and produces a large amount of ECM proteins during the
activation phase. In the stage of execution, ECM are accu-
mulated in the interstitials and modified to resist proteolytic
enzyme. The last stage of fibrosis is progression, which
involves several types of kidney injuries, such as renal tubu-
lar atrophy and capillary rarefaction [20–22]. It is worth not-
ing that the pathological process is irreversible once fibrosis
emerges. Thus, it is crucial to understand the mechanism of
renal fibrosis clearly and prevent fibrogenesis timely at the
early stage of renal disease.

3. Oxidative Stress

Under normal physiological conditions, the body can produce
a small amount of reactive oxygen species (ROS) [23]. And
free radical scavenging enzymes and antioxidants maintain
the balance of oxygen metabolism through activating tran-
scription factors, regulating physiological active substances
and inflammatory immunity, and promoting cell proliferation
and differentiation, which has extensive physiological signifi-
cance. However, once the levels between ROS and reactive
nitrogen species (RNS) and antioxidant defense system cannot
keep balance, oxidative stress appears [24, 25].

ROS is the main member inducing oxidative stress
in vivo, mainly including superoxide anion and hydrogen
peroxide. In cells, a large number of ROS are generated by
the mitochondrial electron transport chain and cytochrome
P450 family, and xanthine oxidoreductase, reduced nicotin-
amide adenine dinucleotide phosphate oxidase (NOX),
nitric oxide synthase, and other catalytic enzymes greatly
affect the generation of ROS [26]. RNS is a class of nitric
oxide- (NO-) centered derivatives produced by the reaction
of NO with ROS, including NO, nitrogen oxygen anion,
nitrosothiols, and peroxynitrite. Excessive ROS and RNS
can react with intracellular lipids, nucleic acids, and pro-
teins, leading to lipid peroxidation, DNA oxidative damage,

and intracellular protein denaturation, causing damage to
cellular structure and function [27]. And oxidants can also
act as signaling molecules to change intracellular signaling
pathways and even gene expression [28]. In addition, oxida-
tive modification can promote abnormal cell growth, inflam-
mation, and other physiological processes [29, 30].

4. Hypoxia Inducible Factor-1

HIF-1 is a basic heterodimeric helix-loop-helix transcription
factor and consists of an adjustable oxygen-sensitive α-subunit,
HIF-α, and a constitutively expressed β-subunit, HIF-β.
Hypoxia is the main regulation factor of physiologic HIF-1
expression. Besides, it is important to notice that HIF-1α
overactivation can also be stimulated by some other mecha-
nisms [31, 32].

4.1. Regulation of HIF-1 Hydrolysis. Oxygen-induced
hydroxylation is one of the most important regulated path-
ways for HIF-α. Under normoxia, oxygen-dependent proline
degradation domains on HIF-α can be hydroxylated by PHD
[33]. Hydroxylated HIF-α can combinate with ubiquitin and
be degraded by proteasome following the activation of von
Hippel-Lindau tumor suppressor protein (pVHL), with the
latter acting as a ubiquitin ligase to promote proteolysis of
HIF-α. Factor inhibiting HIF (FIH) can also inhibit the tran-
scriptional activity of HIF-α by hydroxylating asparaginic
acid, while, under hypoxic conditions, the activity of PHD
and FIH is suppressed, which further inhibits the hydroxyl-
ation and hydrolysis of HIF-α. Subsequently, the stabilized
HIF-α dimerizes with HIF-β and translocates into the
nucleus, activating a targeting gene [34].

4.2. HIF-1 Mediated Profibrotic Change. As a transcription
factor, HIF-1 activation can regulate the expression of eryth-
ropoietin, vascular endothelial growth factor, endothelin-1,
glucose transporters, and some other target genes, affecting
erythropoiesis, angiogenesis, and energy metabolism, during
which it governs the initial adaptation process to hypoxia,
improves tissue oxygenation and cell survival, and to some
extent offsets some harmful effects [9–11]. Although HIF-1
can reduce hypoxic-related damage under short-term hyp-
oxia, increasing findings have suggested that HIF-1 can also
play a significant role in the initiation and progression of
kidney disease [12, 35–37]. Wang et al. demonstrated that
chronic ischemia-induced overactivation of HIF-1α in the
kidney mediates chronic renal damage [32]. Kimura et al.
performed 5/6 nephrectomy on normal and VHL-knockout
mice, finding that HIF-1 expression was stable and interstitial
fibrosis was significantly severe in tubular epithelial cells of
VHL-deleted mice [38]. And Baumann et al. found that
knockout of the podocyte HIF-1α gene can prevent glomeru-
lar type I collagen accumulation and glomerulosclerosis [35].
Thus, HIF seems to promote the formation and development
of fibrosis during kidney damage. Generally, renal fibrosis is
characterized by inflammation, myofibroblast transformation,
and extracellular matrix deposition [20, 21, 22]. Many
researches have also demonstrated that HIF-1 may promote
extracellular matrix remodeling to mediate renal fibrosis by
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inducing inflammation, EMT, collagen deposition, and ECM
stiffening [39–41].

5. Contribution of Oxidative Stress to HIF-1-
Mediated Profibrotic Changes

It has been described that during hypoxia, mitochondria
increased the production of ROS, leading to inhibition of
PHD activity and subsequent stabilization of HIF-1α protein
[41]. Wang et al. have also demonstrated that ANG II stim-
ulated H2O2 production, which inhibited PHD activity and
thereby upregulated HIF-1α levels and consequently acti-
vated the tissue inhibitor of metalloproteinase, resulting in
collagen I/III accumulation in cultured renal medullary
interstitial cells [31]. PHD2 is the main subtype of renal
PHD, mainly expressed in renal medulla. High salt intake
initially increased renal tubular activity and decreased renal
medullary oxygen level, thereby inhibiting PHD2 activity
and activating HIF-1α-mediated adaptive genes. Proteins
encoded by these genes produced medullary protective
factors including NO, which in turn inhibited PHD2 [42].
Additional studies have suggested the involvement of PI-3K
and ERK in NO-mediated HIF-1α accumulation [43, 44].
Others have also reported an increase in transcription
of HIF-1α under hypoxia by ROS through induction of
PI-3K/AKT and ERK phosphorylation [45, 46]. Oxidative
factors can regulate the expression and activity of HIF-1
via PHD, ERK, and PI-3K/AKT.

While there is impaired PHD2 response to high salt in
Dahl rats, increased oxidant stress might be one of the
mechanisms. It is possible that high salt-induced oxidative
stress induces PHD2 and thereby reduces HIF-1α levels in
the renal medulla in Dahl S rats. Because of superoxide
anion, it has been demonstrated to stimulate PHDs and
thereby inhibit HIF-1α [47, 48]. Therefore, details of oxida-
tive stress and PHD activity need to be clarified in future
investigations. The relationship of oxidative stress and
HIF-1 might be complex than our imagination. For example,
it may be different in diverse animal models or distinct
periods of diseases.

5.1. OS/NF-κB/HIF-1 Signaling. Normally, inflammatory
response is a process that the body resists to pathogen infec-
tion, which is controllable. However, if inflammatory
response lasts a long time, it will cause damage and diseases
to the body [49]. It is accepted that hypoxia is a common
feature and an important cause of most inflammation. Stud-
ies have found that most kidney damage started with inflam-
mation [50]. The nuclear factor-kappa B (NF-κB) pathway is
necessary for the expression of various proinflammatory fac-
tors under hypoxia, including TNF-α, IL-8, and IL-1β [51].

The study conducted by Jin and his colleagues has dem-
onstrated that the oxidative stress/NF-κB signal pathway
contributed to the formation of unilateral ureteral obstruc-
tion renal interstitial fibrosis [52]. Under hypoxic environ-
ment, excessive ROS can activate the NF/κB signaling
pathway and then promote the expression of HIF-1α [53].
HIF-1α and NF-κB signaling is highly dependent. Hypoxia
and/or inflammation lead to increased NF-κB and CCAA

T/enhancer-binding protein delta (CEBPD) activity. CEBPD
subsequently binds to the HIF-1α promoter and regulates
HIF-1α signaling, thereby promoting inflammatory cell
infiltration and inflammatory cytokine secretion in the renal
tubulointerstitial region [54]. Zhao et al. showed that HIF-1α
was upregulated in the kidneys of wild-type aristolochic acid
nephropathy mice, accompanied by proximal tubular cell
G2/M arrest and renal fibrosis [36]. Greijer and van der Wall
have suggested that HIF-1 may inhibit the expression of
cyclin-dependent kinase 1 and cyclins B1 and D1, leading
to cell cycle G2/M arrest and promoting apoptosis in renal
tubules [55]. Apoptosis induced by HIF-1 can release inflam-
matory mediators such as IL-1β and TNF-α, altering local
renal microenvironment to trigger inflammation and fibrosis
[56–58]. What is more, it has been shown that inflammatory
cytokines can upregulate HIF-1α by MAPKp38 and via
PI-3K/AKT phosphorylation [59].

Nevertheless, HIF can also inhibit renal inflammation by
regulating Bcl-2 family genes, interacting with p53 or target-
ing mitochondrial enzymes to reduce tubular cell death [60,
61]. It can be seen that due to the complexity of the occur-
rence and development of inflammation, HIF-1α may play
different roles in different stages of its development, which
needs further study.

5.2. OS/HIF-1α /TGF-β Signaling. The activation of the
NF/kB signaling pathway also plays an important role in
the process of EMT and renal interstitial fibrosis in renal
tubules [62]. EMT and ECM deposition are the key during
renal aberrant trauma repair, which leads to fibrosis [63,
64]. During the process of EMT, proteins, such as e-cad-
herin, normally expressed by epithelial cells are lost and cell
transdifferentiation markers, such as α-smooth muscle actin
and fibroblast-specific protein 1, are obtained. An interesting
finding shows that HIF-1α inhibited by short hairpin RNA
can block the increasing expression of α-smooth muscle
actin (SMA) in rats with a clipped kidney [32]. Higgins
et al. found that activation of HIF-1 signaling in renal epithe-
lial cells was associated with the development of chronic renal
disease [64]. Experimental studies have shown that HIF-1 can
activate various transcriptional regulators to promote mesen-
chymal transition by upregulating lysyl oxidase-like 2, B
lymphoma Mo-MLV insertion region homolog1 (Bmi1), and
Twist [12, 65, 66]. It has been demonstrated that HIF-1α
stimulated collagen accumulation by activation of fibrogenic
factors, such as connective tissue growth factor, plasminogen
activator inhibitor, tissue inhibitor of metalloproteinase, and
collagen proline and lysine hydroxylase [35, 67–69].

Transforming growth factor- (TGF-) β is considered to
be the prototypical cytokine in renal fibrosis, which not only
regulates the transformation of epithelial-mesenchymal cells
to form myofibroblasts but also regulates the production and
degradation of ECM [70, 71]. Zhou et al. indicate that ROS
and HIF participate in hypoxia-induced TGF-β production
[72]. HIF-1 accumulation can significantly enhance TGF-β
expression [73–75]. TGF-β can upregulate gene expression
of Nox4 NADPH oxidase or directly activate NADPH
oxidase to generate ROS, which was reported to stabilize
HIF-1α by decreasing PHD2 to reduce HIF-1α prolyl
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hydroxylation [76]. Das et al. found that the expression of
NOX4 caused by TGF-β activation can be reduced by block-
ing Smad2 or Smad3, which suggested that TGF-β/Smad2/3
upregulated NOX4 and induced ROS generation, such as
H2O2, which played an important role in the progression
of renal fibrosis [76–78]. In TGF-β-treated renal tubular epi-
thelial and mesangial cells, mammalian target of rapamycin
complex-1 and Smad3 can also interact to increase the
expression of HIF-1 and collagen [79]. Thus, TGF-β and
ROS/HIF may form a feedback loop to maintain a prolonged
signaling cascade initiated by either ROS/HIF or TGF-β.

5.3. miRNA/OS/HIF Signaling. The researches focused on
the role of microRNA and HIF-1 during renal disease have
also become more and more popular in recent years. Micro-
RNAs (miRNAs), small noncoding RNA molecules, can
combine with 3′ untranslated regions of their target messen-
ger RNA to inhibit their translation and thus regulate gene
expression. A large number of studies show that miRNAs,
such as miR217, miR23a, and miR-155, are closely related

to the occurrence and development of renal fibrosis
[80–84]. Recent studies have found that microRNA can reg-
ulate the expression or activity of HIF-1 by interfering with
ROS production.

Increased miR-217 promotes inflammation and fibrosis
in rats’ glomerular mesangial cells cultured with high glu-
cose through upregulating ROS, activating HIF-1 signaling
pathway, and mediating cell apoptosis [80, 81]. miR-23a reg-
ulates cardiomyocyte apoptosis by suppressing the expres-
sion of MnSOD [82]. Li et al. also suggested that HIF-1
can induce exosome miR-23a expression, mediating the
interaction between tubule epithelial cells and macrophages
in tubule interstitial inflammation [83]. Xie et al. demon-
strated that HIF-1α can increase the level of miR-155, thus
promoting ETM and fibrosis both in vivo and in vitro [84],
while miR-155-5p inhibitor treatment significantly decreased
ROS generation and H2O2 concentration in HK-2 cells
incubated with oxalate [85]. Therefore, we speculate that
miR-155-5p mediated EMT by upregulating ROS, thereby
activating HIF-1 signaling, which may form a vicious cycle.
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Figure 1: Contribution of oxidative stress to HIF-1-mediated profibrotic changes during the kidney damage. (1) Under normoxia, HIF-α
can be hydroxylated by PHD. Hydroxylated HIF-α can combinate with ubiquitin and be degraded following the activation of VHL, (2)
while, under stress conditions such as hypoxia or inflammation, the increased ROS can suppress the activity of PHD, which further
inhibits the hydroxylation and hydrolysis of HIF-α. (3) Meanwhile, excessive ROS can activate NF/κB signaling and then promote the
expression of HIF-α. (4) Stabilized HIF-α dimerizes with HIF-β and translocates into the nucleus, activating a targeting gene. HIF-1 can
promote apoptosis and lead to the release of inflammatory mediators such as IL-1β and TNF-α, triggering inflammation, while
inflammation can aggravate hypoxia and oxidative stress further. Besides, HIF-1 may promote EMT and ECM deposition to mediate
profibrotic changes by activating various transcriptional regulators and fibrogenic factors. (5) HIF-1 accumulation can also significantly
enhance TGF-β expression. TGF-β can upregulate gene expression of Nox4 NADPH oxidase or directly activate NADPH oxidase to
generate ROS, which may form a vicious cycle to lead to renal fibrosis. (6) In addition, HIF-1 can also regulate the expression of various
microRNAs such as miR217, miR23a, and miR-21, then affecting the generation of ROS and promoting the development of fibrosis via
activating PI-3K signaling.
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In addition, miR-21 in extracellular vesicles may induce EMT
through enhancing HIF-1α expression, and caloric restriction
alleviates aging-related fibrosis of the kidney through downreg-
ulation of miR-21 [86]. It has also been shown that miR-21 is
induced by H2O2 in vascular smooth muscles [87]. miR-21
silencing enhanced mitochondrial function, which reduced
mitochondrial ROS production and thus preserved tubular
functions. It is possible that the interplay between miR-21
and ROSmay lead to the activation of AKT and ERK pathways
and contribute to miR-21 regulation of HIF-1α [88].

6. Conclusion

With the aging of the social population, more and more
patients now suffer from diabetes, hypertension, chronic
kidney disease, and fibrosis, especially in developed coun-
tries [89–91]. Hypoxia and oxidative stress play an indis-
pensable role in the occurrence and development of renal
damage induced by these factors [92]. ROS accumulation
during hypoxia promotes inflammation through activating
NF-κB and mediating crosstalk with HIF-1 signaling.
Besides, ROS can stabilize HIF, inducing TGF-β gene
expression. Elevated TGF-β levels sustain the ROS produc-
tion, maintaining prolonged ROS/HIF/TGF-β signaling.
The possible interaction between microRNA and HIF-1
may provide a sight for revealing the profibrotic changes of
HIF-1. The crosstalk of HIF-1 with other classical intracellu-
lar fibrogenic signaling pathways may be necessary to
amplify fibrotic pathological response (Figure 1).

However, the results on studying the role of HIF-1 in
renal fibrosis seem to be much more complex. Kapitsinou
et al. found that the stable expression of HIF can inhibit cell
apoptosis and inflammatory response and significantly
reduce AKI-related renal fibrosis [93]. In addition, HIF-1
has been found to contribute to the activation of forkhead
box O3, leading to increased autophagy and reduced oxida-
tive damage, thus playing a role in renal protection [94].
Inconsistent results may be caused due to diverse experi-
mental conditions, nature and duration of animal models,
and methods of manipulating HIF activity. It is worth noting
that these harmful or protective mediators are not always
easily distinguished. The overall effect depends on the inten-
sity and duration of their expression.
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