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Nonequilibrium quantum dynamics of many-body systems is the frontier of condensed
matter physics; recent advances in various time-resolved spectroscopic techniques con-
tinue to reveal rich phenomena. Angle-resolved photoemission spectroscopy (ARPES)
as one powerful technique can resolve electronic energy, momentum, and spin along
the time axis after excitation. However, dynamics of spin textures in momentum space
remains mostly unexplored. Here, we demonstrate theoretically that the photoexcited
surface state of genuine or magnetically doped topological insulators shows intriguing
topological spin textures (i.e., tornado-like patterns) in the spin-resolved ARPES. We
systematically reveal its origin as a unique nonequilibrium photoinduced topological
winding phenomenon. As all intrinsic and extrinsic topological helicity factors of both
material and light are embedded in a robust and delicate manner, the tornado patterns
not only allow a remarkable tomography of such important system information, but
also enable various unique dichroic topological switchings of the momentum-space
spin texture. These results open a direction of nonequilibrium topological spin states
in quantum materials.
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The recent decade has witnessed significant advances in the detection means of ultrafast
light-induced phenomena (1, 2) in terms of time-resolved spectroscopic techniques,
including angle-resolved photoemission spectroscopy (ARPES) (3–5), terahertz pump-
probe scanning–tunneling microscopy, optical conductivity measurement (6–9), etc.
Unprecedented precise access into the inherently time-dependent phenomena is beneficial
and important to both the fundamental interest in nonequilibrium physics and the prac-
tical connection to ultrafast manipulation of novel quantum degrees of freedom toward
application (10–12). To this end, a robust low-dimensional nontrivial system would be
a versatile playground for such surface-sensitive pump-probe–type investigations. The
protected surface state of the topological insulator fits into this role for its long-enough
mean free path and lifetime and also, for excluding the insulating and spin-degenerate bulk
influence (13–15). The tunable exchange gap from controlling magnetic doping further
allows for demonstrating both massless and massive Dirac physics (16–19).

However, nonequilibrium spin dynamics is usually studied in time domain or real space
only (20, 21). For the surface state, it has been focused on the equilibrium spin-orbit cou-
pling features (22, 23) and the photo-driven steady-state or highly pumped charge current
responses (24–29). The nonequilibrium phenomena of light–matter interaction in this
system remain largely buried partially due to the little appreciated spin-channel physics. In
fact, such information connects well to the state-of-the-art experimental reach; for exam-
ple, spin-resolved angle-resolved photoemission spectroscopy (SARPES) has been estab-
lished in equilibrium and as well, extended to time-dependent measurement well below pi-
cosecond resolution (5, 22, 23, 30–34). As an example of the new front of nonequilibrium
quantum dynamics of topological matters, we draw attention to this highly informative
time-dependent signal in an optical pump-probe experiment upon the surface state.

In particular, we simulate the irradiation of a terahertz short laser pulse, which can
be either linearly polarized (LP) or circularly polarized (CP) (35), to pump across the
exchange gap and then, detect the SARPES signal after a controllable delay time with a
probe pulse. Apart from possible resonant transition, virtual excitation at the early stage of
time evolution is a purely quantum mechanical effect and can turn the system into a many-
particle coherent nonequilibrium state. Surprisingly, the SARPES signal exhibits robust
and topological tornado-like spiral structures in the two-dimensional (2D) momentum
k space, which can be characterized by topological indices. This happens in both the
normal and in-plane spin channels and embeds a delicate relation to three helicity factors
determining the pumped system: intrinsic helicity of the surface state χ=±1, sign of the
Dirac mass ν = sgn(m), and extrinsic helicity τ = 0,±1 for LP and right or left CP lights,
respectively. Depending on these, the tornado-like responses can dichotomously change
characteristic winding senses and even dichroically switch between topological and trivial
as a Z2-like topological optical activity.
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Results

Model and Time Evolution. We consider the 2D massive Dirac
model and henceforth, set �= 1 and

H0(k) = d(k) · σ = v(kxσ2 − χkyσ1) +mσ3 [1]

to represent the surface state with spin Pauli matrices (σ0,σ) =
(I ,σ1,σ2,σ3). We include the χ=−1 case possible when
Cn>2 rotational symmetries are broken. The two bands εk± =
d0(k)± d(k) if we include the spin-independent quadratic term
d0(k)σ0, which is henceforth dropped as it does not affect spin-
channel response from interband transitions. The hexagonal
warping strength c6 measured in the dimensionless quantity
c6k

2
0 /v � 1 makes it negligible with the characteristic wave

number k0 introduced later (36, 37). Therefore, our prediction
is fully based on the leading order response in real systems.
The ARPES light source typically bears a beam spot size 10 to
100 μm upon the sample (1, 5, 35, 38), which requests one
to consider physical phenomena at the optical long-wavelength
limit as the experimentally most relevant scenario, in contrast
to the otherwise interesting space-resolved nano-ARPES or
scanning Kerr magnetooptic microscopy study (39–41). We
thus introduce a spatially uniform Gaussian vector potential
for the pump pulse vertically shone onto the xy plane A(t) =
A0 exp(−t2/2t20 ) [x̂ cosΩt + τ ŷ sinΩt ], where τ = 0,±1 and
t0 is the temporary width. The conserved momentum enables us
to derive the full electromagnetically coupled Hamiltonian from
Peierls substitution

Ĥ (t) =
∑
k

ψ†(k) [H0(k) + e∂kH0(k) ·A(t)]ψ(k) [2]

with ψ(k) = (ψk↑,ψk↓)
T. The time-dependent spinor operator

ψkα(t) for α=↑ / ↓ can be obtained via the equation of motion
(EOM), which relates to the double–time matrix removal Green’s
function with nonequilibrium occupation and excitation infor-
mation G<

αβ(k , t1, t2) = i〈ψ†
kβ(t2)ψkα(t1)〉 (42, 43) (Materials

and Methods).

Time-Dependent SARPES Signal. We generalize the time-resolved
ARPES theory to obtain the time-dependent SARPES intensity
matrix (44, 45) P(ε, k , t) =−i

∫
dt1dt2 e

iε(t1−t2)s(t1 − t)

s(t2 − t)G<(k , t1, t2), with s(t) = (2πt2pb)
− 1

2 e−t2/2t2pb the
isotropic probe pulse of width tpb and the spin-polarized
photocurrent intensity Iα ∝ Pαα (SI Appendix, note 1). Then,
we define

Pi(ε, k , t) = Tr[σiP(ε, k , t)], i = 0, 1, 2, 3 [3]

successively for the density and three spin channels to be our main
focus since the SARPES polarization reads (e.g., for z direction)
Pz =

I↑−I↓
I↑+I↓

= P3

P0
. As we mainly consider a probe pulse well

separated from the pump pulse (t � t0), we can stick to the
present Hamiltonian gauge and are free from gauge invariance
issues (46, 47).

The pump field renders the original Dirac bands no longer
eigenstates, and occupation can in general change; in the (ε, k)
hyperplane, not only on-resonance real transition can happen
when the gap Δ= 2m < Ω, which is the case shown in Fig. 1,
but also, off-resonance virtual excitations significantly contribute,
constituting a transient redistribution along the ε axis per the
particle conservation as a sum rule–like constraint. After the
pump field fully decays, Dirac bands return to be eigenstates. For
the density channel, shown in Fig. 1 A, a1, B, b1, and C, c1,

this implies that, except for resonant interband transition, the
signal should mostly become stable after the pumping transients.
However, in the spin channel, pumping has already left relics
of light–matter interaction. Each momentum accommodates a
two-level system and is subject to the common photoexcitation.
This leads to a highly nontrivial correlation of excited spin orbit–
coupled states in k space as the central cause of the SARPES
tornado textures discussed below. Indeed, collective quantum
oscillation effect can emerge near some hot region in the (ε, k)
hyperplane of SARPES, centered at the band midpoint as shown
in Fig. 1 B, b2–b4 and C, c2–c4). This is because the spin channel
extracts the Rabi-like oscillatory information due to interband
coherence even as Ĥ loses time dependence after the pump pulse.
Note also that, as is physically originated from the spin-channel
interband quantum oscillation, the real resonant pumping, if any,
is insignificant for the hot region signals, which will also become
clear later with the analytical result Eq. 6.

The probe pulse width tpb is a double-edged sword per the
uncertainty relation; smaller tpb gives better time resolution but
less energy resolution and vice versa. It thus broadens the tran-
sient process and smears the SARPES energy levels. Furthermore,
a certain amount of relaxed energy conservation δε∼ 2π/tpb
and the associated momentum range δk ∝ δε/v can actually
enhance the signal from off-resonance oscillations and provide
the hot region characteristic scales because energy-sharp bands
are incapable of capturing the quantum oscillations. Certainly,
too poor energy resolution would otherwise mix contributions,
for instance, from both the lower band and the possible higher
occupation due to resonant transition. We also emphasize that this
quantum nonequilibrium phenomenon goes beyond the semiclas-
sical picture (48); neither the pumping process nor the interband
coherent dynamics at any time can be captured by the wave packet
description within a single band. Direct evidence is the anomalous
tornado rotation as the quasiparticle trajectory, which is otherwise
not expected after the driving electric field in the pump pulse dies
out.

Nonequilibrium Tornado Responses. The most interesting
information lies in the k -space spin texture P(ε, k , t) =
(P1,P2,P3) within an energy slice in the hot region, where
robust tornado-like structures widely appear as shown in Fig. 2
(SI Appendix, Figs. S1–S3 show cases with different χ, ν). Such
an energy-momentum hot region lies in general away from
where resonant real transitions happen since the tornado mainly
originates from coherent virtual excitations, which will be seen
also from analytical results. As aforementioned, there are three
helicity factors χ, ν, τ at play during the light–matter interaction,
for which the subsequent nonequilibrium tornado response turns
out to be an exceptionally apt and reliable bookkeeper. For
any tornado pattern, one can intuitively identify the rotation
sense helicity Ξs =±1 of the spiral and the number Rs of
repeating spiral arms. Practically, Ξs = sgn[∂k∗/∂θk ] with θk the
azimuthal angle of k and k∗(θk ) any polar-coordinate contour
line in a spiral arm. These two lead to the universal topological
spiral winding number

Ws = ΞsRs . [4]

We exemplify these quantities in Fig. 3. For the in-plane orien-
tation φ(k) = tan−1 P in(k) of the vector field P in = (P1,P2),
Ws is readily determined by a combination of φ ’s radial and
azimuthal variations. φ(k) has a definite ordering, K = sgn(∂kφ)
(i.e., the rainbow order along the radius in our illustration). The
latter is encoded in a topological circular winding number
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Fig. 1. Nonequilibrium SARPES signals in the (ε, kx) plane. P0, P1, P2, P3 successively in the density ρ and spin S channels of a magnetic topological insulator
surface state at three different times. White dashed curves in A, a1, B, b1, and C, c1 indicate the surface-state band dispersion. The band broadening
originates from finite probe pulse width. Parameters are χ = τ = 1, t0 = tpb = 3, Ω = 1.2, v = 1, m = 0.4, A0 = 0.1, ky = 0.01, β = 50, μ = 0, e = � = kB = 1. (A)
The t = −60 signal before pump pulse irradiation exhibits equilibrium response; only the lower band is visible due to the relatively low temperature specified
by β = 1/(kBT) and in-gap chemical potential. The 90◦ out-of-phase spin-momentum locking manifests in the spin channels. P1 is weak compared with others
due to small ky . P2 reverses sign between positive and negative kx axes. P3 is made finite purely by the finite exchange gap. (B) At t = 15 after the pump pulse
centered at t = 0 almost fully decays, resonant real transition appears as two spots in the upper band in P0. The spin channels exhibit a signal hot region
centered at ε = 0 and kx = 0, which is oscillatory in time and momentum. This is clearly seen in P1 for the weak background from real band occupations,
compared with P2, P3. (C) At a later time t = 24, while the density channel remains nearly time independent after the pumping process, the hot region signals in
the spin channel evolve in time with increasing fine structures, implying that it originates mainly from virtual excitations and the coherent quantum oscillation
correlated in momentum space.

wφ =
1

2π

∫
Ck

dk · ∇φ(k) [5]

along a counterclockwise circle Ck of any radius k in the 2D
k plane. We hence obtain Ws =−Kwφ. Note that, depending
on the helicity factors, any two of K,wφ,Ws can switch signs
independently, and the two together determine the topological
tornado features. On the other hand, for a scalar field with less
information, P3, or the amplitude |P in|, only Eq. 4 is relevant
and suffices to specify the tornado pattern, which will later be cast
in the same form as Eq. 5 from the analytical result.

Table 1 summarizes the correspondence between the three
helicity factors and five related aspects in P3 and P in. The
dichroic strong/weak response strength of P3 happens with CP
light and can be owed to the dipole interband matrix element
〈±|v̂ |∓〉 involving the orbital magnetic moment M(k) (49,
50). Additionally, the P3 tornado displays the extrinsic (intrinsic)
helicity factor(s) pinpointedly under CP (LP) light pumping.
This is understood as the intrinsic helicities are only transparent
under the nonchiral LP light and otherwise, overridden by the
extrinsic electric field rotation driving the electrons. These features
constitute a perfect tomography of the defining helicity parame-
ters of the surface-state system and the light–matter interaction,
especially given the topological robustness characterized by Ws .

However, although tornadoes always exist in the spin-Sz signal
P3, their appearance in the vectorial orientation φ(k) of P in is
intriguingly selective. Considering the nonequilibrium excitations
due to the pumping, its winding number 2 presumably reflects

the Berry phase contribution from both particle and hole. Most
significantly, with other parameters provided, either Ws or wφ is
nonzero only for one type of CP light, making it an intriguing
topological optical activity: dichroic Z2 topological switching be-
tween trivial and nontrivial nonequilibrium responses. Therefore,
in addition to the helicity Ξs =±1 dichroic switching of P3,
the Z2 P in response hints at further possibly interesting ultrafast
spintronic applications taking advantage of the two types of all-
optical two-state control.

In fact, the interplay between extrinsic and intrinsic factors can
also be unmasked through the amplitude |P in|, which exactly
follows the response of P3 except a doubled Ws , as exemplified in
Fig. 3B. Unlike the P3 response, aforementioned φ ’s radial varia-
tion K is purely locked to ν, giving rise to a stable characterization
of the sign of Dirac mass independent of any other factors. Lastly,
in the case of negative spin-orbit coupling that reverses the sign
of Fermi velocity v, only a sign change of P in is induced in the
in-plane response that does not alter any topological features (51,
52).

The massless side of the phenomena is presumably simpler;
every dichotomous response no longer exists if directly involving
the mass sign ν, and only CP light remains active. The purely
dichroic tornado in P3 and |P in| persists. Vanishing mass, how-
ever, leads to singular π jump in the in-plane φ along the radial
direction (e.g., Fig. 2 A, a2); the tornado trajectory of such a
domain wall follows the driven dichroic helicity. φ ’s variation
(i.e., color rotation along the tornado arms) naturally inherits the
intrinsic winding sense χ as in the massive case, although the do-
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Fig. 2. Nonequilibrium tornado-like responses in the (kx , ky) plane. Equilibrium response subtracted SARPES signals [normal direction P3 and in-plane Pin =
(P1, P2)] at (A) t = 15 and (B) t = 24 after the pump pulse. The energy cut at band midpoint ε = 0 is adopted without loss of generality. (A, a1 and B, b1) Positive
mass (ν = 1) and (A, a2 and B, b2) massless case for fixed surface-state helicity χ = 1. Pump light dependence (τ = 0, ±1 for LP along the x axis and right/left
CP) is displayed across the columns. Scalar P3 is plotted for spin-Sz signal. In-plane spin orientation angle φ = tan−1 Pin is plotted according to the rainbow
color wheels in Insets; magnitude |Pin| is shown in opacity with maximal |Pin| indicated below each color wheel. Selected Pin vector arrows are shown with
corresponding magnitude and orientation. Fig. 3D shows an enlarged illustration. Topological tornado-like spirals appear except for in the gapless case under
LP light. As time elapses, from A to B, tornadoes evolve and rotate, and more tornado arms will be accommodated within a fixed k-space region. Tornado
responses as the distinguishing feature in relation to all three helicity factors are summarized in Table 1. Dichroic P3 tornado switching helicity with different CP
lights (A, a1 and B, b1; τ = ±1 case of P3) is in stark contrast to the Z2-like Pin tornado, which appears only under one particular CP light in the gapful case (A, a1
and B, b1; τ = −1 case of Pin). φ in the gapless case exhibits π jump, due to vanishing Pin, along the radial direction once it goes across a spiral arm (A, a2 and
B, b2; case of Pin). Parameters are the same as in Fig. 1.

main wall prevents it from completing a quantized winding. The
apparent distinction between the massive and massless responses
is smoothly connected in the cross-over regime |m|t ∼ 1. For
instance, a tiny amount of magnetic doping (|m|t � 1) follows
the massless behavior, and the late time response of finite doping
(|m|t � 1) generally obeys the massive response pattern.

Physical Mechanism of Tornado. As seen previously, instead of
the possible real transition, virtual excitations giving rise to off-
diagonal coherence of electronic density matrix contribute to the
tornado formation. On top of the ground-state spin momentum–
locked concentric ring-like spin texture, we can intuitively view
the optical pumping as producing a coherent k -dependent matrix
element and concomitant phase accumulation; the nontrivially
correlated phase along the ring rotates the spins to yield the
tornado. This in a way resembles the gas laser, where independent
molecules are excited and brought in a correlated nontrivial coher-
ence by the light working as glue. To gain quantitative insight into
the nonequilibrium response, we resort to the Keldysh formalism
to calculate the crucial G<(k , t1, t2) and hence, the SARPES
signal Eq. 3. In this regard, the linear response is tractable and
particularly useful as it captures leading virtual excitations but
discards real transitions, given that the realistic pumping field is
often well within the linear response regime. In addition, since the
tornado response is of a stable topological nature, the features can
persist even beyond as the above relatively larger field calculation
confirms.

The analytical result matches the previous exact calculation
in the linear response regime as it should. For the late time

behavior of our main interest, we can derive an exceptionally
simple expression for general two-band systems:P (1)

0 (ε, k , t)≡ 0
and

P (1)(ε, k , t) =
2A0W (k)

d2

(
fεk− − fεk+

)
F (ε)P̃(k , t) [6]

with fεk± the Fermi function for the upper and lower bands εk±.
The vanishing result in the density channel confirms the recovery
of stable energy eigenstates after the pump’s influence. For the
spin channel, the dependence on occupation difference in the
two bands indicates the optical inertness of both bands being
empty or filled. The energy function in a Gaussian form F (ε) =

e−(ε−d0(k))
2t2pb , where we include d0(k) for completeness, ex-

plains the aforementioned SARPES hot region. The energy range
is limited by the probe pulse width; the signal is symmetric with
respect to the band midpoint as a result of the interband quantum
oscillation. The momentum envelope function takes a more com-
plex form W (k) =

√
π
2 t0e

−2t20 (Ω/2−d(k))2−t2pbd(k)
2

involving
both the pump and probe; a disk-like signal centered at k = 0
can transform to an annulus-like one for large-enough Ω and t0
(SI Appendix, Fig. S5 and note 2). These envelope functions also
clarify that the absence or presence of resonant real pumping
is inessential to the tornado signal up to minor modification,
physically because the interested spin-channel signals rely on the
interband coherent dynamics in virtual excitations rather than
the real transitions. Finally, the time-dependent (k dependence
suppressed and ∂j = ∂kj )
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C D

A B

Fig. 3. Topological tornado indices illustrated in representative cases. Pa-
rameters are the same as in the Fig. 2 A, a1 massive case at t = 15. Scale
legends are omitted for simplicity as they are unimportant for the robust
tornado features. The spiral winding Ws is common for scalar signal (A) P3 for
τ = 1 or (B) |Pin| for τ = −1 and vectorial in-plane signal (C) Pin for τ = −1. Ws
determines the tornado spiral helicity Ξs = sgnWs and the number Rs = |Ws|
of repeating spiral arms. For the vectorial signal, more specific radial ordering
K and azimuthal winding wφ also exist and are combined to give Ws. C shows
the counterclockwise circle Ck used in defining winding numbers. D zooms in
on the upper right quadrant of C and exemplifies a particular vector Pin and
its orientation angle φ together with the rainbow color wheel in D, Inset.

P̃(k , t) = d {[τ(d ∂2d − d ∂2d) + d × ∂1d ] cos 2dt
+ [−(d ∂1d − d ∂1d) + τd × ∂2d ] sin 2dt}

[7]

solely accounts for all the features in Table 1. In fact, the scalar P3

or |P in| admits a generic form

f (k) sin [2nd(k)t + θ0 −Θ(k)], [8]

where f (k)> 0, n ∈ Z+, and θ0 is a constant. While it manifestly
originates from the interband coherent oscillation at frequency
2d(k), the tornado at a given t is made possible since a proper
relation between an increment of k and θk can preserve the
argument of sine. Exactly following Eq. 5, the spiral winding
number Ws is just given by the circular winding wΘ of the angle
Θ(k). Representatively, the dichroic P3 tornado reads

P̃3(k , t) = k(d(k) + χτm) sin [2d(k)t +
π

2
− τ(θk + χ

π

2
)],

[9]

which perfectly explains its appearance in Table 1. The in-plane
Z2 φ tornado bears a more delicate geometric explanation. The
condition in Table 1 exactly specifies whether P̃ in winds around
the origin and hence, the trivial or topological winding (Materials
and Methods). Correspondingly, P̃ in crosses the origin only when
m = 0 (i.e., the gap closes and hence, the singular behavior in the
massless case), which is the topological transition point along the
m axis.

To analytically glimpse into possible electronic real transition
and nonlinear effects in general, we study as well the special case
of a δ-pulse pump [e.g., A(t) = Ã0δ(t)x̂ ], which can account
for an LP light ultrashort pump (Materials and Methods). The
nonequilibrium part of SARPES signal reads

δP0(ε, k) = cE+(ε)d(k)

δP(ε, k , t) = c
[
E−(ε)d(k) + F̄ (ε)Z (α, t)

], [10]

where c =
4α(fε−−fε+)
(1+α2)2d3 , dimensionless α= veÃ0/2 quantifies

the deviation from equilibrium, E±(ε) = α(d2 − d2
y )[F+(ε)∓

F−(ε)], the Gaussian F±(ε) = e−(ε−ε±)2t2pb from the resonant
photoemission at two bands, F̄ (ε) = e−[(ε−d0)

2+d2]t2pb , and
Z (α, t) in the form of Eq. 8 encodes all linear and nonlinear
tornado effects (SI Appendix, note 4). The time-independent
δP0(ε, k) describes the result of real pumping from lower
ε− to higher ε+. The time-dependent part in the spin channel not
only matches Eq. 6 up to the linear response inα but also, suggests
the same tornado topology even deep into the nonlinear regime,
which can be confirmed from the exact response of short pump
pulses. This partially supports the robust observation of tornado

Table 1. Correspondence between nonequilibrium topological tornado responses and three system helicity
factors—intrinsic surface-state helicity χ=±1, sign of Dirac mass ν =±1 or massless case without ν, and extrinsic
pump light helicity τ = 0,±1

Massive Massless

Normal P3 and
in-plane |Pin|

Response strength χντ τ =±1 — —
Spiral winding Ws

(×2 for |Pin|)
χν τ = 0 — τ = 0
τ τ =±1 τ τ =±1

In-plane
φ= tan−1(Pin)

Radial K= sgn(∂kφ) ν — — —

Circular winding wφ
0 χντ = 0, 1

χ∗ τ = 0
2χ χντ =−1 τ =±1

Spiral winding Ws =−Kwφ
0 χντ = 0, 1 — τ = 0

2τ χντ =−1 τ∗ τ =±1

Spin-Sz signal P3(k) and in-plane signal amplitude |Pin| show the same dichroism in both the strong or weak (±1) response strength and the k-space tornado helicity Ξs = sgnWs = ±1,
although spiral winding Ws and hence, arm number Rs = |Ws| are doubled for |Pin|. The strength response combines all three factors; Ws is purely driven by extrinsic CP light, while
it manifests intrinsic factors under LP light. (The massive case |Pin| tornado can be less discernible in Fig. 2 due to obstruction from color but is otherwise observable when plotted
separately [Fig. 3B and SI Appendix, Fig. S4].) In-plane vectorial tornado signal Pin(k) contains more information than scalar signals. The azimuthal angle φ(k), encoding the in-plane
orientational variation, exhibits a mass-only dependence of K along the radial direction. Two other related topological winding numbers wφ , Ws exist in the massive case and exhibit a
Z2 topological trivial–nontrivial switching for all three factors. Ws , common in both scalar and vectorial signals, is driven by CP light (τ ) when tornado exists, as it shares the same physical
meaning of describing spiral rotation. *The singular π-jump domain wall of φ, a double-armed helicity-τ tornado, disables K, wφ , Ws in the massless case; χ determines φ ’s winding
sense away from the domain wall for any light polarization.

PNAS 2022 Vol. 119 No. 12 e2116976119 https://doi.org/10.1073/pnas.2116976119 5 of 8

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116976119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116976119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116976119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116976119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116976119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116976119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2116976119/-/DCSupplemental
https://doi.org/10.1073/pnas.2116976119


topology for moderate strength well beyond the linear response
regime and also hints that general pump pulses can eventually
deviate from the linear response prediction of tornado topology
at high-enough strength.

Discussion

To estimate realistic scales in connection to experiments, we
introduce k0 = ε0/v , ε0, the characteristic scales of wave number
and energy, respectively. While ε0 is typically given by the
exchange gap Δ∼ 55meV and hence, k0 ∼ 0.03Å−1 with
v ∼ 3× 105m/s for instance, the driving frequency Ω can
be more important for the gapless or nearly gapless case. The
dimensionless strength of the pump pulse can be characterized
by γ = evA0/Ω, which sensibly relates to the δ-pulse quantity
α= πγ. Existing experiments are estimated to fall well within
linear response (e.g., γ ∼ 0.01) (28, 31, 33) (SI Appendix, note 5).
Exemplifying at t = 0.5ps, the tornado arm width is ∼ 0.01Å−1.
The femtosecond pump pulse frequency tunes widely from
terahertz to visible; the ultrashort femtosecond probe pulse can
provide time duration 0.02 to 0.5ps, energy resolution 5 to
100meV, and momentum resolution 0.004 to 0.01Å−1 that
are able to observe the phenomena, given that SARPES signal
strength proved to fall well within the experimental reach (5, 28,
31, 33, 35). For pump pulse width about the same order of light
period 2t0 ∼ 2π/Ω with, for example, tpb ∼ t0 and Ω∼Δ, an
example observation time window after the pump pulse could
be 5 to 150t0 ∼ 0.2 to 6ps. This is feasible in comparison with
the experimental estimation of spin relaxation time at the order
of 4 to 15ps (26, 31, 53). In SI Appendix, note 6, taking into
account interaction effects, we discuss two relevant and related
relaxation timescales; while the energy relaxation time is more
easily measurable in experiments, the interband decoherence time
plays a more important role in the phenomena of our interest.
Fermi energy inside the gap is not essential since tornado signals
persist outside the Fermi ring; finite temperature simply recovers
signals inside (SI Appendix, Fig. S6). To observe and resolve
conspicuous tornado signals in a disk region, shorter t0, tpb,
and Ω not very far away from Δ can help but are not mandatory.

Our results show that the ultrafast spin-resolved response of the
optically excited topological insulator surface state is an exception-
ally apt platform of nonequilibrium topology, coherent quantum
dynamics, and light–matter interaction. The topology of nonequi-
librium spin textures in momentum space remains less addressed
in quantum materials. Two-dimensional Rashba systems and the
generalization to three-dimensional Weyl fermions as well as the
spatially nonuniform cases are interesting problems left for future
studies.

Materials and Methods
Model Hamiltonian and Time Evolution. We consider a general band elec-
tron Hamiltonian

Ĥ0 =
∑

k

ψ†(k)H0(k)ψ(k). [11]

Writing in its tight-binding form for the original lattice model, interaction with
a general external electromagnetic field A(r) can be derived from the Peierls
substitution∑

rr′
ψ†(r)H0(r, r′) eie

∫ r
r′ dr′′·A(r′′)ψ(r′)− Ĥ0

≈ ie
∑
kk′

ψ†(k)
∑
rr′

ei(k−·r++k+·r−)H0(r−)r− · A(r+)ψ(k′)

= e
∑
kk′

ψ†(k)∂k+H0(k+) · A(k−)ψ(k′)

, [12]

where we denote r− = r − r′, r+ = r+r′
2 and similarly, for k±. We use

the fact that H0(r, r′) is periodic and approximate the Peierls phase by the
midpoint-valued A accumulated along the path connecting the two sites, which is
justified as the long-wavelength electromagnetic field is slowly varying at atomic
scales. Therefore, in the optical long-wavelength limit of a spatially uniform time-
dependent A(t), we obtain Eq. 2.

The unitary time evolution can be performed via the EOM of the column field
vector ψ(t) in the Heisenberg picture

iψ̇(t) = [ψ(t), ĤH(t)], [13]

where ĤH(t) = Hαβ(t)ψ†
α(t)ψβ(t), and we neglect k dependence for

brevity. As required by the unitary time evolution of any operator ψα(t) =
Û(t)ψαÛ†(t), the equal time canonical commutation relation should always
hold:

{ψα(t),ψ†
β(t)}= δαβ , {ψ†

α(t),ψ
†
β(t)}= {ψα(t),ψβ(t)}= 0.

[14]
We adopt the ansatz that attributes operator time dependence to a coefficient ma-
trix ψα(t) = Bαβ(t)ψβ , which leads to a closed solution form for a quadratic
Hamiltonian. In the present choice of the dynamical operators, we have the
natural initial condition Bαβ(−∞) = δαβ . From Eq. 13, we can derive an
apparently nonlinear matrix EOM

iḂ(t) = B(t)M(t), [15]

where M(t) = B†(t)H(t)B(t) is Hermitian, and we use the canonical commu-
tation relation for the time-independent Schrödinger operators. To ensure the
validity of the ansatz, one can now verify the unitarity and hence, the general
Eq. 14 by the invariant B(t)B†(t) = I as a consequence of the evolution, which
can be proved from the initial condition and Eq. 15. Under this situation, we
reduce Eq. 15 to the matrix EOM

iḂ(t) = H(t)B(t) [16]

that fully determines the time-dependent system and can be solved numerically.
The double-time Green’s function with nonequilibrium information, intro-

duced in the text, can be related to

G<(k, t1, t2) = B(k, t1)G
<
0 (k)B†(k, t2) [17]

with the equilibrium Green’s function

G<
0 (k) =

∑
a=±

ifεka |ka〉〈ka|

=
(e−(d0−μ)β + cosh dβ)σ0 − sinh dβ d̂ ·σ

−i(2 cosh(d0 − μ)β + 2 cosh dβ)

[18]

specified from the band basis |ka〉 using the Fermi distribution fka =

(eβ(εka−μ) + 1)−1 and given in Pauli decomposition form.

Keldysh Response Theory. In the time-contour (forward + branch and back-
ward − branch) formalism of nonequilibrium Green’s function, we have the
Green’s function matrix

Ĝ =

[
G++ G+−

G−+ G−−

]
=

[
GT G<

G> GT̃

]
[19]

and the Keldysh rotated one

Ǧ = RĜR† =

[
0 Ga

Gr Gk

]
[20]

with R = 1√
2

[
1 −1
1 1

]
. The Dyson equation G = G0(1 +ΣG) holds for

both cases where Keldysh-space matrix multiplication and argument convolution
are understood. The corresponding self-energy matrices in the Keldysh space read
in the present case as

Σ̂(k, t; k′, t′) = Σ0 σ3, Σ̌(k, t; k′, t′) = Σ0 σ1 [21]
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with Σ0 = H′(k, t)δ(k − k′)δ(t − t′) and H′(k, t) the pumping interac-
tion Hamiltonian we derived. From the exact Dyson equation of G<,

G< = (1 + GrΣr)G<
0 (1 +ΣaGa) + GrΣ<Ga, [22]

we can obtain the linear response

G<
1 = G<

0 Σ0Ga
0 + Gr

0Σ0G<
0 . [23]

As per our purpose, we evaluate Gi = Tr[G<
1 σi] and derive the analytical

form
Gi(k, t1, t2)

=

∫ t2

−∞
dtAκ(t)Yκ

i (k, t+, t−)−
∫ t1

−∞
dtAκ(t)Zκ

i (k, t+, t−),
[24]

where κ= 1, 2, t+ = t1 + t2 − 2t, t− = t1 − t2, and

Yκ
i (k, t+, t−) =−

e−(d0−μ)β Xκ
i + Xκ

i

∣∣
t±→t±−iβ

cosh (d0 − μ)β + cosh dβ

Zκ
i (k, t+, t−) =−

e−(d0−μ)β Xκ
i + Xκ

i

∣∣
t±→t±±iβ

cosh (d0 − μ)β + cosh dβ

[25]

with deit−d0 Xκ
i (k, t+, t−) given by d(∂κd0 cos dt− − id̂ ·

∂κd sin dt−) when i = 0 and −idi∂
κd0 sin dt− + (d × ∂κd)i

sin dt+ + did̂ · ∂κd cos dt− + (d∂κdi − did̂ · ∂κd) cos dt+ when
i = 1, 2, 3. Now, Eq. 24 can be evaluated analytically using a simple special
function

I(ω, a, T) =
1
2

∫ T

−∞
dτ e

− τ2

2t20 ei[ωτ+a(t−τ)]

=

√
π

8
t0 e−

t20
2 (ω−a)2

eiat
(

1 + Erf(
T − i(ω − a)t2

0√
2t0

)

)
[26]

with ω =±Ω, a = 2d, T = t1,2. We present the detailed relation in
SI Appendix, note 2. This fully analytical theory of the double-time removal
Green’s function matches the exact numerical time evolution better and better
toward the linear response regime (e.g., when A0 < 0.05).

To elucidate the tornado responses, we especially focus on the late time
behavior where the error function in Eq. 26 approaches unity when T � t0. Now,
Eq. 3 can be further evaluated analytically. We arrive at the most general form of
the late time SARPES signal for a two-band model, P((1))

0 (ε, k, t) = 0 and

P(1)(ε, k, t) =
2A0

d

(
fε− − fε+

)
F(ε)×

{[τWs(d ∂2d − d ∂2d) + Wc d × ∂1d] cos 2dt

+ [−Wc(d ∂1d − d ∂1d) + τWs d × ∂2d] sin 2dt}

[27]

with Wc,s =
√

π
2 t0e−d2t2pb

∑
a=± ax e−

t20
2 (aΩ−2d)2

where x = 0, 1 for
Wc,s, respectively. Without affecting any topological features, one can approxi-

mate W = Wc,s =
√

π
2 t0e−

t20
2 (Ω−2d)2−d2t2pb and reach Eq. 6.

Topological Tornado Response. The topological tornado information in Eq. 7
can be seen through simplification toward the general form Eq. 8 for the specific
scenarios in a similar manner as Eq. 9. For instance, whenτ = 0, we instead have
(v = 1)

P̃3(k, t) =
√

m2k2
x + d2k2

y

× sin [2dt +
π

2
− ν(χ arctan(|m|kx, dky) +

π

2
)].

[28]

Other situations are discussed in SI Appendix, note 3.

Now, we briefly sketch the proof of the Z2 orientational Pin tornado. We
decompose −P̃in = u + v, where

u =
(
kτ · q̂

)
kχ, v = m

(
d + χτm

χτd + m

)
q̂ [29]

with k± = (±kx, ky), q̂ = (cos 2dt, sin 2dt). Given k (i.e., a circle Ck on
the 2D k plane), v is a constant vector field. While u is oriented parallel to the
radial direction of k̂χ, it vanishes at two diametrically opposite points on Ck

where kτ ⊥ q̂. In fact, the vector field u maps Ck to a new trajectory, a circle
Ck that is doubly and χ clockwisely traversed and also passes the origin twice.
For the translated circular trajectory Ck of P̃in, a key observation is that as long as
m 	= 0, k > 0,

{
P̃in = 0 lies outside Ck τ = 0 or χτν = 1
P̃in = 0 lies inside Ck χτν =−1

, [30]

which immediately dictates the Z2 response.
To see the robust correspondence to the sign of mass sgn(∂kφ) = ν

in the in-plane orientational signal φ(k), we rely on the one-form dφ=
1

|P̃in|2
(P̃xdP̃y − P̃ydP̃x). In SI Appendix, note 3, we prove that 2d

km (P̃x∂kP̃y −
P̃y∂kP̃x)> 0 when t > 1

2|m| in general holds.

δ Pulse for LP Light. Note that δ pulse is not feasible to describe a CP light
pulse since δ(t) automatically picks out one particular Hamiltonian at t = 0. For
the LP light polarized along x̂, we consider the Hermitian evolution generator
S = B†(0−)H(0)B(0−) for Eq. 15 for an infinitesimal pulse duration Δt,
leading to

S
Δt
2

|Δ→0,δ(t)Δt→1 =
α

v
B†(0−)∂1H0B(0−). [31]

It is crucial to make the δ-pulse evolution unitary, which can be achieved via the
Padé approximant that divides the pulse into two parts (i.e., t < 0 and t > 0
parts). For the δ pulse, it suffices to apply the R1,1 approximant (54)

B(0+) = B(0−)(I − iS
Δt
2

)(I + iS
Δt
2

)−1. [32]

After the pulse, we have the time evolution B(t) = U(t)B(0+) with

U(t) = e−iH0t = e−id0t
(

cos dt σ0 − i sin dt d̂ ·σ
)

[33]

since the time-dependent drive is off. Then, one can derive Eq. 10 (SI Appendix,
note 4).

Data Availability. All study data are included in the article and/or SI Appendix.
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