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Abstract: The study of non-wetting liquid transport in a nanoporous medium is stimulated by the
possible use of this process to absorb or accumulate mechanical energy. The filling of nanopores
of suspended particles with a non-wetting liquid under decay of the unstable state, when the
pressure increase rate is much higher than the rate of volume change, is studied. Based on the new
experimental data and a theoretical model of the interacting modes of the spontaneous filling and
filling under rapid compression, a picture of the percolation transition and a mechanism of liquid
transport under such conditions are proposed. It is shown that a new dynamic filling threshold
P0 is reached. It is shown that the filling of the porous medium is the result of the slow mode of
impact compression when the fast mode of spontaneous filling is continuously adjusted to the slow
mode on a small time scale. The theoretical model of the interacting modes is based on the solving
of a system of kinetic equations for the distribution functions f (n, t) and F(n, t) clusters of filled
pores under rapid compression, respectively. It is shown that filling at P = const corresponds to
the non-dissipative transport of liquid on a time scale smaller than the characteristic filling time.
The proposed model quantitatively describes the experimental data. So, the response of suspension
to impact is characterized by the positive feedback.

Keywords: porous medium; non-wetting liquid; impact; metastable state

1. Introduction

The problem of describing fluid transport in a nanoporous medium, due to the
fundamental complexity of the necessary consideration of fluid correlations in pores of
different locations and high demand for various applications, has been the focus of attention
for many decades [1,2].

More recently, new directions in the study of transport in the zeolites subnanome-
ter channels, in nanometer pores of disordered media such as silica gels, carbon nan-
otubes, metal-organic structures have arisen [3–8]. To describe molecular transport in
nano–subnanostructures, it is necessary to take into account local and long-range corre-
lations of liquid in different pores. At the same time, the study of transport allows us to
develop models that adequately describe such correlations. The study of non-wetting liquid
transport when filling a disordered nanoporous medium is stimulated by the possible use
of this process to absorb vibrations, damping, mitigate the impact, and protect against ex-
plosion [9–11]. Such applications are based on high liquid transport rates. The characteristic
time (τV) of filling nanopores with a radius of R = 1− 100 nm in microparticles with a size
of L = 1− 100 µm is 10−4 − 10−1 s and may be close to the characteristic time of external
impact [12,13]. Repeated use is possible if porous media and liquids are used, which, when
impacted, are in an unstable state with filled pores, and the liquid quickly flows out with
a decrease in pressure [13]. In the intrusion—extrusion regime close to quasistatic filling,
the dependencies of pressures Pint and Pext for zeolites [3], for silica gels with a modification
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to provide hydrophobic properties to the surface of pores and non-wetting liquids—water,
aqueous solutions of salts and organic substances, were determined [14–17]. It was also
established that the filling pressure Pint for various systems increases with an increase in
the transport velocity of non-wetting liquids in porous microparticles [18]. This is observed
in a regime close to quasistatic filling, when the characteristic time of elastic compression
is τp ∼ τV . Experiments with various viscous liquids showed that this dependence of the
pressure Pint can be associated with viscous friction losses with an increase in the transport
velocity when the liquid slips on the pore walls [18]. According to [7], the effective viscosity
decreases with increasing liquid flow rate.

To date, several studies [10,11] of the process of filling nanopores with rapid compres-
sion in dynamic mode have been performed. Suspensions with hydrophobic microparticles
of silica gels, zeolites in water, and aqueous solutions of salts were studied. Shock compres-
sion techniques were used when a load shock of 1÷ 100 ms drives a rod entering a chamber
with a compressible suspension [10,11]. The Hopkinson Bar or Split Hopkinson Bar meth-
ods were also used, when the suspension was placed in the chamber between two rods,
and hitting one of them led to the propagation and attenuation of the compression wave of
the suspension [12,19,20]. From the first works, it followed that for the systems Wood’s
liquid alloy–silokhrom SCh-1.5 [21] and silica gel Fluka 100 C8—water [12] the filling upon
impact occurs at a pressure exceeding the pressure of quasistatic filling and, therefore,
beyond the percolation threshold. Therefore, it can be assumed that with a decrease in the
characteristic compression time τp, the nanopore filling mechanism changes.

A model for describing slow quasistatic filling and fast compression filling was pub-
lished in [13]. The description of the percolation process as a fictitious dynamic process
outlined in the work of Abrikosov was used [22,23]. It was proposed to describe the filling
of a nanoporous medium with a non-wetting liquid using the time-dependent distribution
functions of clusters of accessible but empty pores and of filled pores. It is assumed that
the accessible pores will form without delay, according to the achieved pressure value.
It follows from the solution of the system of kinetic equations for these functions that dur-
ing fast compression, the filling process should occur only after reaching a new threshold
in terms of the fraction of accessible pores θc = 0.28. This value is above the quasistatic
percolation filling threshold θc0 = 0.18 [24].

It follows from the solution [13] that the frequency spectrum of the relaxation of the
distribution function of clusters of filled pores consists of a solitary positive low frequency
and negative high frequencies, depending on the size of the cluster. These negative
frequencies correspond to the relaxation of intrusion-extrusion fluctuations of the liquid
from clusters of accessible pores. The solitary frequency of the evolution of the unstable
mode does not depend on the size of clusters of filled pores and describes their collective
spontaneous growth at the critical pressure. This rapid growth mode should occur when
the pressure is greater than the quasistatic pressure of the non-wetting liquid intrusion
into the pores. The predicted exponentially accelerated decay of the unstable state of
suspension, however, was not observed [10–12,19–21]. These studies did not measure the
time dependence of a volume of filled pores [10–12,19,20] and the flux of filling.

In the present work, new experimental results on the formation and decay of the
unstable state of the suspension (Section 3) were obtained. A linear time dependence of
the normalized flux and a quadratic time dependence of the normalized volume of filled
pores have been found. These dependencies correspond to the decrease of liquid transport
rate under the pressure, which occurs at impact slowdown. However, these dependencies
are observed at a constant pressure, independent of the transport rate. Such situation can
correspond to spontaneous non-dissipative transport of non-viscous liquid. Thus, the task
of describing the obtained new experimental data appears. The problem of unstable state
decay of the nanopore system in a non-wetting liquid has been solved (Sections 4 and 5).
The resulting picture of transport and pore-filling is based on taking into account the
interaction of spontaneous transport and transport resulting from impact. Concluding
remarks are given in the Section 6.
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2. Materials and Methods

The main studies were performed for the system granular nanoporous medium—
Libersorb 23 (L23) and non-wetting liquid—distilled water (DW). The porous material L23
is KSK-G silica gel with the SiO2 skeleton material, the surface of which was chemically
modified with alkylsilanes, to produce hydrophobic properties to the pore surface [25].
Using the methods of low-temperature nitrogen adsorption [26], helium pycnometry [26],
and liquid porometry [17], the following characteristics of porous media were determined
and within the limits of the error coincide with the results obtained in [27]: specific
pore volume (Vpor) (0.56± 0.02) cm3/g, skeleton density (ρpm) (1.7798± 0.0016) g/cm3,
specific surface area (Spor) (212± 7) m2/g (multipoint BET), specific volume of the porous
medium (Vpm = 1/ρpm + Vpor) ∼ 1.22 cm3/g, granule size (L) ∼ 10 µm, average pore size
(< R >) (5.0± 0.2) nm, porosity (ϕ) ∼ 0.52 and characteristic of the pore size distribution
function (δR/ < R >) ∼ 0.1. In addition, the compressibility of an unfilled porous
medium (χpm) ∼ 0.41 · 10−2 MPa−1, the pressure value of the beginning of filling of
pores under the conditions of a slow (quasistatic) pressure change (Pc0) (15± 1) MPa,
independent of the velocity of the rod according to [17]. The compressibility of the liquid
(χliq) 4.4 · 10−4 MPa−1 according to [28].

In the experiment, 5 g of the porous medium L23 was placed in the permeable for the
liquid container in a high-pressure chamber with a volume of ∼ 60 cm3. The inter-granular
space in the container and the remaining volume of the chamber were filled with DW.
Through the seal in the chamber the rod with diameter 10 mm was inserted. Studies of
the dynamics of filling porous systems with non-wetting liquids were carried out on the
experimental bench and according to the method described in [13].

The experimental bench consisted of upper and lower plates, fixed by pipes. Steel
ropes were stretched between the plates, over which the load by mass 10 kg could freely
slide. A strain gauge force sensor was installed on the bottom plate. The sensor measures a
force from 10 to 104 N with an error of less than 5% at a force value of more than 100 N.
The sealed high-pressure chamber filled with liquid and porous medium with inserted
rod was installed on force sensor. The internal volume of the chamber is changed due
to the movement of the rod, inserted into the chamber through the seal. The rod of the
high-pressure chamber is rigidly connected by a steel plate to the rod of the displacement
sensor with a stroke of 15 cm and a measurement error of 0.5%.

In the experiment, time dependencies of a force F and chamber rod displacement l
upon impact of the load were measured. The relationship between the pressure in the
chamber and the recorded force acting on the force sensor was determined by the relation
P = F/S, where S is the cross-section area of the rod, and the change in the internal volume
of the chamber was determined as ∆V = lS. The data acquisition rate was 5 kHz. Signals
from sensors through the analog-to-digital converter (ADC) were recorded and processed
using a computer. The design of the stand made it possible to vary the impact energy
from 3 to 100 J. The impact energy was determined as E = mggh. Where mg is the mass of
the load, h is the distance between upper plain of the chamber rod and the load, g is the
free-fall acceleration.

When the rod moves inside the chamber, the volume of the suspension decreases.
This decrease in volume can be due both to the elastic deformation of the suspension, and
to the filling of nanopores of granules with a non-wetting liquid, caused by an increase
in pressure during compression. The rod movement (l) recorded in the experiments to
determine the time dependence of the suspension volume (∆V) and, therefore, the rate
of volume change J = d∆V/dt = vrS (where vr = dl/dt is the velocity of the rod). These
dependencies, together with the measurement of the dependence of pressure on time (P)
characterize the effect of impact and the response of the suspension to impact.

Figure 1 shows the dependencies P, ∆V and J for the suspension L23 (m = 5 g) –
water (V = 55 cm3) with impact energy E = 30 J (load mass 10 kg, initial velocity of the rod
2.5 m/s). The figure shows the main time points. The time t1 corresponds to the time for
reaching the characteristic pressure to fill the porous medium with liquid in the quasistatic
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regime Pc0, according to [17]. The second point t2 is defined as the transition time of the
system to spontaneous filling at constant pressure. The time t3 is determined as the rod
stop time along with the load, i.e., the time of conversion of the mechanical energy of the
load with the rod into the internal energy of the system. Time t4 corresponds to the time of
detach of the load from the rod. It follows from the figure that in the time interval up to t2
an increase in pressure and a decrease in the volume of the suspension are observed with a
decrease in the velocity of the rod. In the vicinity of the time t2, the pressure increase rate
(dP/dt) changes abruptly with continuous time dependencies of the volume ∆V and the
rate of change in the volume (J). Over the time interval from t2 to t3, the pressure remains
constant within the measurement error, and the rate J vanishes at the point t3. The volume
change at the point t3 reaches its maximum value. After the point t3, the volume and
pressure return to their original values. Thus, the response to an impact with a pressure
increase that is close to linearly and the volume decrease to the point t2 is replaced by a
volume change at constant pressure P = P0 = const, and a decrease in the value of J to zero
at the point t3. The time moment t3 corresponds to the stop of the rod and the subsequent
return movement. It should be noted the value of P0 at the time t2, when the derivative
dP/dt changes abruptly. The value of P0 is greater than the value of pressure Pc0, at the
point t1 (see Figure 1) at which filling begins in quasistatic mode. The dependencies P
and ∆V similar to those discussed above were observed earlier for the other investigated
systems [13,27,29].

Figure 1. Time dependencies (a) of the pressure P and volume change ∆V and (b) the rate of the
volume change J for the L23 (5 g)—water system (55 cm3) at the impact energy E = 30 J at 20 ◦C.

3. Various Modes of Filling Nanopores with Rapid Compression

Series experiments were carried out to study modes of filling nanopores with rapid
compression. Figure 2 shows the dependencies on time, volume change ∆V, rate of
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the volume change J and pressure P for the L23–DW suspension at impact energies
E = (5÷ 80) J. In the energy range (20÷ 50) J the filling pressure remains constant, which
corresponds to the linear dependence J and is equal to P0 = 18 MPa, and for P = P0
a jump of ∆Ṗ is observed, and the dependence of volume on time is close to quadratic.
As the energy E > 50 J increases the pressure P increases linearly. At an energy of E = 70 J,
a second jump of ∆Ṗ and a further increase in pressure to a maximum are observed
when the volume versus time dependence is close to symmetric, characteristic for elastic
compression. The rate of change in the volume of J increases and, with an increase in
energy to E = 70 J, tends to the value characteristic of elastic compression.

Figure 2. Time dependencies of the (a) pressure P, (b) volume change ∆V, and (c) rate of the volume change J for the L23
(5 g) – DW (55 cm3) system at impact energies 5, 20, 30, 40, 50, 60 , 70 and 80 J at 20 ◦C.

From the obtained dependencies in Figure 2 it follows that at an energy of E =
(20÷ 50) J, the response of the suspension can be explained as the process of the irreversible
transition of the suspension to a stable state with filled particle pores at constant pressure
P = P0. This shift of the boundary in energy of the filling region at constant pressure P = P0
is associated with the condition that the filling rate of pores J is equal to the compression
rate vrS. From this condition it follows that to maintain the regime P = P0 with increasing
energy, it is necessary to increase the filling rate. Otherwise, with an increase in the impact
energy, the compression rate vrS will exceed the maximum filling rate of the pores of all
granules Jmax. In this case, the rate of volume change, as the response of the suspension,
will be determined by the sum of the maximum pore-filling rate at P = const and the elastic
compression rate Jel of the suspension: vrS ≈ Jmax + Jel . In accordance with this equality
and the formula for the relative pressure change rate, Ṗ = χ̃−1∆V̇ with elastic compression,
the value Ṗ is equal to Ṗ = vrS−Jmax

χ̃ . Here χ̃ is the dimensionless elastic compressibility of
the suspension. This dependence and the results shown in Figure 2 allow an understanding
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that for E = 70 J the jump in the pressure increase rate, Ṗ is less than for E = 50 J, and
the pressure dependence on time is close to linear. At a compression rate significantly
exceeding the maximum filling rate, if vrS� Jmax, the value Ṗ will be determined by the
elasticity of the system. This should be observed either at a high compression rate upon
impact, or with a small mass of granules [10,12]. In the mode at P = const, the acceleration
of the flow deceleration is constant. This means that the response of the suspension in the
regime of irreversible decay of the non-equilibrium state of the suspension determines the
impact absorption process. Since the filling slows down at P = const, this means that the
hydrodynamic resistance of the pore system of the granules depends on the filling rate J.

4. Kinetics of the Formation and Decay of an Unstable Suspension State

From the previous section it follows that the process of changing the state of a suspen-
sion of particles with empty pores during rapid compression consists of two successive
stages—elastic compression, during which the pressure increase rate is higher than the rate
of volume decrease, and the subsequent threshold filling of the pores, when the rate of
volume decrease due to the filling of pores exceeds the pressure increase rate. Under elastic
compression, when the quasistatic filling pressure Pc0 is exceeded and achieves the value
P0, the number of accessible pores grows, an infinite percolation cluster of those pores is
being formed, and the number of accessible pores in this cluster increases. On the other
hand, under elastic compression, until the threshold pressure P0 is reached, filling due
to the delay is not observed within the measurement error (≤5%), so that at P < P0 only
separate filled pores and clusters of filled pores are found, if only they are formed at all.
Therefore, the response, the temporary evolution of a suspension, during rapid compres-
sion can be described as the process of formation during the compression of an unstable
state of particles with empty pores in a non-wetting liquid at a threshold pressure of P0, the
subsequent possible formation of clusters of filled pores during the liquid intrusion time
and filling of pore clusters, and then the threshold spontaneous filling of the percolation
cluster from empty pores.

In a small neighborhood of the filling threshold, the average cluster size of filled pores
is close to the correlation length ξ = R̄ · |θ − θc|−ν (R̄ is the average pore size, ν ∼ 0.8 is the
critical index [24]), and it becomes comparable with particle size. Therefore, filling can be
considered to be a process starting from the surface of particles and proceeding simultane-
ously in the entire space of connected pores. Then, the task of describing pore-filling can be
considered to be the task of calculating the coordinate independent distribution functions
of clusters from accessible and filled pores under conditions of rapid compression, when
the pressure and fractions of accessible and filled pores depend on time.

In our calculations, it was assumed that the pore radius distribution is narrow,
∆R/R < 1, but ∆R 6= 0, so the percolation transition depends on the spread of pore
radii and on the connectivity between pores. Below, when obtaining kinetic equations for
the distribution functions of clusters from n accessible pores f (n, t) and from n filled pores
F(n, t) it is assumed that the filling of an accessible pore leads only to the disappearance of
the accessible pore and the medium being filled does not change during the filling process.
However, when calculating the filled volume, the change in the medium is taken into
account in the mean-field approximation.

Cluster formation in the ball problem (white and black balls) was described in [22],
where the distribution function of white ball clusters by the number of balls in them
was introduced. The change in the distribution function in this model occurs due to the
formation of clusters of white balls. Following the work [22], we describe the dynamics of
filling granules of a porous medium with a non-wetting liquid, assuming that the medium
for filling consists of accessible pores. In this case, the role of white balls is played by
accessible pores, and their proportion is determined by the ratio

θ(P(t)) =
∫ ∞

0
w(R, P(t)) fr(R)R3dR, (1)
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where fr(R) is the pore volume distribution function, w(R, P(t)) = w0 exp−δA/T—the
probability of filling the pores in accordance with [30]. Here δA is the potential barrier for
the intrusion of the liquid into the pore. According to (1), the pores are accessible if they
can be filled at a pressure of P as a result of fluctuation filling. However, filling can only
occur as a result of a kinetic process in a finite time τ0 ∼ w−1

0 .
In describing the dynamics of filling porous particles with a non-wetting liquid, the

pressure and the fraction of pores accessible for filling depend on time. With this in mind,
the kinetic equations that determine the time evolution of the distribution functions of
the clusters of accessible and filled pores by the number of pores can be written in the
form [13]

∂F(n, t)
∂t

=
n−1

∑
m=1

F(m, t)
f (n−m, t)

τ(m, n−m)
−

∞

∑
m=1

F(n, t)
f (m, t)
τ(n, m)

− F(n, t)
S(ε(t))
τpc(n)

, (2)

∂ f (n, t)
∂t

=
1
τd

[
1
2

n−1

∑
m=1

mq(n−m)q f (m, t) f (n−m, t)−

−nq f (n, t)
∞

∑
m=1

mq f (m, t)− 2nq f (n, t)S(ε)

]
−

−
n−1

∑
m=1

F(m, t)
f (n−m, t)

τ(m, n−m)
+

∞

∑
m=1

F(n, t)
f (m, t)
τ(n, m)

+ F(n, t)
S(ε(t))

τpc
, (3)

where
S(ε) = εδΘ(θ − θc0), ε(t) = |θ(t)− θc0|, (4)

τd =

(
∂ε

∂t

)−1
= ε1+γ(t)τp, τp =

(
dp
pdt

)−1
, (5)

where τp is the characteristic time of pressure change, τpc is the characteristic time of
filling an infinite cluster of accessible pores from filled clusters, τd has the meaning of the
characteristic time of formation of accessible pores when the pressure changes in time,
q, δ, γ are critical indices, S(ε(t)) is the effective part of an infinite percolation cluster of
accessible pores, i.e., the fraction of pores belonging to an infinite cluster through which
it can be filled, Θ(x) is the Heaviside function. The existence of a percolation cluster of
accessible pores must be taken into account, since it forms at P = Pc0 and θ = θc0.

Equation (2) defines the distribution function of clusters of filled pores at an arbitrary
point in time. The first term describes the formation of a cluster of n pores as a result of
filling clusters of n−m accessible pores through clusters of m filled pores in the charac-
teristic time τ(m, n−m). The second term corresponds to joining when filling to a cluster
of n filled pores of any cluster from accessible pores for the characteristic time τ(n, m).
The third term describes the filling of the percolation cluster of accessible pores from the
filled clusters in the characteristic time τpc(n). Equation (2) does not take into account
changes in the distribution function F(n, t) due to the merging of clusters of filled pores
with each other, which corresponds to the assumption that the medium remains constant
during the filling process. The function F(n, t) under conditions of almost complete filling
is calculated below in the mean-field approximation.

Equation (3) determines the time evolution of the distribution function of the clusters
of accessible pores due to their merging with each other (the first two terms), joining an
infinite cluster (third term) and the processes of intrusion-extrusion of liquid from them
(last three terms). Depending on the characteristic times τ(n, m) and τpc(n) in (2) and (3)
on the number of pores can be obtained from the following considerations. For estimation,
the volume of a V cluster of m pores with the same radii R̄ is V = 4

3 πR̄3m, the area s of the
contact of two interacting clusters of m and n pores then is equal to s = 4πR̄2(nm)q (q is
the critical index). Therefore, with an independent specific flux j of the number of pores in
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the cluster, we obtain τ(m, n) = τ0m1−qnq, τ0 = R̄
3 j−1. For the characteristic time τpc of the

interaction of a cluster of n filled pores with a percolation cluster of the accessible pores,
we similarly get τpc = τ0n−q′+1. For P < P0, the times τ0 and τpc characterize the rate of
viscous flow and can be estimated by the dependence of the volume on time at the outflow
stage (see Figure 2).

Equations (2) and (3) allow us to calculate the distribution functions of the clusters
of accessible and filled pores by the number of pores in them for a given pressure change
P(t). Equation (3) for f (n, t) contains terms whose physical sense is significantly different.
The first three terms in the kinetic equation (3) do not have meaning of the collision integral,
since they change only when ε = ε(t) and P(t) . These terms are of the order of magnitude
τd proportional to the time τp, which is the internal time of the system, and reflect the
change in the distribution function of accessible pores f (n, t) only when the fraction of ac-
cessible pores θ and, as a result, ε(t) change. If ε = const , then these terms are equal to zero.
When ε = ε(t) they must be present in Equation (3) simultaneously with (∂ f /∂ε)(dε/dt).
Therefore, the derivative ∂ f /∂t on the left-hand side of Equation (3), as well as the deriva-
tive ∂F/∂t determine the change in the function f (n, ε(t), t) and F(n, ε(t), t) due to a change
in the rate of volume decrease during elastic deformation. This rate of change in the volume
is controlled by external rapid compression and compressibility of the suspension. Solving
Equations (2) and (3) with this in mind, one can obtain the distribution function and calcu-
late the volume of fluid in the pores taking into account the response of the suspension to
rapid compression.

Equations (2) and (3) contain the times corresponding to various processes that occur
during elastic compression and filling of a porous medium: τp is the characteristic time
of change in external pressure, τd is the characteristic time of formation of accessible
pores, τk ∼< τ(n, m) > is characteristic formation time of filled pores cluster (angle
brackets mean averaging over the ensemble of clusters of accessible and filled pores),
τ∞ ∼< τ∞(n) >—characteristic time of fluid leaving into an infinite cluster of accessible
empty pores, τV ∼ (∂ ∑∞

n=1 nF(n, t)/∂t)−1—the characteristic time of the change in the
filled volume. For three-dimensional systems θc0 = 0.18 and γ ≈ 0.6, therefore, according
to (4) and (5), always τp > τd. Since the filling of the volume occurs due to a change in
external pressure, τV >max(τd, τk).

As follows from the experiments, the stage of elastic compression of the suspension
and the stage of filling the pores differ regarding the relative characteristic times of the pro-
cesses. Estimates show that for a low relative compressibility of the suspension, χ̃ ∼ 10−2,
the following relations hold: τd � τp � τk � τV . The distribution function of clusters of
accessible pores can be formed on a time scale of t ∼ τp > τd. At t ∼ tp, in the vicinity
of Pc0, a percolation cluster of accessible pores can form. At pressure P ≥ P0 in the filling
mode at P = const , the characteristic time τp > τV and, consequently, the time hierarchy is
different: τd � τk � τV ∼ τp . Therefore, the formation of clusters of accessible pores, the
formation of a percolation cluster from accessible pores, the formation of a cluster of filled
pores can be described by solving the system of Equations (2) and (3) sequentially on the
scales of these characteristic times to the scale of t ≥ τV . Such a solution of Equations (2)
and (3) is constructed below following the standard approach to multiscale problems solv-
ing in the physical kinetics [31]. The cluster distribution functions obtained on a smaller
time scale, which describe faster processes, are used to solve the system of kinetic equations
on the next, larger time scale, to describe slower processes.

In Equation (3) for the function f (n, t), the first term on the right-hand side is the main
term, since it is of the order τ−1

d , while the second term is of the order τ−1
k � τ−1

d . Since
τp < τk, a change in pressure at times t ∼ τp leads to the formation of accessible pores.
At times t < τk there are no filled pores. Thus, for the times t ≥ τp > τd and t < τk taking
into account ∂ε

∂t ∼ τ−1
d and the time dependencies τ(n, m) and τpc on the numbers n, m the

system of Equations (2) and (3) has the form
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F(n, t) ≈ 0

∂ f
∂ε

=
1
2

n−1

∑
m=1

mq(n−m)q f (m, ε) f (n−m, ε)−

−nq f (n, ε)
∞

∑
m=1

mq f (m, ε)−

−2nq f (n, ε)S(ε). (6)

Equation (6) has the form of the equation used in [22], the solution of which is known:

f0(n, t) =
C(t)Ωn(t)

Z(t)
,

Ωn(t) = n−τ exp
[
−rε1/a(t)n

]
(7)

Z(t) =
∞

∑
n=1

nΩn(t). (8)

Here, the function C(t) is determined by the normalization of the distribution of
f0(n, t). From (6) and (7) it follows that at times t satisfying the inequality τV > τk > t ≥
τp > τd, the emerged accessible pores do not have time to fill with liquid, as a result of
which the porous body is in a state above the percolation threshold Pc0 in accessible pores
at θ > θc0 with F(n)� f (n).

At times τV > t ≥ τk > τp > τd, the process of filling the porous medium begins
in accordance with Equations (2) and (3), where the effective part of the infinite cluster
of accessible pores S(ε) 6= 0. At these times, due to the condition t > τk � τd, the time
derivative in Equation (3) can be set equal to (dε/dt)(∂ f /∂ε). This value is ∼ 1/τd and,
by virtue of the condition τk � τd, in the zero and first orders in τd/τk in Equation (3) the
sum of terms containing F(n, t) is zero. In this case, Equation (2) is satisfied automatically.
Thus, at times t such that τV > t > τk > τp � τd, the equation for the distribution function
of accessible pores f (n, t) coincides with the first equation in Equation (6), and the equation
for F(n, t) takes the form[

n−1

∑
m=1

F(m)mq(n−m)q−1 f (n−m, ε)−

F(n)nq−1
∞

∑
m=1

mq−1 f (m, ε)

]
−

−F(n)nq′−1S(ε) = 0. (9)

The equation for f (n, t) for S(ε) 6= 0 near θc0 (θ ≥ θc0) coincides with the one found
in [22] and looks like (7). The function C(t), included in (7), determines the change in the
volume of all accessible pores and changes at times t ∼ τV , therefore, for τV > t > τk � τd
it can be considered constant.

Equation (9) with the known distribution function of accessible pores (7) is a homoge-
neous equation for the function F(n). A nonzero solution to this equation exists only when
the determinant of the matrix Anm vanishes:

det Anm = 0,

Anm = ∆nm(n−m)q−1 f0(n−m, ε)mq −

−δnm

[
mq

∞

∑
k=1

kq−1 fk(k, ε) + mq′−1S(ε)

]
,

∆nm =

{
1 n > m
0 n < m

(10)
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The matrix Anm has the form of a triangular matrix with zeros over the main diagonal.
The determinant of such a matrix is equal to the product of diagonal elements,

det Anm = ∏
m
(−1)m

[
mq

∞

∑
k−1

kq−1 f0(k, ε) + mq′−1S(ε)

]
, (11)

and does not vanish. Therefore, Equation (10) has no solutions for finite n, m. For n→ ∞,
m → ∞, the contact areas of two clusters are determined by one critical index, therefore
q ≈ q′ − 1. Replacing summation in Equation (10) by integration, taking into account that
f0(n−m)|n∼m ∼ (n−m)−τ and setting

lim
k→0

kq−1 f0(k, ε) ≈ 2δ(k)
∫ ∞

0
dxxq−1 f0(x, ε), (12)

from (10) we find

lim
n,m→∞

Anm = lim
n,m→∞

δnmmq
[

2
∫ ∞

0
dxxq−1 f0(x, ε)−

−
∫ ∞

1
dxxq−1 f0(x, ε)− S(ε)

]
, (13)

where δnm is the Kronecker delta. From here follows an equation that determines the value
of the fraction of accessible pores θc, at which a nonzero distribution function of filled
pores arises:

2
∫ ∞

0
dxxq−1 f0(x, ε)−

∫ ∞

1
dxxq−1 f0(x, ε)− S(ε) = 0. (14)

From the expressions (7) and (14) for S(ε) 6= 0 it follows that the value θc is determined
by the value of the percolation threshold θc0 and the critical indexes included in (14). If the
function f0(x, ε) is determined by Equations (7), then the integrals in (14) can be expressed
in terms of the gamma function and Whittaker functions [32]. In this case, a numerical
solution of Equation (14) for q = 0.83, a = 0.9 [22], θc0 = 0.18 gives θc = 0.28.

Thus, Equation (9) has the solution F(n) = 0 for θc0 < θ < θc and F(n) 6= 0 for θ > θc.
Therefore, we can say that at τk > τp > τd a new state of the system is formed for θ > θc.
Further filling of the porous medium at times t ∼ τk can happen by its transition to the
state that occurs in the case under consideration due to an infinite cluster of accessible
pores. According to Equation (1) the pressure P0 corresponding to the transition point of
the porous medium to a new state is constant and is determined by the relation∫ ∞

0
w(R, Pc) fr(R)R3dR = θc. (15)

From (15) the formula for w implies that the pressure Pc, in contrast to the value θc,
depends on the characteristics of the porous medium and liquid, such as, for example,
the size distribution function of pores, correlations of neighboring pores, surface energies
of a liquid and a porous medium.

Now we obtain an equation whose solution will allow us to analyze the stability of
the state at θ > θc under the conditions of formation of clusters of filled pores. Such an
equation will also make it possible to find the time dependence of the volume fraction of
pores filled with liquid at θ near θc. Equation (3) can be represented as

∂F(n, ε, t)
∂t

=
1

τ0(P)

∞

∑
m=1

Anm(ε)F(m, ε, t). (16)
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The matrix Anm is defined by Equation (10), and its eigenvalues are given by the
equation det(Anm − λδnm) = 0. For finite values of n and m we have

det(Anm − λδnm) = ∏
m

[
−λ−

[
mq

∞

∑
k=1

kq−1 f0(k, ε) + mq′−1S(ε)

]]
. (17)

and therefore, for finite n, m, the eigenvalues of the matrix Anm are negative. For n→ ∞,
m→ ∞, according to (13), we get

λ = λ∞(θ) ≈ 〈mq〉
[

2
∫ ∞

0
dxxq−1 f0(x, ε)−

−
∫ ∞

1
dxxq−1 f0(x, ε)− S(ε)

]
= z(θ − θc)

ζ . (18)

Angle brackets correspond to averaging over an ensemble of clusters at m� 1; z, ζ
are constants. Numerical calculations at q = 0.83, a = 1, δ = 0.2 give z ≈ 0.8, ζ ≈ 0.8. Thus,
in the spectrum of eigenvalues of the matrix Anm for n → ∞, m → ∞ and the fraction of
accessible pores θ ≥ θc, a small positive eigenvalue appears corresponding to relaxation
time τ∞ ∼ (θ− θc)−ζτk, while other eigenvalues are finite at θ = θc, are negative and are of
the order τ−1

k .
Using Equation (18), we rewrite Equation (16) in the form

∂F(n)
∂t

=
λ∞(θ)

τ0(P)
F(n) + ∑

m
ÃnmF(m). (19)

The matrix

Ãnm =
1

τ0(P)
Anm −

λ∞(θ)

τ0(P)
δnm (20)

has negative eigenvalues λ(n) < 0, |λ(n)| ∼ 1/τk that do not vanish at θ = θc. The time
derivative in Equation (19), should describe the change in F at two time scales—the scale
of relaxation of fluctuations in the formation of clusters of filled pores t ∼ |λ(n)|−1 ∼ τk
and the time scale t ∼ τ∞ ∼ τk(θ − θc)−1 of exponential increase in filling.

In general, the distribution function of clusters of filled pores can depend on time
additionally through pressure, since pressure determines the fraction of accessible pores
and hence in Equations (2) and (3). At the time ratio t ∼ τ∞ < τV � τp and, therefore, when
the growth rate of the unstable mode is greater than the pressure change rate, the small term
describing the time dependence of the function F through pressure P(t) can be neglected
in Equation (1). Then we can take Ṗ = 0 and the equation describing the dependence of
the amplitude A(t) of the unstable mode has the form:

dA(t)
dt

=
A(t)θ0

τ∞
. (21)

According to this equation, the rate of transport and the degree of filling of the liquid
must be described by an exponentially increasing dependence on time. Earlier in [13],
the equation Ȧ ∼ A(1− A) was derived for the opposite case of small pressure rise time,
when τp � τV . It follows (21) that the filling rate is determined by the product of the
fraction of filled pores A(t) and the fraction of accessible pores in the percolation cluster
and the characteristic time τ∞ of the unstable mode, which matches that found in [13].

The high frequencies ωk ∼ τ−1
0 are negative and depend on the number of filled

pores in the clusters. These are the frequencies of the spectrum of the relaxation process
of intrusion-extrusion liquid from clusters containing different finite number of filled
pores. In accordance with the method of exclusion of fast modes [33–35] in Equation (21)
the term corresponding to high-frequency intrusion-extrusion processes, which would
turn this equation into a stochastic one, is removed. This corresponds to the adiabatic



Nanomaterials 2021, 11, 102 12 of 17

approximation [34]. The positive frequency ω∞ = τ−1
∞ of the unstable evolution mode

in the percolation limit of large particle sizes L � R (R is the average pore radius) is
determined by the expression:

τ∞ =
τ0

z(θ − θc)
ζ

, (22)

where z ≈ 1, ζ = 0.8, θ is the pressure-dependent fraction of accessible pores. In the for-
mula (22) θc is the critical fraction of accessible pores of the dynamic percolation transition.
The value θc = θc0 + 0.1 calculated in [13], θc0 = 0.18 is the critical fraction of accessible
pores in the quasistatic regime. When the fraction of accessible pores θ < θc, according
to (22), intrusion should not be observed. As the pressure increases and the fraction of
accessible pores increases accordingly, the time for evolution of the instability decreases
from τ∞ ∼ ∞ at θ = θc to a minimum scale τ0 at θ = θ0. As a result, the rate of evolution of
an unstable mode increases with increasing pressure from Pc to P0 and with a delay reaches
the maximum value at pressure P0. Then the rate of evolution of an unstable mode becomes
close to the rate of filling τ−1

0 of a cluster of the finite size. On a time scale t ∼ τ∞ � τp the
pressure growth rate Ṗ = 0 and at constant pressure P0 the fraction of accessible pores is
constant θ = θ0 regardless of the size of the pore volume filled by the liquid.

At impact compression under the constant pressure regime, the change of suspension
volume occurs due to pore-filling without elastic compression. Pore-filling in this mode is
the result of two different processes: spontaneous filling and filling caused by pore volume
reduction during impact compression of the suspension in the volume of the chamber fully
filled with the suspension. To take into account the change in the fraction x of filled pores
during shock compression when deriving the equation for x(t) it is necessary to consider
the dependence of the function F(k, t, x(t)) on the rate of change of the macro parameter
x(t). This allows us to describe the change in the distribution function over a larger time
scale than τ∞, τVτ∞, τV � τP.

In the experiments [10,11,13,27] the impact compression of the suspension was studied
on an impact stand. A load of mass M was dropped on a rod that entered a chamber filled
with the suspension. In such a technique, at P = const, the volume of the suspension is
reduced only by filling the pores. Then we can obtain an expression for the rate of change
in the fraction of filled pores during impact compression in the form:

dx
dt

=
vr(t)S

V0
,

v̇r = −
PS
M

, (23)

vr(t) = vr(0)−
PS
M

t,

where vr(t) is the velocity of the rod with a mass of M, S is the area of the rod, V0 is the
pore volume of the suspension particles.

It follows from (23) that the transport rate due to impact compression decreases
with time due to the braking of the load with acceleration a at constant pressure P0. The
solutions (21) and (23) are obtained for the distribution function of clusters of filled pores
as product F(k, t) = x(t)A(t)F(k). According to Equation (22), the value A(t) changes on
a small time scale τ∞. The value x(t) determines the time dependence of the fraction of
filled pores on a larger time scale τV , τV � τ∞. The value of the transport rate should be
determined by the two processes occurring simultaneously at two different time scales.
These times can be close, according to (21) and (23) at x � 1 and differ by an order of
magnitude at x ∼ 1. Therefore, to describe the nonstationary transport it is necessary to
take into account the interaction of modes. In experiments [10,11,13,27] such interaction
follows from the condition of keeping the hydraulic contact of the rod with the suspension.
Let us assume that the characteristic time of the evolution of the fast mode of spontaneous
filling τ∞ is much less than the characteristic time of filling during impact compression τV .
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Then equality of rates of volume change can be written as equality, for time τ∞, increment
of filling ∆x caused by spontaneous filling mode and increment of filling rate caused by
the impact compression:

∆xθ0

τ∞
=

∆vrS
V0

=
PS
M

S
V0

τ∞. (24)

According to (24) on the time interval from 0 to τ∞ the filling process is described
by Equation (21) and is a spontaneous filling process. Over a long time interval τV the
filling process is described by Equation (23) for the impact mode of compression. The
relation (24) represents the initial and final boundary conditions for Equation (21) and
determines the change of filling at each small interval τ∞. The change in the fraction of
filled pores over time τ∞ must decrease as the rate of filling during the impact compression
decreases. Thus, fast spontaneous filling follows slow impact compression, adjusting to
sequences of small-scale time intervals τ∞. The time dependencies of liquid transport rate,
filled pore volume, and pressure observed in the experiments should be described by a
slow impact compression mode and Equation (23).

According to (23) the flow rate in the experiments should depend linearly on time.
Then the filled pore volume, according to (23) and (24) should be a quadratic function of
time on the interval up to the maximum pore-filling. This means that transport at P = const
is effectively non-dissipative, which corresponds to the observed [13,27] invariance of
the volume and pressure dependencies on time as the temperature and viscosity of the
liquid change.

5. Comparison with the Experiment

Figure 3 shows the time dependencies of the fracture of filled pore volume x(t)
and derivative of the fracture of filled pore volume dx(t)/dt (normalized flux) for the
time interval from reaching pressure P0 (see Figure 1), calculated by the Formula (23),
and experimental data. The time in Figure 3 is counted from the time t2 reaches the
pressure P0. The time of the end of the dependencies corresponds to the time t3 of Figure 1.
This point corresponds to the moment of complete absorption of the impact momentum.
The curves are given for three values of energies E = 20, 30, 40 J. It can be seen that as
the energy increases, the pore-filling end time and the time to reach zero pore-filling flux
increase. In the energy interval of 20÷ 40 J the filling occurs at constant pressure and,
according to the formula (23), there is a linear dependence of derivative of the fracture of
filled pore volume dx(t)/dt. As the impact energy increases, the initial normalized flux
and the value of the fracture of filled pore volume before the process at P = const increases.

It can be seen that within the measurement errors, the experimental data are described
by theoretical dependencies. This corresponds to the description of transport in the system
as a multiscale process. In this multiscale process, the characteristic growth time of the
spontaneous filling (fast mode) can be estimated from the time interval t1 ÷ t2 of the
duration of the transient process from elastic compression of the suspension to filling at
constant pressure P0. The critical pressure of dynamic transition Pc lies between pressures
P0 and Pc0. According to the Formula (22), the filling process can begin at pressures
Pc > Pc0, Pc < P0. Therefore, we can assume that τ∞ ≈ 1

2 (t2 − t1). For energies 20, 30, 40 J,
the value of τ∞ ≈ 1 ms.

The characteristic filling time τV is equal to the difference between the times of reaching
zero flux and the beginning of filling τV = t3 − t2. For energies 20, 30, 40 J the value of
τV varies from 10 ms to 15 ms. The relation between the characteristic times of the slow
mode – filling caused by impact compression at pressure P0 – and spontaneous filling is
τV/τ∞ = 10÷ 15. Thus, τV � τ∞.

Now let us discuss the description of the experimental data within the framework
of the multiscale model of interaction of modes. According to this model, the observed
dependencies should be described by the slow mode as a filling mode caused by impact
compression, which is confirmed by the dependencies given in Figure 3. The fast mode
(spontaneous filling), according to the model, follows the slow mode at each of the time
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intervals τ∞, the number of which is determined by the ratio τV/τ∞. Thus, the filling
process is determined by the slow mode and is followed by continuous adjustment of the
fast mode to the slow mode on the scale τ∞.

Figure 3. The experimental time dependencies of (a) the fracture of filled pore volume x(t) and
calculated using the Formula (23) and (b) normalized flux with calculations in accordance with
the (23). The time is counted from the time t2 reaches the pressure P0.

Equation (21) does not contain the dependence of flow J = V0
dx
dt on pressure. In addi-

tion, the time τ∞ in (21) and (22) is proportional to (θ0 − θc)
ζ and is a constant minimum

time of instability evolution when P = P0 = const. The liquid transport described by
Equation (21) is spontaneous. This result corresponds to the kinetic theory, which takes
into account in the system of initial kinetic equations for cluster distribution functions the
“interaction” of clusters of accessible pores and clusters of filled pores. The probability of
this “interaction” is inversely proportional to the time of filling of the accessible cluster
with liquid. Since “interaction“ means overflow, the result is the formation of new clusters
of filled pores. The growth of the filled volume is described as a result of the “interaction”
of clusters from the filled pores with the percolation cluster of accessible pores – liquid flow
from the particle surface through the clusters of filled pores into the percolation cluster of
accessible pores. The characteristic time (22) of exponential growth of the growing mode is
independent of the number of filled pores in such clusters. Therefore, “interaction” means
the filling of the percolation cluster of accessible pores, and thus of the entire pore system
simultaneously through all different clusters of filled pores. Such spontaneous transport
can be considered to be cooperative.

The liquid transport at t ∼ τ∞ � τP is described in the approximation Ṗ = 0
and hence P = P0 = const. The dimensionless rate of pressure growth ˙̃P is related,
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in the hydrodynamic limit, to the dimensionless rate J̃ of transport and the dimensionless
compressibility χ̃, J̃ = χ̃ ˙̃P. Then, given a finite value of J̃, and ˙̃P→ 0 it follows that χ̃→ ∞.
In the experiments, the effective dimensionless compressibility of the suspension without
pore-filling was determined by the compressibility of the liquid and for water χ̃el ∼ 10−2.
As a result, in the process of pressure growth in the vicinity of the critical value P = Pc and
transition from elastic compression of suspension at χ̃el ∼ 10−2 to filling at the small time
interval t ∼ τ0, a jump Ṗ is observed (see Figure 4).

The observed dependencies are obtained at P0 = const, and the value of P0 does not
depend on the impact energy and liquid flow in the pores. This means, as noted above,
that transport at P = const is effectively non-dissipative. The dissipationless transport is
consistent with the invariance of the time dependencies of the filled volume and pressure
with changes in temperature and liquid viscosity obtained in works [10,11,13].

Figure 4. Transition of the Ṗ from elastic compression of suspension to filling.

According to (21)–(24), spontaneous transport follows a time scale τ∞ following rapid
impact compression. As the impact compression energy changes (decreases) over time τ∞,
the fraction of filled pores changes and, according to (21), the rate of spontaneous transport
changes. Therefore, it can be said that the rate of spontaneous transport ”adjusts“ to changes
in the rate of external influence. With this property, the spontaneous transport changes in
such a way that it contributes to the change in the external action. This corresponds to a
response with the positive feedback property.

6. Conclusions

It follows from the foregoing that with rapid compression, a multiscale process occurs,
which can be described as the formation and decay of an unstable state of a suspension
of particles with empty pores. The key to the formation of an unstable state is elastic
compression. The characteristic pressure increase time τp in this process is much shorter
than the characteristic time of filling the percolation cluster of accessible pores at P ∼ Pc
and the time of filling τ0 of individual clusters of accessible pores at a pressure in the
vicinity of P0 > Pc. Therefore, due to the filling delay, the system of particle pores turns out
to be unfilled in the vicinity of the critical point Pc. The critical pressure Pc is independent,
in accordance with (23), of the compression energy and particle mass and is a property
of a disordered system of pores and a non-wetting liquid. The mode of pore-filling at a
constant liquid transport rate can be kept if, with increasing impact energy, the mass of
particles and, consequently, the volume of accessible pores increases. The barrier of the
fluctuation filling of pores in the vicinity of P0 for the studied suspension is comparable to
the temperature for pores of the minimum size (Rmin) in the distribution of f (R). For larger
pores, the barrier is lower. As a result, at P ∼ P0, fluctuations in the filling of pores with
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R < Rmin are unstable, and during the time the pressure rises to P0, almost all pores of
particles are accessible to a non-wetting liquid.

However, it turned out that filling is not related to the evolution of such fluctuations,
and the condition of thermodynamic instability is only a necessary condition at the critical
point P0. At this point, the system of empty accessible pores of particles in a non-wetting
liquid transforms into a dynamic state with a developing collective mode of "interaction"
of an ensemble of clusters of filled pores with a percolation cluster of accessible pores.
Such an “interaction” leads to an exponential acceleration of filling. In accordance with the
model of the interacting modes, it is possible to control filling by a slow mode. The control
parameter is the rate of change of volume, V̇ = τ−1

V = vrSV−1 (S and vr are the area and
velocity of the rod) of the suspension, associated with the “effective” compressibility χ
when filling at the pressure increase rate, Ṗ = τ−1

p , V̇ = χṖ and if P = const, Ṗ = 0, χ→ ∞
at t2 ÷ t3. Thus, the considered theoretical model based on the solution of the kinetic
equations for the distribution functions of clusters of filled and accessible pores, and the
equations obtained from the solution for the macroscopic values of the amplitude of the
unstable fast mode and the fraction of the filled pore volume, allow us to describe the
experimental data. The developed model allows us to remove the contradictions arising
from the observed dependencies of the flow and volume of filled pores on time as caused
by impact compression, but occurring at P = const, which indicates the spontaneous
non-dissipative nature of the transport. The evidence of the influence of two interacting
modes on the transport process is the unusual response of the suspension with positive
feedback to the external interaction.
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