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Purpose: This study focused on predicting 3D dose distribution at high precision and
generated the prediction methods for nasopharyngeal carcinoma patients (NPC) treated
with Tomotherapy based on the patient-specific gap between organs at risk (OARs) and
planning target volumes (PTVs).

Methods: A convolutional neural network (CNN) is trained using the CT and contour
masks as the input and dose distributions as output. The CNN is based on the “3D Dense-
U-Net”, which combines the U-Net and the Dense-Net. To evaluate the model, we
retrospectively used 124 NPC patients treated with Tomotherapy, in which 96 and 28
patients were randomly split and used for model training and test, respectively. We
performed comparison studies using different training matrix shapes and dimensions for
the CNN models, i.e., 128 ×128 ×48 (for Model I), 128 ×128 ×16 (for Model II), and 2D
Dense U-Net (for Model III). The performance of these models was quantitatively evaluated
using clinically relevant metrics and statistical analysis.

Results: We found a more considerable height of the training patch size yields a better
model outcome. The study calculated the corresponding errors by comparing the
predicted dose with the ground truth. The mean deviations from the mean and
maximum doses of PTVs and OARs were 2.42 and 2.93%. Error for the maximum
dose of right optic nerves in Model I was 4.87 ± 6.88%, compared with 7.9 ± 6.8% in
Model II (p=0.08) and 13.85 ± 10.97% in Model III (p<0.01); the Model I performed the
best. The gamma passing rates of PTV60 for 3%/3 mm criteria was 83.6 ± 5.2% in Model I,
compared with 75.9 ± 5.5% in Model II (p<0.001) and 77.2 ± 7.3% in Model III (p<0.01);
the Model I also gave the best outcome. The prediction error of D95 for PTV60 was 0.64 ±
0.68% in Model I, compared with 2.04 ± 1.38% in Model II (p<0.01) and 1.05 ± 0.96% in
Model III (p=0.01); the Model I was also the best one.

Conclusions: It is significant to train the dose prediction model by exploiting deep-
learning techniques with various clinical logic concepts. Increasing the height (Y direction)
of training patch size can improve the dose prediction accuracy of tiny OARs and the
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whole body. Our dose prediction network model provides a clinically acceptable result
and a training strategy for a dose prediction model. It should be helpful to build automatic
Tomotherapy planning.
Keywords: dose prediction, deep learning, Tomotherapy, nasopharyngeal carcinoma, radiotherapy plan
INTRODUCTION

Radiotherapy (RT) Plan optimization is a time-consuming
process in routine clinical practice. It may cost several hours to
constrain the dose distribution to meet the optimal clinical
criteria. The plan quality, which the total voxel information
can guide the RT plan optimization and ensure, depends on the
medical dosimetrist or the medical physicist’s clinical experience
and skills. It can minimize the uncertainty of the planning
outcome due to different planners handling the planning
process (1–3).

Recently, artificial intelligence (AI) and deep learning (DL)
methods have been extensively involved in radiotherapy
workflow, such as dose prediction (4–7). The DL-based
methods perform well in automatic feature extraction and
mapping transformation (5, 8). The dose prediction model can
make an end-to-end mapping transformation between patients’
anatomical and dose distribution information with organs-at-
risk (OARs) constraints (9–12). Compared with using the
conventional treatment planning system (TPS), using the DL
model to generate predicted dose distribution reduces planning
time significantly (13–16).

Tomotherapy is a superior RT modality for treating advanced
cancers, such as head and neck cancer. Compared to conventional
RT treatment, Tomotherapy plan optimization is a time-
consuming process. To make a plan with desirable quality, the
planner needs to adjust the dose-volume histogram (DVH)
limitation and plan criteria to update the plan weights iteratively.
In this context, the total voxel information becomes a crucial
consideration in dose prediction. It can guide Tomotherapy plan
optimization, reducing the iteration times by lessening TPS
optimization’s adjustment steps and minimizing the planning
outcome uncertainty caused by anthropogenic factors. Different
planners may handle the planning process.

Due to the complex anatomy, it is highly challenging to make
a plan that can precisely deliver the prescribed dose to the target
for the head and neck cancer patients (17, 18). They carry great
essential functions for humans, and they need to be protected
from unnecessary doses to guarantee which could still function
well after the treatment (safe during the treatment). It results in
more difficulty in achieving the desirable dose for planning target
volumes (PTVs).

This study aims to establish the underlying relationship
between anatomical and dose distribution information for
nasopharyngeal carcinoma (NPC) patients treated with
Tomotherapy using deep-learning approaches. Since few
studies have been performed to investigate dose prediction for
NPC, this study should be potentially exciting and valuable as
guidance or reference for future RT planning.
2

MATERIALS AND METHODS

Data Collection and Preparation
One hundred twenty-four NPC patients were treated with
Tomotherapy, and our study collected their data. PTVs, the
OARs, and the external contour (Body) were labeled as the
contoured structures. We added a 3 mmmargin around the gross
tumor volume of the nasopharynx (GTVnx) and clinical target
volume (CTV) to create the planning GTVnx (pGTVnx) and
PTV, respectively. The PTVs include PTV60 (a prescription dose
of 60 Gy) and PTV54 (54 Gy). The OARs included Brainstem,
Spinal-cord, Eyes, Lens, Larynx-esophagus-trachea (L-E-T),
Optic-nerves, Oral-cavity, Parotid-glands (PGs), Pituitary,
Thyroid, Submaxillary-glands (SMGs). The study collected
Digital Imaging and Communications in Medicine (DICOM)
files for each case, including CT series, RT Plan, RT Structure,
and RT Dose files. All cases corresponding DICOM files involved
in our study have been done for particular quality assurance
(QA) and delivered.

The collected cases have good consistency: have all PTV60

(with prescription dose of 60 Gy) and have the same types of
OARs. We did the data preprocessing before the model training.
It ensures the CNN network could load and correctly process the
mapping transformation between the patient’s anatomical and
dose distribution information. We extracted the 3D CT matrix
from CT DICOM files, and the voxel values were normalized for
each case. The normalized CT matrix holds a zero mean value
and one as the variance. The study converted the region of
interest (ROI) information to a binary mask, which means the
pixels inside the contouring area with a value of 1 and pixels
outside the contouring area with 0. The spacing and matrix
shapes of the ROI contouring mask were adjusted equal to the
corresponding CT matrix. We obtained the dose array from RT
Dose files, with dose values (from 0 to 74 Gy) directly recorded in
the dose matrix. All data preprocessing had been done by Python
codes. NumPy, pydicom, and other python packages were used
to conserve the raw data to the “npy” format.

3D Neural Network
The 3D Dense-U-Net was built as the neural network
architecture (Figure 1). “U-Net” is a famous well-behaved
CNN network specializing in end-to-end matrix mapping (19).
The U-Net architecture consists of down-sampling and up-
sampling blocks concatenated across the bottleneck
symmetrically, thus allowing the model to extract features for
high, middle, and low level (20). The Dense-U-Net structure
preserves the up-sampling and down-sampling portions and
adds the densely connected layers within each hierarchical
level to create the “Dense structure” (21). Every hierarchical
November 2021 | Volume 11 | Article 752007
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level of Dense-U-Net preserves all features from previous layers.
It allows the features to be reused and propagated along with
successive layers. The 3D Dense-U-Net is the 3D version of the
Dense U-Net model. Compared to the 2D Dense U-Net, the 3D
one can directly process the input 3D matrix’s information and
capture features along the Y direction.

Training and Testing
For the 124 nasopharyngeal carcinoma cases, we randomly chose
96 cases for training and 28 cases for testing. The model input
matrix contained 21 channels. The first channel is for CT image
Frontiers in Oncology | www.frontiersin.org 3
information, and the 2–21 channels contain ROIs contour
information, which includes pGTVnx, PTV60, PTV54, Body,
Brainstem, Spinal-cord, Eye-L, Eye-R, Lens-L, Lens-R, L-E-T,
Optic-nerve-L, Optic-nerve-R, Oral-cavity, Parotid-L, Parotid-R,
Pituitary, Thyroid, SMG-L, and SMG-R. In this study, the ground
truth is the dose distribution from the collected RTDOSE DICOM
files. Due to the GPU memory limitation, we specified the patch-
training strategy. The 128×128×48 shape matrix for training was
randomly selected from the 3D dose matrix. The 3D Dense-U-Net
model was built up by connection of Dense Block. Every Dense
Block includes a Relu activation process, followed by convolution
FIGURE 1 | 3D Dense-U-NET structure.
November 2021 | Volume 11 | Article 752007

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Liu et al. PLA General Hospital and BUAA
(kernel size 3×3×3), batch normalization, and concatenation with
the previous layer. We used zero paddings in each convolution,
and each convolution layer had 12 channels. The 3D Dense-
U-NET model went through four times down-sampled by max-
pooling (kernel size 2×2×2) and symmetrically with four times up-
sampled by deconvolution (kernel size 2×2×2, channel =80). The
down-sampling process reduced the initial input matrix size from
128×128×48(128➔64➔32➔16➔8) to 8×8×3. It allows the
network to be able to extract features both locally and globally;
the up-sampling restored the matrix size from 8×8×3 to
128×128×48. The final hierarchical layer of convolution forms a
single channel matrix and becomes the output matrix. We used the
Adam optimizer (22) with the MAE loss function (1nS

n
i=1jf (x) − yj)

and settled the batch size as 4. The learning rate decayed from 10−4

to 10−6 during CNN network training. When the loss values and
learning rate stabilized, the process stopped training. And an
Nvidia RTX 3090 GPU accelerated the entire training and
testing process in this study. The deep learning framework was
TensorFlow and Keras.

This study used 28 untrained cases for the model testing. The
CT images and ROI contours were used as the model input data,
and dose distribution was the model output (Figure 2). The
Frontiers in Oncology | www.frontiersin.org 4
matrix height (Y direction) of the testing case patch was 64. We
concatenated the full-body dose distribution after the model
generated the predicted dose distribution for each testing
case patch.

We trained two comparative models with different Y lengths
(height) to verify whether the 3D model with a large-height
training patch could extract more interrelation information from
different OAR-PTV distances in the Y direction. From our
statistics results, the distance between specific OARs to PTV
varies a lot among different patients. For example, the optic
nerves’ distances to PTV ranged from 0 to 30 mm, which already
equals 10 slices thickness of a CT scan with 3 mm thickness.
Model I used the above model training method, and the shape of
the training matrix was 128×128×48. Model II reduced the
height of the training matrix to 128×128×16 shape. Training
Model II aimed to verify whether the increase of height of the
training matrix would be helpful to modulate the model to
provide more accurate dose prediction for OARs. If the
maximum distance from the optic nerve to PTV was 10 slices,
and the height of the training matrix was just 16 slice distances,
the training matrix may not be able to find enough spatial
relationship from optic-organ to PTV. Increasing the height of
November 2021 | Volume 11 | Article 752007
FIGURE 2 | Dose difference between the predicted dose distribution and the ground truth for Model I, II, or III. The deep red color shows the dose difference
beyond 4 Gy.
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the training matrix may allow the model to explore a more
spatial relationship between the optic nerves and PTV, therefore,
to generate more accurate OAR dose prediction. Model III used
2D Dense U-net. It is a simplified change from 3D Dense-U-net
to a 2D version. Model III was designed to eliminate the “Y-
direction distance” influence in the learning process. Model III
can be seen as a comparison experiment to verify if the OAR-
PTV distance in the Y direction would be a factor affecting the
DL model output.

Quantitative Evaluation
Percentage of errors (dDi), p-value, and gamma passing rate were
calculated to evaluate our three models’ accuracy. The formula of
the percentage of errors was:

dDi =
DiGround−truth − Dipredicted
�
�

�
�

prescription dose

We calculated dDi of D98, D95, D50, D2 for PTV60, and Dmean,
Dmax for all ROIs. All corresponding dDi for 28 test patients were
counted and formedmean and standard deviation (Mean ± SD) for
eachROI.The p-value of the twomodels’ dDiwas calculated using a
T-test; when the p-value<0.05, the prediction results have no
statistical correlation. The gamma passing rates with the 3%/3
mm criteria and 10% threshold for the three approaches were
calculated by 3D Slicer 4.10.2 [National Institutes of Health (NIH),
USA] software.

RESULTS

The mean deviations from the mean and maximum dose of
PTVs and OARs were 2.42 and 2.93%, respectively. Error for the
Frontiers in Oncology | www.frontiersin.org 5
maximum dose of optic nerves-R in Model I was 4.87 ± 6.88%,
compared with 7.9 ± 6.8% in Model II (p=0.08) and 13.85 ±
10.97% in Model III (p<0.01); Model I showed well. The gamma
passing rate of PTV60 for 3%/3 mm criteria was 83.6 ± 5.2% in
Model I, compared with 75.9 ± 5.5% in Model II (p<0.001) and
77.2 ± 7.3% in Model III (p<0.01); Model I also did the best job.
The prediction error of D95 for PTV60 was 0.64 ± 0.68% in Model
I, compared with 2.04 ± 1.38% in Model II (p<0.01) and 1.05 ±
0.96% in Model III (p=0.01); Model I still performed well. The
details of prediction errors are presented in Table 1 and Table 2.

To compare the three models’ accuracy intuitively, we
randomly selected a test patient. We showed the dose
difference between the predicted dose and the ground truth in
Figure 2 and the DVH plots of ROIs in Figure 3. Figures of the
dose differences and DVH plots showed that Model I has the best
prediction among the three models and an advantage in
predicting the optic organs’ dose.
DISCUSSION

Precise automatic dose prediction can significantly improve
clinical planning efficiency and safety (23). 3D dose prediction
results can refer to current RT plan optimization in TPS (24, 25).
Here, we built CNN-based dose prediction on the previous
approved delivered plans. Since, in daily clinical practice,
different medical physicists handled the planning process,
which provided a source of uncertainty of the RT planning
outcome. Using CNN-based dose prediction results guiding plan
optimization can reduce the uncertainty of the planning
outcomes and improve the plan optimization speed (26). A few
fluence-prediction-based auto-planning researches have been
TABLE 1 | Mean and standard deviation (Mean ± SD) of maximum and mean values between the predicted dose and the ground truth received on PTVs and OARs
relative to the prescription dose.

ROI Error of Dmean (%) Error of Dmax (%)

Model I Model II Model III pa* pb* Model I Model II Model III pa* pb*

Body 0.58 ± 0.49 1.70 ± 1.17 0.64 ± 0.56 <0.01 0.67 2.09 ± 1.19 1.91 ± 1.07 1.97 ± 1.18 0.55 0.69
Brainstem 3.36 ± 3.00 5.63 ± 4.03 4.54 ± 3.38 0.02 0.16 2.90 ± 2.49 4.85 ± 3.66 3.61 ± 3.23 0.02 0.35
Spinal-cord 3.18 ± 4.56 8.65 ± 3.83 3.49 ± 4.06 <0.01 0.78 2.83 ± 2.41 4.84 ± 2.61 3.26 ± 274 <0.01 0.52
Eye-L 1.35 ± 1.14 1.61 ± 1.78 2.87 ± 2.30 0.50 <0.01 4.40 ± 3.41 7.08 ± 5.60 7.09 ± 5.13 0.03 0.02
Eye-R 1.48 ± 1.59 2.59 ± 2.92 2.31 ± 2.29 0.07 0.11 3.64 ± 3.31 9.89 ± 7.12 4.36 ± 495 <0.01 0.51
Lens-L 0.39 ± 0.34 0.48 ± 0.39 0.80 ± 0.61 0.31 <0.01 0.80 ± 0.66 0.80 ± 0.55 1.23 ± 0.96 0.99 0.05
Lens-R 0.52 ± 0.42 0.44 ± 0.35 0.63 ± 0.60 0.47 0.39 0.75 ± 0.59 0.69 ± 0.43 0.83 ± 0.77 0.67 0.66
L-E-T 2.20 ± 2.05 9.23 ± 3.92 2.73 ± 2.50 <0.01 0.38 2.49 ± 1.59 3.85 ± 3.61 2.28 ± 2.07 0.06 0.67
Optic-nerve-L 5.10 ± 4.40 7.67 ± 5.02 11.47 ± 9.38 0.04 <0.01 5.84 ± 5.21 8.30 ± 5.11 13.15 ± 11.58 0.07 <0.01
Optic-nerve-R 4.71 ± 5.12 7.90 ± 5.77 11.06 ± 8.11 0.03 <0.01 4.87 ± 6.88 7.93 ± 6.80 13.85 ± 10.97 0.08 <0.01
Oral-cavity 2.40 ± 2.20 2.63 ± 2.47 2.43 ± 2.13 0.70 0.96 2.12 ± 1.94 2.32 ± 1.95 2.21 ± 2.22 0.69 0.87
Parotid-L 2.13 ± 1.57 3.70 ± 2.60 1.60 ± 1.43 0.01 0.17 3.41 ± 2.62 3.90 ± 2.93 2.83 ± 2.08 0.50 0.35
Parotid-R 2.84 ± 2.29 4.00 ± 2.65 2.47 ± 2.29 0.08 0.53 3.46 ± 2.58 3.34 ± 3.03 3.37 ± 2.48 0.87 0.89
pGTVnx 0.56 ± 0.33 0.98 ± 0.65 0.68 ± 0.42 <0.01 0.24 1.92 ± 1.15 1.91 ± 0.86 1.81 ± 1.07 0.97 0.69
Pituitary 4.01 ± 5.36 4.23 ± 4.96 10.06 ± 9.59 0.87 <0.01 3.87 ± 4.17 4.47 ± 3.81 7.19 ± 8.76 0.57 0.07
PTV1 0.80 ± 0.49 1.27 ± 0.69 0.73 ± 0.77 <0.01 0.71 2.09 ± 1.19 1.91 ± 1.07 1.97 ± 1.18 0.55 0.69
PTV2 0.54 ± 0.54 1.29 ± 0.96 0.45 ± 0.32 <0.01 0.46 2.82 ± 2.01 2.49 ± 2.03 4.28 ± 3.33 0.53 0.04
Thyroid 3.66 ± 3.26 7.53 ± 4.16 4.59 ± 3.54 <0.01 0.29 2.23 ± 1.61 3.76 ± 2.78 2.01 ± 1.83 0.01 0.61
Mandible-L 3.77 ± 5.11 6.32 ± 5.94 6.21 ± 5.97 0.08 0.09 3.20 ± 2.67 5.09 ± 3.71 3.76 ± 3.20 0.03 0.47
Mandible-R 2.43 ± 1.97 3.23 ± 3.23 3.19 ± 4.13 0.26 0.37 2.71 ± 2.06 2.96 ± 2.63 2.09 ± 209 0.69 0.25
Novembe
r 2021 | Volume 11
 | Article 7
*: pa, p value between Model I and Model II; pb, p value between Model I and Model III.
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done in the past few years. They mentioned that dose
distribution could be predicted utilizing a fluence map as well.
Furthermore, this enlightens us to get the dose prediction
based on an auto-planning system (27, 28). Dose prediction
studies can be the basis for much RT-relevant research and
technology development.

NPC cases with Tomotherapy have great value in deep-
learning dose prediction research. As we know, NPC patients
with Tomotherapy are relatively rare in clinical RT practice. And
in the past, studies about dose prediction of NPC patients with
Tomotherapy were also not too many. Our study for dose
prediction found that using a 3D CNN network for training
could provide a better outcome than using a 2D CNN network,
and the dose prediction accuracy has reached the clinical
Frontiers in Oncology | www.frontiersin.org 6
standard (the mean deviations for the mean and maximum
doses of PTVs and OARs were 2.42 and 2.93%, respectively). It
can refer to future dose prediction of NPC patients with
Tomotherapy, even though this method still needs more
research to improve its accuracy.

Our dose prediction model performed well in OARs and PTV
areas but didn’t work well in the outside area of OARs and PTVs.
Although the outcome accuracy in this study met the clinical
requirements, the evaluating indicators included the deviations
for the mean and maximum doses for ROIs, the gamma passing
rates for PTV, and the DVH plots. But there are still some
problems, such as the passing rate for Body was 70.2 ± 9.8%,
which was relatively poor. That means further research should
focus on how to predict accurate doses in no-contoured areas.
A B

C D

FIGURE 3 | DVH plots for a test patient, such as (A) DVH plot of PTVs, (B) DVH plot of optic organs, (C, D) DVH plots of the other OARs. DVH, Ground-truth (Solid
line), Model I (Dashed line), Model II (Dashed and dotted line), Model III (Dotted line).
TABLE 2 | Means and standard deviations (Mean ± SD) of absolute differences for clinical DVH metrics between the predicted and ground truth doses.

PTV60 error (%)

Model I Model II Model III pa* pb*

D98 1.24 ± 1.52 3.20 ± 2.18 1.19 ± 1.44 <0.01 0.68
D95 0.64 ± 0.68 2.04 ± 1.38 1.05 ± 0.96 <0.01 0.01
D50 1.07 ± 1.04 1.14 ± 1.31 0.93 ± 1.18 0.13 <0.01
D2 1.37 ± 0.80 1.52 ± 1.00 0.94 ± 0.89 0.65 <0.01
November
 2021 | Volume 11 | Article 7
*: pa, p value between Model I and Model II; pb, p value between Model I and Model.
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Future studies recommend inputting more features such as the
help region and the outward expansion area or controlling
training data’s consistency, such as only using the designed
plan from the same planner.

Besides building a dose prediction model, there is another
critical factor that needs to be thought over (1). Training with the
CNN network should follow the clinical logic concept (2).
Training strategy should not directly duplicate from other
studies, considering the dataset’s features should be ahead
of training.

In this study, the network structure is similar to some medical
imaging segmentation networks. Previous studies showed that
the U-net could perform very well in dose prediction and CT
image segmentation tasks. But the training strategy should be
suitable for the specific prediction tasks. For example, the 2D
U-Net can perform pretty well in the task of CT image
segmentation (19, 29, 30). Slice by slice segmentation
prediction is similar to the clinical logic flow. As is well
known, clinical staff always creates the contouring slice by
slice, which affirms that each single CT slice should contain
enough segmentation information. But as shown in the study,
directly using the 2D network to predict dose distribution slice by
slice cannot give us the wanted outcome, which may be due to
the loss of Y-direction information as shown in the results, the
OARs (such as Spinal-cord), which were close to PTV in the Y
direction. It didn’t show the different results using the 2D or 3D
network to predict the dose distribution. But for OARs far from
PTV in the Y direction, such as the optic organs, the dose-
prediction results of the 2D network brought out lacks ability.
The reason for the outcome difference could be that the
algorithm logic is different from the clinical logic. When a
medical physicist or dosimetrist makes a treatment plan, the
staff should consider the relationship of the relative location
between OAR and PTVs. We can quickly understand that it is
difficult to avoid unnecessary doses for NPC patients if the optic
organs are close to PTV. On the other hand, if the organs are far
from PTV, they would be protected from radiation more
efficiently. So, using the 3D network for training can allow the
model to get the relative location between OARs and PTV. This
action conforms to the clinical logic flow. Thus, a good outcome
could meet.

Meanwhile, it is necessary to formulate the training strategy
by considering the dataset’s features. Some deep-learning-based
dose prediction studies have been made for cervical carcinoma.
The studies used a general 3D-model-patch-training strategy
with 16 pixels height matrix to train (shape of n×n×16) or
directly used a 2D network for data training (5, 31, 32). From
some dose prediction studies proposed, 2D network training is
good enough to provide excellent results of dose prediction. But
in transplanting the patch-training strategy to this project, using
(n×n×16) shape matrix to train or using the 2D network gives
different results. We found that the results were not so good.
Reviewing the patient’s anatomic structure, we finally uncovered
the dependency between the dose prediction results and the
patient’s anatomic information. Using an (n×n×16) shape
training matrix/patch, we got an ideal dose prediction for the
patients whose PTV was close to the eyes. But for the patients
Frontiers in Oncology | www.frontiersin.org 7
whose PTV was far from the eyes, it resulted in a wrong
prediction. The statistics results showed that the optic
nerve’s dose delivered was negatively correlated with the
distance from PTV to it. For all patients involved in the
study, the maximum dose for optic nerves ranged from 9.7
to 71.4 Gy; the distance from the optic nerves to PTV ranged
from 0 to 30 mm. The deep-learning model needs to know the
spatial relationship between OARs and PTV. Since the
predicted doses of optic nerves were highly related to its
distance to PTV, using (n×n×16) shape matrix for training,
it wouldn’t get an accurate dose prediction for the cases with
sizeable PTV-eye distance. We believe that the (n×n×16) shape
training matrix fitted better to extract anatomic information in
pelvic cancer because the pelvic tissues were generally compact
to PTV. For NPC patients, the PTV-eye distance varies from 0
to several centimeters. If the training patch’s height is small
such as 16 pixels, it may be difficult for the deep-learning
network to find the PTV-eye spatial relationship. PTVs have
usually more than 70 slices thickness height for NPC patients.
Suppose the training patch’s matrix with a considerable
height, such as height = 48 pixels, and the model could
extract more features of the spatial relationship among the
PTV-eye voxels.

Clinical and actual treatment logic concept includes a lot of
information, which are greatly important. We could utilize them
to optimize the deep-learning network performance relevant to
the RT aspect. The training matrix should be considered the
network’s field of view from which the model could find the
transformation relationship. Training with the 3D Dense-U-
NET could predict each pixel’s dose value by considering the
full input matrix. Increasing the input matrix height (Y
direction) would be a strategy realized the extraction
combination features of model training and clinical logic
concepts. Increasing the height of the input matrix (increases
the local sense of field) can make the DL model find more
spatial features and relationships correlated to PTV-OAR
distance, which provides a more accurate outcome for
dose prediction.

The deep-learning-based dose prediction method still has
many problems that need to be solved. Firstly, previous research
never focused on excavating the data’s internal features and
comparing the data differences. The anatomical information
holds tremendous differences among different patients.
Secondly, we can’t directly use the previous researchers’
method for deep learning, for different tumor types and
treatment techniques have specific dose prediction methods.
According to the tumor type and treatment mode, developing
a specific dose prediction method can be a better way to improve
dose prediction efficiency and accuracy. Our research was
focused on adding the clinical logic concept with the deep-
learning method together. Therefore, we developed a more
reasonable deep-learning model training strategy.

A deep-learning-based study focuses on the relevant software
and hardware, the clinical logic concepts, and the collected data
characteristic. Combining computer technology, clinical logic
flow, and data characteristics would be an ideal pathway to
develop an excellent-performance dose prediction model.
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CONCLUSIONS

In this study, we successfully developed an accurate dose
prediction model using a 3D convolutional neural network. It
proves well for NPC patients with Tomotherapy. It also tells that
exploring the spatial features between OARs and PTV is
necessary for dose prediction. We found that a 3D DL model
with a larger Y-dimension training matrix increases the accuracy
of dose prediction outcomes. With this extra consideration, our
accuracy improvement method of dose prediction is good
enough to be considered a milestone for the automatic
planning process with Tomotherapy and other RT techniques.
The predicted results could be used as a reference or guidance for
systematic clinical RT planning.
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