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High precision robust control 
design of piezoelectric 
nanopositioning platform
Huan Feng, Aiping Pang* & Hongbo Zhou

The piezoelectric nanopositioning platform requires extremely accurate tracking during the task, 
while the model uncertainty caused by load variations requires strong robustness of the system. The 
high accuracy and robustness in the control design are coupled to each other, making it difficult to 
achieve both optimally at the same time. In addition, the system itself has a weakly damped resonant 
mode, which makes it extremely difficult to control the piezoelectric nanopositioning platform 
while suppressing the inherent resonance of the system as well as meeting the requirements for 
robustness and high accuracy. For the multi-performance integrated control problem of piezoelectric 
nanopositioning platform, this paper gives two kinds of control designs (integral resonance control 
(IRC) and H∞ control) satisfying accuracy requirements and robustness, and carries out simulation 
study and comparative analysis with positive position feedback control (PPF). Simulation results 
show that the H∞ control strategy given in this paper has the smallest tracking error compared to 
PPF and IRC under 5, 10 and 20 Hz input grating scan signals, though it has a higher order, with better 
robustness to mechanical load variations and high frequency signal perturbations in the 0–1000 g load 
range.

With the introduction of the first scanning tunneling microscope (STM), atomic force microscope (AFM) and 
scanning probe microscope (SPM), the development of nanotechnology has entered a new era, and mankind 
has started to explore and innovate continuously in the microscopic world, all thanks to the development of 
piezoelectric nanopositioning systems. Nowadays, this positioning system has been widely used in high-precision 
fields such as micro-robotics, micro-assembly, micro-assembly, micro-lithography, micro-machining and micro-
scanning1–5. Piezoelectric ceramics are commonly used to drive these nanopositioners due to their advantages of 
fast kinetics, high output force, and high sub-nanometer  resolution6. In previous control studies for piezoelectric-
driven nanopositioning systems, the operating bandwidth of piezoelectric-driven nanopositioning systems was 
usually limited to 10–100 times lower than the lowest intrinsic resonant frequency of the system because the 
system has a weakly damped resonant mode. However, with the rapid development of nanotechnology, practical 
applications require higher and higher speed and accuracy for piezoelectric nanopositioning systems. As in the 
life sciences, some biological samples to be scanned have very light dynamic behaviors, such as protein molecules, 
living cells, and so on, which typically change within  milliseconds7, so it is not possible to suppress the resonant 
vibration of the system by limiting the input signal. In addition, in practical system modelling and control, there 
are various uncertainties such as external disturbances, environmental changes, time delays and other factors that 
can seriously affect the positioning accuracy of the system if not properly dealt with. Different control methods 
based on cybernetics and modeling theory are proposed for the resonant vibration, high bandwidth tracking and 
robustness problems of piezoelectric nanopositioning systems. Control methods based on feedback architectures 
are widely used because of their robustness to external disturbances and model  uncertainties8, such as adaptive 
 control9 and linear quadratic Gaussian  control10 proposed to reduce tracking errors in high-speed scanning tasks. 
However, these methods can only find controllers with good robustness when the Q-factor (represents the reso-
nant frequency of the system relative to the bandwidth) of the system is low. As the damping ratio of the system 
becomes smaller if the Q-factor of the system becomes larger, it is difficult for the above methods to achieve high 
damping performance of the controller, which cannot guarantee the robustness and accuracy of the  system11. 
To give priority attention to and solve the damping problem of piezoelectric-driven nanopositioning systems, 
model-based control strategies are proposed, such as using recursive delayed position  feedback12 to attenuate 
the resonant modes of nanopositioning stages in the internal feedback loop, resulting in a neutral-type time-lag 
system; using robust mass  dampers13 to significantly improve the platform resonant mode damping in industrial 
high-precision motion platform design; and using model-referenced  control14 in the form of pole configurations, 
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combined with integrator and filtering effects to reduce sensitivity to disturbances and uncertainties to achieve 
good tracking performance, etc.

In addition to the above work, negative imaginary number  theory15,16 provides a solution that increases vibra-
tion mode damping while maintaining robustness to modal uncertainty and non-modal dynamics at the same 
time, and this solution is suitable for dealing with resonance problems of flexible structures with weakly damped 
modes. Damping controllers designed based on negative imaginary number theory improve the bandwidth of 
the piezoelectric nanopositioning platform with good performance while suppressing resonant modes, such as 
positive position feeding back (PPF)17, positive velocity position feeding  back18, resonant control (RC)19, force 
integral feedback control, integral RC (IRC)20,21 and so on. All of the above controllers have low order, low com-
putational complexity fixed structures, making them simple to design and implement. However, each of these 
controllers has its own drawbacks in applications. The PPF controller cannot achieve arbitrary configuration 
of second-order poles in the s-plane; the integral resonant control is designed to consider model uncertainty 
in the control design, and the system robustness needs to be improved; the force-integral feedback control has 
restricted application conditions and requires the introduction of force sensors, etc.

This paper addresses the inherent weakly damped resonant modes, model uncertainty and high-speed track-
ing problems of the piezoelectric-driven nanopositioning platform and, firstly, designs the IRC control structure 
by combining internal damping control, robust control and tracking control. The internal damping controller 
is designed to suppress the resonant modes according to the damping characteristics of the system; a robust 
controller is added to the internal damping controller to limit the bandwidth of the control system and improve 
the robustness of the system; and a tracking controller is used to improve the tracking accuracy and reduce the 
steady-state error. However, in high-speed scanning tasks under IRC control, the modelling uncertainty caused 
by load variations can reduce the robustness of the system and lead to poor performance. In order to enhance 
the robustness of the system in the high-speed scanning task with load variation, this paper uses three corre-
sponding weighting functions to limit the control performance, and designs an H∞ controller that satisfies the 
requirements of bandwidth limitation, high-precision tracking, and strong robustness. The simulation shows 
that both controllers designed in this paper can meet the control requirements of the system when coping with 
the 5 Hz and 10 Hz scanning task, and have certain robustness for different mechanical load variations. The H∞ 
control has faster response speed and higher accuracy compared with the IRC control. Also in the relatively 
high frequency (20 Hz) scanning task, the H∞ controller is more robust for a wider mechanical load variations 
(0–1000 g) and high frequency signal perturbations while achieving higher accuracy and faster response times.

Piezoelectric nanopositioning platform and its model
Modelling the dynamics of piezoelectric nanopositioning systems is an essential prerequisite for gaining insight 
into system performance and exploring control algorithms for high-speed motion. The actual positioning of 
motion by a piezoelectric positioning system is a process of converting energy from electrical energy to mechani-
cal energy. Starting with the excitation signal from the dSPACE controller, the electrical signal is amplified by 
voltage and drives a piezoelectric ceramic actuator. Due to the inverse piezoelectric effect of the piezoelectric 
ceramic, the actuator generates thrust, which drives the flexible mechanism to produce position movement. This 
energy conversion relationship relies on the coupling link between the piezoelectric actuator, the piezoelectric 
ceramic actuator and the platform mechanics in the piezoelectric positioning system. The piezoelectric posi-
tioning system is a relatively complex electromechanical coupled system, so the dynamic characteristics of the 
piezoelectric actuator, the piezoelectric ceramic actuator and the mechanical structure of the platform need to 
be considered comprehensively to establish a relatively accurate dynamics model. A schematic diagram of the 
piezoelectric positioning  system22 is shown in Fig. 1, and a physical drawing of it can be found in the literature 23.

Figure 1(i) shows the equivalent circuit schematic of the piezoelectric actuator and piezoelectric ceramic 
actuator. Using Kirchhoff ’s law, the circuit models of the piezoelectric driver and piezoelectric ceramic actuator 
can be resolved as follows,

Figure 1.  Schematic diagram of the piezoelectric positioning system.
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where Vin(t) is the input voltage , kamp is the amplification factor of the piezoelectric actuator, R0 is the equiva-
lent internal resistance of the drive amplifier circuit, q is the total charge applied to the piezoelectric ceramic 
actuator, and q̇ is the current flowing through the circuit generated by the charge q . uh represents the voltage of 
the piezoelectric hysteresis effect H , CA represents the total capacitance of all piezoelectric ceramics, and qc is 
the charge stored in capacitor CA. Tem represents the piezoelectric effect, and uA is the voltage generated by the 
piezoelectric effect , and qp is the charge caused by the piezoelectric effect. x is the output displacement produced 
by the active body under the thrust of the actuator.

Based on the kinematic relationship between the piezoelectric ceramic actuator, the flexible amplification 
mechanism and the movable body in the piezoelectric nanopositioning platform, the mechanical transmission 
of the piezoelectric nanopositioning platform can be simplified to a mass-spring-damping system, an equivalent 
mechanical dynamics model as shown in Fig. 1(ii). The equivalent mechanical model can be resolved according 
to Newton’s laws of motion and piezoelectric effects as follows,

where m, ks and bs denote the total mass, overall stiffness and damping coefficient of the active body of the piezo-
electric nanopositioning platform, respectively, and FA is the mechanical thrust generated by the piezoelectric 
ceramic actuator. It is worth mentioning that the model equations for the charge input and displacement output 
of the system can be derived from Eqs. (4), (6) and (7) as follows,

Equation (8) uses charge as the control input, and the hysteresis effect H(q) can be avoided by using charge 
control. However, in practical systems, voltage is usually used as the control input to drive the piezoelectric 
nanopositioning platform. if voltage control is used, Eqs. (1)–(7) can be combined to establish a comprehensive 
dynamics model of the system with respect to voltage input uin and displacement output x.

The parameters in the formula are expressed as follows:

To avoid the non-linear effects caused by voltage hysteresis, a low-amplitude input voltage (a sinusoidal 
scanning input voltage with a constant amplitude of 200 mV between 0.1 and 500 Hz applied to the y-axis) was 
used in the  literature23 during the identification of the actual system, avoiding hysteresis-induced  distortions24 
and obtaining an approximation of the dominant dynamics of the piezoelectric nanopositioning platform with 
a weakly damped mode as a second-order system, as shown in Eq. (10),

(1)R0q̇(t)+ uh(t)+ uA(t) = kampVin(t)

(2)uh(t) = H(q)

(3)q(t) = qc(t)+ qp(t)

(4)uA(t) = qc(t)/CA

(5)qp(t) = Temx(t)

(6)FA = TemuA(t)

(7)mẍ(t)+ bsẋ(t)+ ksx(t) = FA

(8)mẍ(t)+ bsẋ(t)+ ksx(t) =
Tem

CA
q(t)

(9)
...
x (t)+ a2ẍ(t)+ a1ẋ(t)+ a0(t) = b1uin(t)− b0H(q)

b0 =
Tem

mR0CA

b1 =
Temkamp

mR0CA

a0 =
R0ksCA + (R0 − 1)T2

em

mR0CA

a1 =
ksCA + T2

em + bs

mCA

a2 =
bsCA +m

mCA
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where s is the Laplace operator of the continuous system, y[µm] and u[V] are the output displacement and the 
input drive voltage, respectively, σ2 is the low-frequency gain of this system, and ξn and wn are the damping coef-
ficient and the intrinsic frequency of the system. In this system, ξn ≪ 1, which means that the resonant mode at 
wn is weakly damped.

In the actual modelling and control process, there are various uncertainties, the most influential of which is 
the uncertainty caused by different mechanical loads. The system identification parameters obtained for mechani-
cal loads of 0 g (nominal system), 600 g and 1000 g respectively are shown in Table 1.

The frequency response of the system under different mechanical loads is shown in Fig. 2. The inherent reso-
nant mode of the nominal system occurs at 205 Hz with a resonance amplitude of 18.5 dB. While suppressing 
the inherent resonant mode of the system, the uncertainty of the model caused by the variation of the mechani-
cal load cannot be ignored and will seriously affect the control accuracy of the system if not properly handled. 
Therefore, there is an urgent need to design a controller that meets the requirements of suppressing the inherent 
resonant modes and ensuring the robustness to achieve the task of scanning the platform with high accuracy.

Control design
Integral resonance control(IRC). This section analyses a controller design approach based on the IRC 
method to meet the accuracy and robustness requirements of a piezoelectric driven nanopositioning platform, 
and the IRC control diagram is shown in Fig. 3. IRC contains two loops, an inner-loop positive feedback loop 
for damping control and an outer-loop negative feedback loop for improved tracking accuracy, where G is the 
system object, here the nominal model G0 without mechanical loads in Table 1 is used as the control object, Cd 
is the damping controller, Ct is the tracking controller, d is the feed-through term, yi, yc and y are the reference 
input, tracking controller output and system displacement output respectively, and u is the control input.

The inner loop from yc to y is denoted as the damping loop, with a transfer function as following,

In the damping loop, the purpose of adding the feed forward term d is to generate a pair of zeros z1, z2 =±jwz 
in the root trajectory of the damping loop satisfying wn

3
< wz < wn . As the controller gain increases, the root 

trajectory starts at the natural pole and ends at the zero point induced by the addition of d. The feed-through 
term d can be taken as,

(10)G(s) =
y(s)

u(s)
=

σ 2

s2 + 2ξnwns + w2
n

(11)Tdamp(s) =
Cd(s) · G(s)

1− Cd(s) · (G(s)+ d)

Table 1.  System model under different mechanical loads.

Mechanical loads (g) Transfer functions

0 G0(s) =
1.198×10

6

s2+110s+1.673×106

600 G1(s) =
0.8235×10

6

s2+282s+1.15×106

1000 G2(s) =
0.5442×10

6

s2+419s+0.76×106

Figure 2.  Open-loop Bode diagram of the system at mechanical loads of 0 g, 600 g and 1000 g.
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The damping controller gain kd is found to maximize the damping ratio of the damping loop, which can be 
calculated by the following equation,

where ξmax is the maximum achievable damping ratio.
For tracking controller Ct(s), the gain should meet following inequality:

It is worth noting that only the internal damping loop in (12) is related to the resonant mode of damping 
(11). The outer-loop tracking controller is used to minimize the tracking error, especially in the low frequency 
region. For the selection of both gains as shown in Fig. 4, the combination of the two gains (kd /kt) must lie in 
the region below the solid red line to ensure stability.

In summary, according to (13) and (14), the parameters of the IRC controller can be analytically derived as,

For the selection and adjustment process of the standard IRC parameters, kd and kt are fixed once they are 
selected. Therefore, in this design method and the improved analytical design  method20,21, neither the trial-and-
error method nor the analytical method takes into account the system uncertainty caused by mechanical load 
variations, so there is room for improvement in the adaptability of the standard IRC and robustness needs to 
be improved.

(12)d = −2
σ 2

w2
n

(13)kd|ξmax
=

1

|d|
(wn ·

√

wn
√

w2
n + σ 2/d

)

(14)kt · kd < −
σ 2 + d · w2

n

d2

d = −1.43, CIRC
d =

980

s
, CIRC

t =
430

s

Figure 3.  IRC control block diagram.
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Figure 4.  Normalized bandwidth diagram of the system under  (kd/kt) parameter variation.
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Robust H∞ control design. System performance requirements. The open-loop Bode diagram of the 
nominal mathematical model G0 under a mechanical load of 0 g in Table 1 is shown in Fig. 5, from which it 
can be seen that the system has an inherently low-damped resonant mode at 205 Hz, with a resonant peak of 
18.5 dB. When the excitation signal input to the system has a high-frequency component close to the resonant 
frequency of the platform, it will excite the resonant vibration of the system, and serious resonance will even 
damage the system hardware. Therefore, one of the performance requirements of the system is to suppress the 
inherent resonant modes of the system.

In addition, the system’s surroundings changing or items with different loads scanned at high speed cause 
model uncertainty of the system, which can be considered as an un-modelled dynamics module, namely the 
uncertainty of the system. In the study of this control problem, only the ontology module of the piezoelectric 
nanopositioning platform is modelled, all others are considered as uncertainties of the system. The uncertainty 
of the system is expressed in terms of multiplicative uncertainty.

where δ characterizes the structural uncertainty of the system, �G  epresents the non-structural uncertainty of 
the system, G is the mathematical model constructed from the problem under study, and Gactual is the real physical 
model. Therefore, the second performance requirement of the system is robust stability.

For the above performance requirements, the H∞ theory is used for control design. The control structure is 
shown in Fig. 6, where: G0(s) is the controlled object, K(s) is the controller, � ertcharacterizes the unstructured 
uncainty and structural uncertainty of the system; W1 and W2 represent the system performance weighted, 
uncertainty weighted; w1 represents the modelling uncertainty, z1 is the system performance output and z2 is 
the system robust performance output; yi is the reference input, y is the system output; u is the control input and 
ud is the control input perturbation.

Weighting function selection. According to the above analysis, the performance requirements of control system 
are the suppression of resonant modes and robust stability requirements of the system. In order to achieve these 
performance requirements, the design of the weighting function is particularly critical, and the selection of 
appropriate parameters to optimize the performance has become a hot topic of research for many  scholars25. In 
the following, appropriate weighting functions are selected for each of the above two performance requirements 
in order to solve the controller.

(15)Gactual(s) = G(s, δ)[1+�G(s)]

Figure 5.  Open-loop Bode diagram for nominal system  G0.

Figure 6.  Block diagram of the control structure of H∞.
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The weighting function W1(s) mainly shows the disturbance decay performance, so it is required that control-
ler should contain an integration link in order to ensure high precision tracking, as well as the system is expected 
to decay faster outside the bandwidth. So the weight function W1(s) can be designed as,

where ρ is the parameter to be optimized.
Meanwhile, according to the open-loop amplitude-frequency characteristics of the piezoelectric-driven 

nanopositioning system as shown in Fig. 5, for the inherent resonant mode of the system at 205 Hz, sufficient 
attenuation suppression should be provided for this inherent resonant mode. Thus, the weighting function W1(s) 
must have good trap performance, which requires the addition of trap filtering characteristics in W1(s) . To sum 
up, set the performance weighting function W1(s) as follows,

For the control design of such weakly damped systems, it is advisable to design the system parameters in 
accordance with the lowest values, which can maintain the performance of the designed controller to a certain 
extent when the parameters become larger. The minimum damping ratio of the system is 0.0427 and the mini-
mum resonant frequency is 139 Hz, with a corresponding amplitude of 3.48 dB. The center frequency of the trap 
filter is determined to be 139 Hz based on the damping ratio and trap frequency. Due to the different frequencies 
of the inherent resonant modes of the system under different loads, the filter width of the trap filter needs to have 
a certain margin. The performance weighting function W1(s) for the inherent resonant mode attenuation with 
trap filtering characteristics is shown in the following equation.

Its Bode plot (ρ = 1750) is shown in Fig. 7, and its amplitude-frequency characteristics satisfy the performance 
requirements.

Since the performance weight function W1(s) contains a pure integral link, to avoid the influence of the 
uncontrollable zero-pole on solving the H∞ controller, a small regressive momentum needs to be introduced at 
the pole to make it move off the imaginary axis into the left half-plane. The final W1(s) design is shown below,

Considering the possibility of uncertainties in the system caused by various un-modelled dynamics, the 
weighting function W2(s) is chosen as a limit to the system bandwidth to ensure the robustness. The bandwidth 
of the system is limited to less than the minimum resonant mode frequency, and the closed-loop characteristics 
after the bandwidth are required to decay by − 40 dB/ dec. W2(s) is taken as W2(s) =

(

s
800

)2 in this paper. In 
addition, because of the requirement of rank in the  H∞ solution process, it is necessary to ensure that the weight-
ing function is rational and true, so a small time constant is added to keep fractions of the same order. The final 
robust stability weighting function W2(s) can be chosen as,

(16)W1(s) =
ρ

s(s + 1000)

(17)W1(s) =
ρ
(

s2 + 2ξ2ωns + ω2
n

)

s(s + 1000)
(

s2 + 2ξ1ωns + ω2
n

)

(18)W1(s) =
ρ(s2 + 2× 0.04× 873s + 8732)

s(s + 1000)(s2 + 2× 1× 873s + 8732)

(19)W1(s) =
1750(s2 + 2× 0.04× 873s + 8732)

(s + 0.01)(0.001s + 1)(s2 + 2× 1× 873s + 8732)
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Figure 7.  Bode diagram of the weighting function W1(s).
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Meanwhile, due to the requirement of the generalized controlled object for rank in  H∞ control theory, 
the weighting function is an additional input channel introduced to satisfy the rank requirement, chosen as 
W3 = 10−6.

H∞ controller. After iterative calculations, the final  H∞ controller is obtained at the performance-optimized 
solution γ = 1.3508 as follows,

Omitting the higher order terms with poles of  105 or more, and then removing the additional regression 
term (0.01) from the poles where the rank requirement is considered in the design process, the simplified  H∞ 
controller is simplified as ,

Experimental simulation analysis. Addressing the resonance and robustness of piezo-driven nanoposi-
tioning platforms, the PPF control and the IRC control, H∞ control designed in ‘‘Control design’’ Section were 
simulated and analyzed for comparison respectively. As piezoelectric nanopositioning stages typically operate 
over a range of tens or even hundreds of microns, the reference input signal was set to be a triangular wave 
grating scan signal (100 μm amplitude) with different frequencies for the comparative analysis. In addition, the 
robustness of the system was verified under a set of mechanical loads (including 0 g, 600 g and 1000 g) and high 
frequency signal interference.

Grating tracking experiment results. To evaluate the tracking performance of the three controllers, a set of grat-
ing scans at 5, 10 and 20 Hz were fed into the platform. The tracking outputs of the PPF, IRC and H∞ controllers 
for different frequencies of the grating input signals without high frequency disturbance signals are shown in 
Fig. 8, and the root mean square error (RMSE) of tracking are shown in Table 2. Under a mechanical load of 0 g, 
all three controllers tracked the reference input well. The values of RMSE are less than 6.781 μm when tracking 
the grating signal at 5 Hz and 10 Hz, particularly, the H∞ controller designed in this paper having the smallest 
RMSE value (less than 2.143 μm) among the three controllers. At 20 Hz, RMSEs of the PPF and IRC are 13.35 μm 
and 9.295 μm respectively, while the RMSE of the H∞ controller is 4.196 μm, achieving an improvement of 69% 
and 55% over the PPF and IRC respectively.

Experimental results of robustness testing. The maximum change in mechanical load in this experiment is 
1000 g, when the first resonant frequency shifts from 205 to 139 Hz. Therefore, to verify the robustness of the 
PPF, IRC and H∞ controllers, the three controllers were simulated and analyzed for systems under different 
mechanical loads with the same frequency of grating scan signal input. The RMSEs of the three controllers with 
different mechanical loads are shown in Table 2. It can be seen that all three controllers have good robustness 
under different mechanical loads, but the H∞ controller has a higher tracking accuracy. The results of tracking 
the 20 Hz grating scan signal at a mechanical load of 1000 g are shown in Fig. 9, where the RMSEs of PPF and 
IRC are 13.34 μm and 8.996 μm respectively. In contrast, the RMSE of H∞ is only 4.579 μm, representing a 66% 
and 49% reduction over PPF and IRC respectively.

As the closed-loop Bode diagram of the system under a mechanical load of 1000 g shown in Fig. 10, the 
closed-loop bandwidth of the system is 115 Hz under the PPF controller, 112 Hz under the IRC and 123 Hz under 
the H∞ controller. Although the closed-loop bandwidths are similar for all three controllers, the H∞ controller 
has a slightly larger closed-loop bandwidth and the best response speed in comparison, as demonstrated in the 
grating signal tracking experiments, where the system tracked best under the H∞ controller.

High frequency signal disturbance performance testing. A grating scan signal with a frequency of 10 Hz was fed 
into the closed-loop control system, and a high frequency disturbance signal close to the resonant frequency of 
the system (139 Hz) was added at a mechanical load of 1000 g. The RMSEs of the system under the PPF, IRC and 
H∞ controllers are 6.784 μm, 4.522 μm and 2.117 μm respectively, and the RMSE of H∞ was reduced by 69% and 
53% compared to PPF and IRC respectively. In comparison of tracking results with high frequency sinusoidal 
disturbances (close to the resonant frequency of the system) shown in Fig. 11, it can be seen that there are large 
error fluctuations under IRC and large tracking errors under PPF. Conversely, H∞ control has good suppression 
and the best tracking effect, further verifying that the H∞ controller has good robustness.

Conclusion
This paper addresses the comprehensive issues of inherent resonant modes, low bandwidth and uncertainties 
caused by mechanical load variations in high precision piezoelectric driven nanopositioning stages. The high 
accuracy requirements of the piezo-driven nanopositioning stage of less than 4.644 μm (tracking 5–10 Hz) 
with some robustness are achieved by designing an IRC control structure combining damping, robustness and 

(20)W2(s) =
s2

8002(0.00001s + 1)2

(21)

K∞(s) =
−5.208× 10

9(s + 1220)(s + 1× 10
5)(s2 + 1754s + 9.226× 10

5)(s2 + 75.03s + 7.629× 10
5)

(s + 6.024× 107)(s + 0.01)(s2 + 2374s + 1.374× 106)(s2 + 1746s + 7.621× 105)(s2 + 1.046× 106s + 5.473× 1011)

(22)K∞(s) =
−9.9229× 1011(s2 + 1013s + 4.338× 105)(s2 + 110.2s + 1.673× 106)

s(s + 1869)(s2 + 848.4s + 3.6× 105)(s2 + 1.548× 106s + 1.198× 1012)
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tracking controllers, whose structure is simple but the robustness still needs to be improved under a wide range 
of mechanical load variation. Subsequently, the H∞ control is applied to the piezoelectric-driven nanoposition-
ing platform, by analyzing the performance requirements to select the appropriate weighting function to give 

(a) Tracking 5Hz grating signal output and tracking error experimental results.
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(b) Tracking 10Hz grating signal output and tracking error experimental results.

(c) Tracking 20Hz grating signal output and tracking error experimental results.
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Figure 8.  System tracking results for 5, 10 and 20 Hz grating input signals at 0 g mechanical load.
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the H∞ controller with strong robustness, whose tracking accuracy (RMSE less than 2.143 μm at 5–10 Hz) and 
robustness performance are better than the IRC control structure. Finally, through the simulation of PPF, IRC and 
H∞ controllers for tracking different frequencies (5, 10, 20 Hz) of grating scanning signals and high frequency 
disturbance signals under different mechanical load variations, it is verified that the H∞ controller proposed 
offers a comprehensive superiority of accuracy, response speed and robustness.

Table 2.  System model under different mechanical loads.

Reference
frequency(Hz) Load(g)

RMSE
with PPF(µm)

RMSE
with IRC(µm)

RMSE
with H∞(µm)

5 0 3.39 2.319 1.071

5 600 3.39 2.318 1.071

5 1000 3.391 2.314 1.071

10 0 6.781 4.637 2.143

10 600 6.781 4.644 2.142

10 1000 6.782 4.53 2.127

20 0 13.35 9.295 4.196

20 600 13.43 9.126 4.215

20 1000 13.34 8.996 4.579
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Figure 9.  Results of the system tracking a 20 Hz grating scan signal at a mechanical load of 1000 g.
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Figure 10.  Closed loop Bode diagram for a system with a mechanical load of 1000 g with three controllers.
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The data presented in this study are available on request from the corresponding author.
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