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A neuroimaging marker 
for predicting longitudinal changes 
in pain intensity of subacute back 
pain based on large‑scale brain 
network interactions
Bo‑yong Park1, Jae‑Joong Lee2,3, Hong Ji Kim2,3, Choong‑Wan Woo2,3 & Hyunjin Park2,4*

Identification of predictive neuroimaging markers of pain intensity changes is a crucial issue to better 
understand macroscopic neural mechanisms of pain. Although a single connection between the medial 
prefrontal cortex and nucleus accumbens has been suggested as a powerful marker, how the complex 
interactions on a large-scale brain network can serve as the markers is underexplored. Here, we aimed 
to identify a set of functional connections predictive of longitudinal changes in pain intensity using 
large-scale brain networks. We re-analyzed previously published resting-state functional magnetic 
resonance imaging data of 49 subacute back pain (SBP) patients. We built a network-level model that 
predicts changes in pain intensity over one year by combining independent component analysis and 
a penalized regression framework. Connections involving top-down pain modulation, multisensory 
integration, and mesocorticolimbic circuits were identified as predictive markers for pain intensity 
changes. Pearson’s correlations between actual and predicted pain scores were r = 0.33–0.72, and 
group classification results between SBP patients with persisting pain and recovering patients, in 
terms of area under the curve (AUC), were 0.89/0.75/0.75 for visits four/three/two, thus outperforming 
the previous work (AUC 0.83/0.73/0.67). This study identified functional connections important for 
longitudinal changes in pain intensity in SBP patients, providing provisional markers to predict future 
pain using large-scale brain networks.

Chronic pain is a major health problem that undermines the quality of life1,2 and requires high social costs for 
management3. Indeed, 5–10% of patients with acute back pain progress to subacute back pain (SBP) and then 
to chronic back pain (CBP), suggesting the importance of continuous monitoring of pain intensity during the 
early stages4. The acute, subacute, and chronic back pain are classified based on the duration of pain, where acute 
back pain is defined as lasting < 4–6 weeks, subacute back pain lasts 4–6 weeks to 3 months, and chronic back 
pain lasts > 3 months5,6. Extensive research has been performed to conceptualize the neurobiological mechanisms 
of chronic pain1,2,7–14. Some studies have found atypical anatomical and functional connections in local brain 
regions that predict changes in pain intensity across time1,9–11. However, predictive markers regarding large-scale 
brain organizations and how their interactions are related to changes in pain intensity are currently lacking.

With the advances of neuroimaging acquisition and analysis techniques, clinical neuroscience can now define 
large-scale brain networks and address how the brain organizations are perturbed in disease in vivo10,13,15–19. 
Indeed, we can define large-scale brain networks based on pre-defined atlases, such as established intrinsic 
functional communities20 and a seminal model of cortical hierarchy21, as well as data-driven approaches, for 
instance independent component analysis (ICA)22–25. Prior studies compared spatial and temporal patterns 
of these large-scale brain networks between the diseased and healthy populations and observed significant 
network-level perturbations, providing the rationale for investigating network-level anomalies in disease10,13,15–19. 
Studies investigating chronic pain found that a corticostriatal circuit involving functional connections between 
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the medial prefrontal cortex (mPFC) and nucleus accumbens (NAc) may serve as a marker for predicting pain 
state transition between acute and chronic pain1,9,11. Indeed, a seminal study by Baliki et al.9 predicted pain 
transition from SBP to CBP using the mPFC–NAc connectivity measured with functional magnetic resonance 
imaging (fMRI). In addition, this connection contributed to distinguishing the SBP persisted (SBPp) group 
from the recovered (SBPr) group with high accuracy. Additional studies from the same group broadened their 
connections-of-interest by suggesting that brain networks related to emotion and reward circuits and global 
measurement of functional brain networks can also monitor the transition from SBP to CBP1,10,11. Despite 
studies proposing an important role for the functional interactions in chronic pain26–29, how the interactions 
of functional connectivity at large-scale brain networks contribute to a predictive model for changes in pain 
intensity remains underexplored.

In this study, we aimed to develop a functional connectivity-based model to predict longitudinal changes in 
pain intensity of SBP patients using large-scale brain networks. To this end, we re-analyzed previously published9 
resting-state fMRI (rs-fMRI) data from 49 SBP patients. We defined large-scale brain networks using ICA, which 
decomposes the mixed signal into spatially independent components (ICs) in a data-driven way22–24. Functional 
connections among brain networks were used to construct a model to predict longitudinal changes in pain 
intensity for SBP patients.

Methods
Participants and imaging data.  The Institutional Review Board (IRB) of Sungkyunkwan University 
approved the present retrospective study, which was performed in full accordance with local IRB guidelines. All 
participants provided written informed consent. Data from 70 SBP patients were obtained from the Open Pain 
Project (OPP) database (https​://www.openp​ain.org). Participants were diagnosed by a clinician for subacute 
back pain if they had pain intensity greater than 40/100 on the visual analog scale (VAS) that lasted fewer than 
16 weeks. All participants did not have pain for at least one year before their subacute pain episode, as well as 
other chronic painful conditions, systemic disease, history of head injury, and psychiatric illness. Among 70 
participants, five participants with high depression (based on Beck Depression Inventory > 19)30 and eight par-
ticipants who did not complete the questionnaire were excluded. Additional eight participants were excluded 
as the T1-weighted and rs-fMRI data did not cover the whole brain (e.g., missing somatomotor or cerebel-
lum regions). Finally, 49 individuals (mean ± SD age at baseline = 42.68 ± 10.37 years, 49% female) with quality-
controlled T1-weighted and rs-fMRI data at baseline and full pain ratings quantified with VAS for all four visits 
(mean ± SD weeks = 6.90 ± 2.14 for visit two, 27.92 ± 3.69 for visit three, 54.68 ± 3.83 for visit four) were enrolled 
in this study. The number of participants was slightly larger in this study (n = 49) than in the previous study 
(n = 39), because the database had been updated9. The participants were classified into either the SBPp or SBPr 
group, according to the change in VAS scores. Specifically, participants whose VAS scores decreased at least 
20% between visits one and four were classified into the SBPr group and the remaining into the SBPp group 
(Supplementary Fig. S1)1,2,9–11,31. Detailed demographic information of all participants is reported in Supple-
mentary Table  S1. All participants underwent T1-weighted imaging and rs-fMRI data, which were acquired 
using 3 T Siemens Trio whole-body scanner. The following imaging parameters for the T1-weighted structural 
data were applied: voxel size = 1 mm3 with 160 slices; repetition time (TR) = 2500 ms; echo time (TE) = 3.36 ms; 
flip angle = 9°; matrix size = 256 × 256. The following imaging parameters for rs-fMRI data were applied: voxel 
size = 3.44 × 3.44 × 3 mm3 with 36 slices; TR = 2500 ms; TE = 30 ms; flip angle = 90°; matrix size = 64 × 64; num-
ber of volumes = 244. During the rs-fMRI scan, participants were instructed to keep their eyes open and not fall 
asleep.

Image preprocessing.  The imaging data were preprocessed using the fusion of the neuroimaging preproc-
essing (FuNP) pipeline (v2.8) integrating AFNI (v18.3.16), FSL (v5.0.8), and ANTs (v2.3.4) software32–35. The 
magnetic field bias of the T1-weighted data was corrected and non-brain tissue was removed using AFNI (3dUn‑
ifize and 3dSkullStrip). The rs-fMRI data were processed as follows. Volumes during the first 10 s (4 volumes) 
were removed to allow for magnetic field stabilization. Head motion was corrected by aligning all volumes to the 
first volume with rigid-body transformation using FSL (mcflirt). The slice timing was corrected and intensity was 
normalized using FSL (slicetimer and fslmaths). Noise components of head motion, white matter, cerebrospinal 
fluid, cardiac pulsation, and arterial and large vein related contributions were removed using FMRIB’s ICA-
based X-noiseifier (ICA-FIX)36. Low-resolution fMRI data were registered onto the high-resolution T1-weighted 
data and subsequently onto the MNI 3 mm standard space with affine transformation using FSL (flirt). Low-pass 
filter with a cut-off of 0.1 Hz and spatial smoothing with the full width at half maximum (FWHM) of 4 mm were 
applied using AFNI (3dFourier and 3dmerge).

Construction of a large‑scale functional network.  Preprocessed rs-fMRI data at baseline from all 
SBP patients were temporally concatenated and fed into the FSL MELODIC software22,34. ICA generates spatially 
ICs, which consist of a set of voxels sharing similar temporal patterns of brain activity22–24. The automatic esti-
mation process generated only a few ICs (Supplementary Fig. S2), thus we manually set the number of compo-
nents at 70 to decompose the data into finer scales25. To assign each IC to known brain networks, we compared 
the generated ICs with pre-defined resting-state networks (RSNs; https​://www.fmrib​.ox.ac.uk/datas​ets/brain​
map+rsns/)25. The spatial cross-correlation between ICs and RSNs was calculated, and correlation values lower 
than 0.1 were considered as noise components and were excluded25. Additionally, ICs were visually inspected to 
exclude noise components. Only functionally interpretable ICs were used for further connectivity analysis. To 
provide the anatomical location of the brain networks, we compared the generated ICs with pre-defined brain-
netome atlas37 by calculating the spatial overlap ratio. If the overlap ratio was greater than 90%, the region was 

https://www.openpain.org
https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns/
https://www.fmrib.ox.ac.uk/datasets/brainmap+rsns/
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considered to be involved in the brain network. To construct a functional connectivity matrix, we calculated 
partial correlation with L2-norm regularization using time series between functionally interpretable ICs with 
FSLNets (https​://fsl.fmrib​.ox.ac.uk/fsl/fslwi​ki/FSLNe​ts) using ridge regression (rho = 0.01). Theoretically, partial 
correlation better approximates a set of direct functional connections compared to full correlation (i.e., Pearson’s 
correlation), which is sensitive to both direct and indirect connections38–42. Correlation values were transformed 
to z-values using Fisher’s r-to-z transformation.

Prediction of pain intensity.  Among a total of N(N − 1)/2 connections (N: the number of ICs), a few 
connections were identified to predict changes in pain intensity scores (i.e., �VAS ) between visits one and four 
using the least absolute shrinkage and selection operator (LASSO) framework. We divided the whole dataset into 
training and test dataset based on a leave-one-out cross-validation (LOOCV) approach. All functional connec-
tivity values at visit one and change in VAS scores divided by the time interval (i.e., normalized VAS) from M − 1 
participants (M: total number of participants) were fed into the LASSO framework as independent and depend-
ent variables, respectively. The LASSO framework aims at finding a set of non-redundant features that could 
explain the dependent variable. In other words, a set of functional connections that led to the best fitting of the 
normalized �VAS scores was selected. The regularization parameter was optimized by ten-fold cross-validation 
with the minimum squared error criterion. We repeated this process M times with a different set of participants. 
The functional connections that were frequently (> 75%) observed during M repetitions were selected as the 
final features. The selected features were used to predict pain intensity changes between visits one and four. A 
linear regression model was constructed by setting the normalized change of VAS scores ( �VAS14/�t14 , where 
�VAS14 = VASvisit4 − VASvisit1 and �t14 = daysvisit4 − daysvisit1 ) as the dependent variable and the selected 
features as the independent variables with a LOOCV fashion, where M − 1 participants were used for training 
and the left-out participant was used for testing. �t14 was multiplied to the predicted outcome, and we finally 
obtained the predicted �VAS14 . Similar linear models were applied to estimate �VAS12 and �VAS13 as follows:

where n is 2 or 3 representing visit two or three. In addition, we added the baseline VASvisit1 to the predicted 
�VAS1n to obtain the predicted VASvisitn . The quality of the model was assessed using two criteria. First, Pearson’s 
correlation between the actual and predicted �VAS1n and VASvisitn was estimated and r- and p-values were cal-
culated. The prediction error was measured using root mean square error (RMSE). Second, group classification 
between SBPp and SBPr was performed using the linear models based on �VAS1n , and accuracy was measured 
using the area under the curve (AUC), accuracy, sensitivity, and specificity. The SBPp and SBPr groups were 
classified based on the degree of reductions in VAS scores between baseline and the last visit. Specifically, if the 
VAS score decreased > 20% at the fourth visit compared to the baseline, the participant was assigned to the SBPr 
group1,2,9–11,31. Otherwise, participants were assigned to the SBPp group. For other visits (i.e., visits two and three), 
the reduced threshold of VAS score was adjusted using a linear equation as follows:

This equation yields the reduced threshold of VAS score ( x ) at visit n (two or three). The threshold was 13% 
for visit two and 15% for visit three.

Sensitivity analysis.  Prediction of pain intensity using a single connection.  It has been shown that the 
mPFC–NAc connection is an important marker for predicting an individual’s pain intensity change9. To examine 
the significance of this previous finding, we classified SBPp and SBPr groups using only the mPFC–NAc connec-
tion at baseline9. The mPFC and NAc regions were defined as 10 mm spheres centered on x = 2, y = 52, z = -2 for 
mPFC and x = 10, y = 12, z = -8 for NAc in the MNI space. As the previous study did not clearly describe whether 
the 10 mm distance was the radius or the diameter, we tested spheres with a 5 mm radius as well. Spheres with a 
6 mm radius defined from the previous study were also tested43.

Sex effect.  We repeated the prediction analyses using edge values controlled for sex to adjust for the potential 
sex-related differences in the predictive model44–46.

Prediction based on the pre‑defined functional networks.  To assess prediction performances of pain intensity 
changes as well as group classification between SBPp and SBPr groups based on the pre-defined functional net-
works, we performed the prediction analyses using the functional connections derived using RSNs25.

Statistical analysis.  All analyses were conducted using MATLAB R2017b (MathWorks Inc., Natick, MA, 
USA). The performance of pain intensity prediction was assessed using Pearson’s correlation. The significance of 
the correlation was assessed using 1000 permutation tests by randomly shuffling participants. A null distribution 
was constructed and if the real correlation value did not belong to the 95% of the distribution, it was deemed sig-
nificant. The performance of group classification was measured using AUC, accuracy, sensitivity, and specificity.

(1)�VAS1n =

�VAS14

�t14
×�t1n,

(2)mean
(

VASvisit1 − VASvisitn
)

: mean
(

VASvisit1 − VASvisit4
)

= x : −20.

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
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Results
Large‑scale brain networks.  Leveraging a data-driven group ICA approach, we first identified 70 ICs 
using 49 patients’ rs-fMRI data at baseline. We selected 43 functionally interpretable ICs after visual inspection 
and by comparing the generated ICs and pre-defined RSNs (mean cross-correlation = 0.36 with SD of 0.13) 
(Fig. 1). Functionally interpretable ICs were mapped to the visual network (VN), default mode network (DMN), 
frontoparietal network (FPN), salience network (SN), sensorimotor network (SMN), auditory network (AN), 
basal ganglia (BG), and cerebellum/brainstem. Comparing with brainnetome atlas37, VN consists of cuneus, 
lingual gyrus, superior/middle/inferior occipital gyrus, and fusiform gyrus, DMN involves medial/lateral pre-
frontal cortex, precuneus, anterior/posterior cingulate cortex, and parahippocampal gyrus, FPN contains dorso-
lateral/ventrolateral prefrontal cortex, superior/inferior parietal lobule, and posterior superior temporal sulcus, 
SN consists of anterior insula, anterior cingulate cortex, and lateral orbitofrontal cortex, SMN involves precen-
tral/postcentral gyri, paracentral lobule, superior parietal lobule, and dorsal inferior parietal lobule, AN contains 
superior/medial temporal gyrus, dorsal inferior temporal gyrus, and ventral inferior parietal lobule, and BG 
consists of amygdala, caudate, putamen, and thalamus.

Functional connections associated with pain intensity changes in SBP patients.  Macroscale 
functional connections predictive of changes in pain intensity were selected using LASSO with LOOCV frame-
work (Fig. 2 and Supplementary Table S2). Application of LOOCV is not a fully unbiased approach compared to 
k-fold cross-validation in terms of the increased likelihood of overfitting the training data. However, we adopted 
LOOCV because of the limited sample size. Among the nine identified connections, functional connectivity 
between lateral prefrontal (IC #23) and parietal (IC #24) cortices showed the strongest positive effects followed 
by connections between brainstem (IC #43) and default mode (IC #12) and those between brainstem (IC #42) 
and dorsal visual (IC #5) areas. Strong negative effects were found for the connections involving anterior insula 
(IC #27), sensorimotor (IC #31 and #32), and default mode (IC #10 and #13) areas. Although the functional 
connectivity between brainstem and BG, especially localized in the putamen, showed relatively low connection 
strength, it was consistently identified across cross-validations, indicating that it was the most stable connection 
associated with pain intensity changes (Supplementary Table S2).

Figure 1.   Forty-three functionally interpretable ICs that were generated using group ICA. Brain images were 
made using FSLeyes v.0.31.234. VN visual network, DMN default mode network, FPN frontoparietal network, SN 
salience network, SMN sensorimotor network, AN auditory network, BG basal ganglia.
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Prediction of pain intensity changes for SBP patients.  We used the identified nine functional con-
nections to predict changes in VAS scores using the linear regression model. The models were highly predictive 
exhibiting high Pearson’s correlation between the actual and predicted �VAS14 (r = 0.72, p < 0.001) with RMSE of 
0.15 (Fig. 3A). Additionally, we calculated the predicted VAS scores at visit four ( VASvisit4 ) by adding the baseline 
VAS score (i.e., VASvisit1 ) to the predicted �VAS14 . We compared it with the actual VASvisit4 and again observed 
a high correlation (r = 0.85, p < 0.001). The quality of the prediction model was further assessed by distinguish-
ing between SBPp and SBPr groups at visit four based on the degree of changes in pain intensity. We observed 
high AUC of 0.89 (accuracy = 0.84, sensitivity = 0.80, specificity = 0.85), which outperformed a previous study 
(AUC = 0.83)9. The linear regression model for predicting �VAS14 was further tested for predicting �VAS13 and 
�VAS12 , which showed pain intensity changes in shorter time intervals. The predictive performance for �VAS13 
and VASvisit3 was r = 0.33, p = 0.0205 and r = 0.52, p < 0.001, respectively with RMSE of 0.23 (Fig. 3B). Analysis 
of �VAS12 and VASvisit2 also exhibited similar results (r = 0.53, p < 0.001 for �VAS12 and r = 0.62, p < 0.001 for 
VASvisit2 with RMSE of 0.22) (Fig. 3C). The AUC values for classifying SBPp and SBPr groups were 0.75 (accu-
racy = 0.67, sensitivity = 0.32, specificity = 0.90) for visit three and 0.75 (accuracy = 0.63, sensitivity = 0, specific-
ity = 1) for visit two. The overall prediction of pain intensity and group classification results are shown in Fig. 3D. 
Interestingly, the group classification performance of our current study incorporating baseline large-scale neu-
roimaging features (AUC of 0.89/0.75/0.75 for visits four/three/two) was slightly better than the previous study 
(AUC of 0.83/0.73/0.67), which used only a single connection between mPFC and NAc9, indicating that pain 
state transition can be better predicted using complex interactions of functional connections at large-scale. Pre-
diction and classification performances exhibited the highest value for visit four and decreased as shorter time 
intervals were considered. In addition, the prediction performance was higher for visit two compared to visit 
three, and the group classification performance was identical. This may be due to the almost unchanged pain 
intensity of SBPr group between the second and third visits (mean reduction of VAS score = 25/29 for visits two/
three from baseline; Supplementary Table S1 and Supplementary Fig. S1). Since VAS ranges from 0 to 100, the 
VAS score changes between visits two and three (i.e., 4) were very small. Thus, the prediction performance would 
not differ a lot between visits two and three.

Sensitivity analysis.  Prediction of pain intensity using a single connection.  We performed the group clas-
sification between SBPp and SBPr using the mPFC–NAc connection to assess the significance of the functional 
connection between mPFC and NAc (Fig. 4A). The AUC values for distinguishing SBPp from SBPr groups using 
spheres with 10 mm radius were (0.50/0.62/0.49 for visits one and four/three/two), and those with 5 mm and 
6 mm radii were (0.59/0.70/0.61 and 0.59/0.69/0.61) (Fig. 4B), but they were different from the previous study9.

Sex effect.  We performed the prediction analyses after controlling for sex from the edge values of the connec-
tivity matrix and found virtually consistent findings compared to the results that did not control for sex. Twelve 
connections with similar weights were found (Supplementary Fig. S3A). Four new connections were observed 
including SMN-DMN (IC #28-12), SMN-FPN (IC #29-20), BG-FPN (IC #38-23), and Brainstem-AN (IC #41-
34), and one connection of SN-VN (IC #27-6) was removed in the new model. The correlations between actual 
and predicted pain intensity changes (r = 0.84/0.41/0.59 for visits four/three/two) were slightly higher than our 
main findings (r = 0.72/0.33/0.53), as well as AUC for group classification (AUC = 0.91/0.79/0.80 controlling for 

Figure 2.   Macroscale functional connections that predict pain intensity changes. Nine selected functional 
connections associated with changes in pain intensity in SBP patients are reported. The spatial patterns of ICs 
in the circular plot are available at Fig. 1. The magnitudes of the functional connections are represented on the 
right and red/blue colors indicate positive/negative weights. Brain images were made using FSLeyes v.0.31.234 
and the graphs were made using MATLAB R2017b (MathWorks Inc., Natick, MA, USA). VN visual network, 
DMN default mode network, FPN frontoparietal network, SN salience network, SMN sensorimotor network, 
AN auditory network, BG basal ganglia.
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sex, AUC = 0.89/0.75/0.75 without control) (Supplementary Fig. S3B–D). The results indicate that controlling for 
sex may contribute to enhancing the prediction performance.

Prediction based on the pre‑defined functional networks.  We additionally performed prediction analyses using 
the pre-defined RSNs (Supplementary Fig. S4A)25. We identified four connections of VN-VN (RSN #3-2), execu-
tive control network (ECN)-SMN (RSN #8-6), FPN-ECN (RSN #9-8), and FPN-AN (RSN #10-7) to predict 
changes in pain intensity (Supplementary Fig. S4B). These connections were useful for predicting the pain inten-
sity changes between visits one and four (r = 0.45, p = 0.001), but they did not contribute to predicting changes 
between visits one and three/two (r = 0.16/0.18, p = 0.26/0.22) (Supplementary Fig. S4C–E). Furthermore, AUC 
values for classifying between SBPp and SBPr groups yielded lower performances (AUC = 0.70/0.62/0.64 for 
visits four/three/two) compared to our main results derived from ICs (AUC = 0.89/0.75/0.75), as well as the 
previous study (AUC = 0.83/0.73/0.67)9 (Supplementary Fig. S4C–E).

Discussion
Despite extensive identification of neuro-biomarkers for pain1,2,7–14, one of the remaining challenges in pain-
related neuropathology is to understand how the connectome topology is perturbed according to changes in 
pain intensity. Here, we aimed at identifying a marker to predict pain intensity changes in SBP patients, based 
on the interactions among large-scale functional brain networks. Macroscopic brain networks were defined 
using a data-driven group ICA approach and functional connections associated with changes in pain intensity 
were identified using a machine learning framework. The identified functional connections effectively predicted 
pain intensity changes and successfully distinguished between SBPp and SBPr patients. Our findings provide a 
novel insight on understanding macroscale functional brain organizations associated with pain state transitions.

Our large-scale functional network model outperformed previous studies, which used a single connection 
of mPFC–NAc1,9, in terms of predicting future pain intensity and distinguishing between the SBPp and SBPr 

Figure 3.   Prediction results of �VAS1n and VASvisitn with the receiver operating characteristic (ROC) curve for 
classifying between SBPp and SBPr. (A) Prediction and classification performances between visits one and four, 
(B) visits one and three, and (C) visits one and two. The first column represents the prediction results of changes 
in pain intensity (i.e., �VAS1n ), while the second column indicates the results of predicted pain intensity 
without considering time-related changes (i.e., VASvisitn ). The third column shows AUC values for classifying 
between SBPp and SBPr groups. (D) Nine selected functional connections for SBP patients are shown on the 
top and the overall prediction and group classification results are shown on the bottom. Brain images were 
made using FSLeyes v.0.31.234 and the graphs were made using MATLAB R2017b (MathWorks Inc., Natick, 
MA, USA). VN visual network, DMN default mode network, FPN frontoparietal network, SN salience network, 
SMN sensorimotor network, AN auditory network, BG basal ganglia, VAS visual analog scale, RMSE root mean 
square error, AUC​ area under the curve.
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group. Our findings involved large-scale connections regulating attentional modulation of pain perception47–49 
and multisensory integration50–53. The connections, which showed strong positive weights to predict changes 
in pain intensity involve lateral frontal region in the frontoparietal network and brainstem area, in particular 
periaqueductal gray matter (PAG). These connections could be characterized by top-down processing, in which 
the cingulofrontal cortex influences the PAG to gate pain modulation47–49. Specifically, these areas are involved in 
the mesocorticolimbic system54, where dopaminergic inputs are transmitted from the ventral tegmental area to 
mPFC and modulate this region to mediate pain54,55. In a molecular study, attenuated availability of neurokinin 
1 (NK1) receptor, which modulates pain behaviors, was observed in frontal and PAG in chronic pain patients56, 
suggesting that these regions are associated with pain-related neural mechanisms. In contrast, connections 
involve insula, sensorimotor network, and BG of putamen showed negative contributions to predict pain inten-
sity changes. These areas are involved in the processing mechanism of multisensory integration50–53. Indeed, 
lower performance for visual and multisensory tasks was observed in neck pain patients52 and a multisensory 
classifier that integrated responses from insula, DMN, somatosensory, and BG separated fibromyalgia patients 
from healthy controls with high accuracy51. Indeed, insula has been shown to be an important brain region 

Figure 4.   Prediction results when only the mPFC–NAc connection was used for predicting changes in pain 
intensity. (A) Three different definitions of the mPFC and NAc regions according to the different radii. (B) 
Graphs showing AUC values for classifying between SBPp and SBPr groups. Brain images were made using 
FSLeyes v.0.31.234 and the graphs were made using MATLAB R2017b (MathWorks Inc., Natick, MA, USA). 
mPFC medial prefrontal cortex, NAc nucleus accumbens, L left, R right, AUC​ area under the curve.
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for pain modulation. Prior studies found that the anterior portion of insula showed decreases in grey matter 
density, abnormal activity patterns, and perturbed connections to NAc during pain modulation7,9,49,57–62. They 
further observed that atypical activations in anterior insula predicted duration of pain, collectively supporting 
our findings that connections between anterior insula and sensory as well as default mode regions could serve 
as predictive markers for predicting pain intensity changes. These studies collectively indicate that the degree of 
atypical multisensory integration may be a powerful marker for describing pain-related brain signals. Therefore, 
based on these results, we can infer that failure in multisensory integration may predict future pain intensity in 
SBP patients. However, how the different contributions (i.e., positive and negative weights) of such functional 
connections are related to neural mechanisms of pain modulation requires further investigation to better quantify 
pain state changes.

In the current study, we identified functional connections that predict changes in pain intensity in SBP 
patients, which involved midbrain-subcortical connectivity as well as cortico-cortical interactions mainly 
between higher-order brain regions. The results suggest that pain symptoms not only originate from multisen-
sory processing, but also can derive from perturbed top-down pain modulatory systems that contain attention, 
reward, and emotion processing, consistent with previous studies54,55,63–68. Here, we improved the performance 
of predicting pain intensity changes across time and of distinguishing recovered groups from groups with per-
sistent pain using macroscale functional connections compared to a previous study that only considered a single 
connection between mPFC and NAc9. Therefore, our study indicates the importance of considering complex 
connections among different large-scale brain networks, which especially involve mesocorticolimbic as well as 
multisensory integration systems, to better understand the neuropathology of pain. We further analyzed the 
data using functional connections derived using pre-defined RSNs25, and it did not reveal good performances 
compared to our main findings based on the ICA approach, as well as the previous study based on a single 
mPFC–NAc connection9. Such low performance may be due to the low sensitivity of the brain networks. RSNs 
involve multiple overlapping brain regions, which might mix fMRI signals of pain-related and pain-independent 
regions. In addition, they do not include basal ganglia and brainstem, which are important regions for pain 
modulation47–53. Furthermore, RSNs were constructed using healthy controls, which may not reflect brain regions 
of pain modulation in patients. Here, we constructed the IC maps using SBP patients and it may contribute to 
improving performances for predicting pain intensity changes as well as group classification between SBPp and 
SBPr groups. These results provide the rationale for defining brain networks using a data-driven ICA approach. 
However, our study was performed on small-scale data (n = 49 for SBP patients) because of the limited avail-
ability of a full suite of follow-up data. In future studies, we will collect large-scale data for better validation and 
improved statistical power. The current study adopted a longitudinal approach with a follow-up of up to one 
year. Longer follow-up periods are necessary to validate the reliability of our prediction model. Another factor to 
consider for future pain studies is quality of life. It is shown that quality of life, such as social and family environ-
ment as well as health care service, is highly associated with pain intensity, where appropriate pain management 
impacts relieving pain69–71. In the current study, we could not assess the association between the quality of life 
and our predictive model due to the missing information from the open database. An interesting future direc-
tion is to explore the potential contribution of the quality of life on the predictive model based on functional 
connectivity. Our results of sex-related differences were derived from a relatively small sample. Comparing the 
prediction performances between sexes could be considered for future studies as it has been shown that signifi-
cant sex-related differences in brain activations exist during pain modulation44–46.

NAc is a central region of the mesocorticolimbic system, which transmits and modulates dopaminergic 
inputs54,65,72–75. Atypical excitatory and inhibitory responses of dopaminergic neurons were observed as sustained 
neuropathic pain increased in rats63,68,76,77, non-human primates66, and humans78,79. The association between the 
functional connectivity of NAc at macroscale and dopamine receptor gene expression in pain conditions indicates 
the important role of NAc in pain-related behaviors80. In a neuroimaging study, Baliki et al. suggested that the 
mPFC–NAc connection is a marker for predicting an individual’s pain intensity change9. They found significant 
differences in this functional connection between SBPp and SBPr groups at baseline and showed that it could 
predict pain intensity changes with AUC of 0.83 at the last visit (0.73 for the third visit, and 0.67 for the second 
visit)9. However, when we performed the pain intensity prediction based on group classification between SBPp 
and SBPr groups, we could not fully replicate the findings. These results indicate that although the mPFC–NAc 
is a powerful neuroimaging marker for pain transition, a single connection is sensitive to possibly different 
definitions of seed regions as well as preprocessing or connectivity analysis techniques. Therefore, considering 
complex interactions of functional connections at large-scale would benefit prediction of future pain intensity.

In this study, we identified a large-scale functional connectivity marker for predicting changes in pain inten-
sity. Harnessing advanced connectomics and machine learning, we predicted the change in VAS scores in short 
(~ 7 weeks) to long (~ 1 year) period with high accuracy. Furthermore, our model distinguished well between 
SBPp and SBPr groups. Our results imply an important role of interactions among functional connections at a 
large-scale in predicting pain intensity in SBP patients.

Data and code availability
The full imaging and phenotypic data from the Open Pain Project database are provided (https​://www.openp​
ain.org). The codes are available at https​://gitla​b.com/by943​3/funp for data preprocessing, at https​://gitla​b.com/
by943​3/bigpa​inpro​ject for pain intensity change prediction.
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