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FluMOMO is a universal formula to forecast mortality in 27 European countries and was developed on EuroMOMO context,
http://www.euromomo.eu. )e model has a trigonometric baseline and considers any upwards deviation from that to come from
flu or extreme temperatures. To measure it, the model considers two variables: influenza activity and extreme temperatures. With
the former, the model gives the number of deaths because of flu and with the latter the number of deaths because of extreme
temperatures. In this article, we show that FluMOMO lacks important variables to be an accurate measure of all-cause mortality
and flumortality. Indeed, we found, as expected, that population ageing and exposure to the risk of death cannot be excluded from
the linear predictor. We model weekly deaths as an autoregressive process (lag of one together with a lead of one week). )is step
allowed us to avoid FluMOMO trigonometric baseline and have a fit to weekly deaths through demographic variables. Our model
uses data from Portugal between 2009 and 2020, on ISO-week basis. We use negative binomial-generalized linear models to
estimate the weekly number of deaths as an alternative to traditional overdispersion Poisson. As explanatory variables were found
to be statistically significant, we registered the number of deaths from the previous week, the influenza activity index, the
population average age, the heat waves, the flu season, the number of deaths with COVID-19, and the population exposed to the
risk of dying. Considering as excess mortality the number of deaths above the best estimate of deaths from our model, we conclude
that excess mortality in 2020 (net of COVID-19 deaths, heat wave of July, and ageing) is low or inexistent.)emodel also allows us
to have the number of deaths arising from flu and we conclude that FluMOMO is overestimating deaths from flu by 78%. Averages
from the probability of dying are obtained as well as the probability of dying from flu. )e latter is shown to be decreasing over
time, probably due to the increase of flu vaccination. Higher mortality detected with the start of COVID-19, in March-April 2020,
was probably due to COVID-19 deaths not recognized as COVID-19 deaths.

1. Introduction

)e follow-up of mortality and excess mortality is an important
tool on public health management, as it allows authorities to
know howmany people die, why they die, and how it trends for
future years. However, mortality is not uniform during the year,
and it is known that deaths increase during winter [1]. One of
the key drivers that explain this is flu, especially for people aged
65 or more [2]. Years with more frequency or severity on flu
havemore deaths, but countries lack statistics that allow them to
know exactly the mortality caused by flu. Because of that,
mathematical formulas are used to estimate the number of
deaths that come from flu and to measure the expected
mortality and excess mortality [3].

In Europe, EuroMOMO, the network for European
monitoring of excess mortality for public health action
(http://www.euromomo.eu) is following weekly all-cause
excess mortality in 27 European countries. For that, they use
FluMOMO, which allows death estimation and excess
mortality analysis. )e work started with the 2009/2010 flu
using the Serfling method [4]. )is method developed a
framework to have a standard curve of “expected seasonal
mortality” and to measure the excess of deaths in respect to
that baseline. )e method is a mathematical formula using
trigonometry to have a cyclical regression. )ere are no
indications for mortality risk factors, such as demographic,
meteorological, and health explanatory variables. Recently,
the methodology was updated, and several changes were
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done [5]. Deaths are now considered in the context of
generalized linear models with Poisson overdispersion and
two explanatory variables are added to the model (extreme
temperatures and the influenza activity index).)e result is a
change on baseline levels, as the latter starts including (as an
addition) expected deaths coming from the increase of in-
fluenza activity and extreme temperatures (in summer or
winter).)is framework is now being used to decompose the
total number of deaths into those attributable to one or more
infectious pathogens circulating in a population (as COVID-
19) and those attributable to deaths due to excess temper-
atures and other seasonal patterns [6]. We do not approach
this decomposition in this paper.

)is model has some problems when applied, directly, to
Portugal (and probably to other countries). First, our pop-
ulation is getting old, and between 2009 and 2019, the pop-
ulation average age increased from 40 to 45 years [7]. Because
of this, the average mortality rate is increasing every year. )is
means that from the deaths we register every year, part of it is
the natural evolution of mortality because of age effect and is
not related to baselines, temperatures, and flu activity.

Second, the population is not completely stable, and the
number of deaths depends on the exposure of this pop-
ulation to the risk of dying. If the population decreases/
increases, there may be fewer/more deaths in that year. Once
again, it is not related to baselines, influenza activity, and
extreme temperatures.

)e purpose of this paper is to present one model that
overcomes these problems and to give a contribution to Flu-
MOMO improvement using demographic and health variables.

2. Methods

2.1. Data Sources. Demographic data on population and its
average age were obtained from the Portuguese National
Institute of Statistics [7]. Exposure to risk is the population at
the beginning of the week. Population weekly mortality data,
from all causes, relates to online daily mortality, provided by
Health Ministry [8]. )e mortality rate is the number of
deaths divided by exposure to risk.

Influenza activity index is published by Portuguese Insti-
tuto Nacional de Saúde (INSA) weekly bulletins from 2009 to
2020 [9]. )e index summarizes the number of influenza cases
detected on the national health system. It is an important
indicator because it has some statistical peaks that completely
match with peaks on mortality and it is well known that in-
fluenza is an important cause of deaths during the winter [2].

Between 2009 and 2020, two heat waves are considered:
the one from 2013, as it is documented on INSA (2013), and
the one from July 2020, not yet documented but visible on
mortality data and registered temperatures ([8] affected
mortality on ISO-weeks 27 till 30).

Deaths due to COVID-19 were obtained from 2020 daily
bulletins on COVID-19 deaths [10]. We need this variable
because COVID-19 brought some extra mortality in 2020 and
the model most accommodates for that [6]. At the same time,
this gives an indication if COVID-19 pressure on hospitals
generated more mortality on non-COVID-19 patients.

Flu season was considered to include ISO-weeks from
week 40 of year x to week 20 of year x+ 1.

2.2. Methodology. FluMOMO model is given by the fol-
lowing equation [5]:

log Dt( 􏼁 � b1 × baseline + 􏽘
dIA

􏽘
s

b2 dIA,s × IAt−dIA,s
⎛⎝ ⎞⎠ + 􏽘

dET
􏽘
p

b3dET,p × ETt−dET,p
⎛⎝ ⎞⎠ + εt. (1)

)e model uses a log link to explain deaths per week t,
Dt. Length of the lags is predefined as external parameters,
and dIA and dET represent the delay in the formula. IA is the
influenza activity index and ET represents extreme tem-
peratures. )e baseline consists of a trend and seasonality
expressed as two sine waves of one-year and half-year pe-
riods. εt is the error in week t. See [5] for more details.

In our model, we also consider as the dependent variable
(response variable) deaths per week t,Dt. However, the latter
will be a function of several predictors: previous week deaths,
Dt−1, deaths from the following week, Dt+1, week influenza
activity index, IAt, COVID-19 weekly deaths, CoVt,

population average age on that week, AAt, and two factors:
existence or not of week flu season FSt, and existence or not
of heat wave, HWt. )ere is also an intercept a0 (which
includes cases without heat wave and outside flu season) and
an offset, the log from exposure to risk, the population
number on that week, Pt. )e model also includes a weekly
error εt, and a log link is considered.

Several parameters need to be estimated using gener-
alized linear models (GLMs). For an introduction to the
GLM, see McCullagh and Nelder [11]. )e following
equation summarizes our model:

log Dt( 􏼁 � log Pt( 􏼁 + a0 + a1 × Dt−1 + a2 × Dt+1 + a3 × IAt + a4 × CoVt + a5 × AAt + a6 × FSt + a7 × HWt + εt, (2)

E εt( 􏼁 � 0, E εt, εs( 􏼁 � constant. (3)
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Previous weeks’ deaths (Dt−1) allow us to avoid the use
of trigonometric variables and deaths lead of one week
(Dt−1) is related to nowcasting from authorities to correct
delays on death notifications. If they underestimate/over-
estimate deaths in one week, there may be an overestima-
tion/underestimation in the next week because most of the
notifications are done within a week. )is is only known in
the next week and one possible way to catch this effect is with
this lead. Population average age introduces the age effect,
and population considers the exposure to risk effect. We
introduce several variables that catch the health and me-
teorological effects: the index of influenza activity and two
factors, the existence or not of high temperatures (heat
waves) and the season classification (between week 40 from
one year and week 20 on the following year vs. other weeks).
)e number of COVID-19 deaths per week was also in-
cluded, as this variable produced an addition on the 2020
weekly deaths from all causes.

We use weekly data, classified as ISO-weeks from 2009 to
2020. We estimated several regressions using Poisson distri-
bution, overdispersion Poisson, and negative binomial dis-
tribution. )e latter was chosen because of the existence of
overdispersion on mortality weekly data, mainly due to the
omission of some explanatory variables not completely known
and the possibility of having Akaike Information Criteria
(AIC) statistic for model comparison. Explanatory variables
considered are analysed using z-scores and expected signals.
Models within the negative binomial distribution (with dif-
ferent lags and explanatory variables) are selected using AIC.

Baseline is the expected value of the number of deaths
obtained from the generalized linear model (GLM) consid-
ered, the negative binomial distribution, instead of over-
dispersion Poisson. )e former also includes overdispersion
and has the advantage of being more complete, as we need to
estimate one more parameter, and it has several statistics
available to compare different models. We consider as excess
mortality all deaths above the expected deaths best estimates
coming from our model. )is is the same approach as Flu-
MOMO; however, their model is different, as explained above.

3. Results

In Table 1, results obtained are presented. R software 4.0.3
version was used.

We conclude from Table 1 (see Z value) that all vari-
ables (except for COVID-19 deaths) are statistically sig-
nificant and with signs according to expectations:
increasing deaths on the previous week, influenza activity
index, average age, flu season, and heat wave, increasing the
number of deaths on that week. P values are very low,
which shows that, to refuse these variables, the confidence
level should be almost 100%. AIC was 7671.8, the lowest
obtained on all model variants considered. )e variants
considered included different lags for deaths of previous
weeks, influenza activity index and average age, and ex-
clusion of some variables. COVID-19 deaths are not sig-
nificant because they just exist in one year, 2020, and their
effect may already be captured by deaths lead. )is can be
seen in the model without this lead in Table 2.

)is model has a good explanatory power, but when we
do the fit, it presents, in some weeks, some delay to match
observed deaths. As explained before, this may be a con-
sequence of deaths nowcasting and is overcome with the
introduction of the lead, as can be seen in equation (2).

In Figure 1, we may see the fit between Table 1 model
deaths prediction and the observed deaths between 2009 and
2020 on ISO-week basis. )e fit is very good and shows the
increasing trend of mortality produced by ageing.

Figure 2 shows the same fit just for 2019 and 2020. We
can see that the fit is very good. However, some differences
arise between 2019 and 2020. In the latter, there is one
pandemic, COVID-19, and a heat wave in July.

In respect of April mortality, one study [12] identified
from 2400 to 4000 deaths of excess mortality due to the
lockdown effect (people were afraid of going to hospitals).
However, the study baseline was August mortality and not
April mortality. Also, had the lockdown been the cause of
these deaths the same should have happened in the following
months (which was not the case). )e fit in Figure 2 does not
show regular excess mortality.

3.1. Excess Mortality. For 2020, we realize that the mortality
observed is mostly inside the confidence interval of expected
mortality. )is means that the expected mortality (which also
includes COVID-19 deaths and one heat wave in July) is inside
the 95% confidence interval of expected values (Figure 3).

Of course, the conclusions could change if we considered
a narrow confidence level with a lower error.

Analysing 2020 mortality, we concluded that we had
123,578 deaths during the year, compared with 112,373 in
2019 and 113,597 in 2018. Apparently, we had important
excess mortality in 2020, when compared with the last two
years, between 9,981 and 11,205 deaths. However, this
comparison is not correct. We must start by deducting in
2020 COVID-19 deaths, 6906, because this disease was not
active in 2018 and 2019. When we do that, the gap narrows.
Now, it is between 1,384 and 2,608 deaths and we must be
aware that we had a heat wave in 2020 and some ageing effect
during the year.

Using our second model, as in Table 2, we may calculate
the impact of these three variables on 2020 deaths and then
we will be able to compare it with 2018 and 2019.)is means,
in Table 3, an excess mortality, that is unexpected mortality,
between −540 and +684 deaths, depending on the year is
considered as a benchmark (2018 or 2019).

)is is almost zero and much lower than the figures
spread on the media (around 6000 deaths of excess mor-
tality). From both figures, we think it is wise to say that there
was not (net of the mentioned effects) excess mortality and if
there was, it was not so high.)is is in line with other models
fitted where the COVID-19 coefficient was highly significant
and with the exponential of its parameter equal to one.

3.2. Deaths from Flu. FluMOMO has a big advantage as a
model: it allows, directly, to estimate the number of deaths
allocated to flu. )ese deaths are the ones arising above the
baseline from weeks with mortality higher than baseline
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Figure 1: Model fit between 2009 and 2020.

Table 1: Negative binomial fit log link and offset on exposure to risk with lead.

Generalized linear model to explain the number of deaths per week
Explanatory variables Coefficients Standard error Z value P value
Intercept −9.82399 0.05193 −189.183 2.00E− 16
Deaths from previous week 0.00022 0.00001 16.222 2.00E – 16
Deaths from the following week 0.00020 0.00001 20.910 2.00E− 16
Influenza activity index 0.00019 0.00010 1.896 6.16E− 02
COVID-19 deaths 0.00001 0.00003 0.295 7.68E− 01
Average age 0.00973 0.00130 7.497 2.00E− 14
Existence of flu season 0.02181 0.00467 4.673 2.97E− 06
Existence of heat wave 0.05380 0.01741 3.091 2.00E− 03

Table 2: Negative binomial fit log link and offset on exposure to risk without lead.

Generalized linear model to explain the number of deaths per week
Explanatory variables Coefficients Standard error Z value P value
Intercept −9.874893 0.061893 −159.548 2.00E− 16
Deaths of previous week 0.000319 0.000010 32.138 2.00E− 16
Influenza activity index 0.000936 0.000106 8.844 2.00E− 16
COVID-19 deaths 0.000107 0.000037 2.936 3.32E− 03
Average age 0.014851 0.001502 9.885 2.00E− 16
Existence of flu season 0.041480 0.005363 7.734 1.04E− 14
Existence of heat wave 0.117854 0.117854 5.817 6.00E− 09
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Figure 2: Continued.
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(that are not a consequence of extreme temperatures). )e
problem is that any model error, parameter error, and
random error from FluMOMO will be considered deaths
from flu if there is excess mortality above the baseline (not
considered as coming from extreme temperatures).

Our model allows us to know deaths that should be
considered as caused by flu and will reduce model error and

parameter error. )ey are reduced because the model
considers extra variables which are important on mortality
explanation. To have an estimate for deaths that arise from
flu, we just need to run our model considering Influenza
Activity as zero every week (using coefficients of Table 1).

In Table 4, we may see our forecast of deaths due to flu,
1872 in 2018/2919 and 1,247 in 2019/2020. )e first figure
compares with the FluMOMO official estimate of 3,331
deaths (public forecasts for 2019/2020 are not yet available).

We identified the following reasons for such a difference:

(i) FluMOMO considers as deaths from flu all deaths
above baseline if extreme temperatures did not
occur on that day. )e baseline is just an historical
fit with cosines and sines without any demographic,
health, or meteorological meaning. Our model
considers explanatory variables to explain deaths
and does not have a mathematical baseline.

(ii) FluMOMO uses model deviations to arrive to deaths
by flu through the influenza activity index. Our
model connects deaths by flu to influenza activity
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Figure 3: Expected deaths 95% confidence interval for 2020.
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Figure 2: Model fit for 2019 and 2020.

Table 3: Low or inexistence of excess mortality in 2020.

Excess mortality in 2020
(A) Deaths 2020 123 578
(B) COVID-19 deaths 6 906
(C) Ageing effect deaths 2 401
(D) July heat wave deaths 1 213
(E) = (A)− (B)− (C)− (D) Net deaths 2020 113 057
(F) Deaths 2019 112 373
(G) Deaths 2018 113 597

Excess mortality
(E)− (F) In respect to 2019 684
(E)− (G) In respect to 2018 −540
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index after identifying its contribution inside all
other variables considered in the model (see Table 1).

(iii) Several important variables are not used by Flu-
MOMO, as population ageing, the level of expo-
sure to the risk of dying, and the deaths from
previous week.

3.3. Average Probability of Death. )e model also allows us
to have the population’s average weekly probability of dying
(Figure 4).

)e same can be done to the probability of dying by flu
(Figure 5). As we can see, there is a decrease of such probability
over time, probably due to the increase in flu vaccinations.

Table 4: Estimated deaths by flu from 2018 to 40 until 2019-20.

Deaths in Portugal
Flu season from week 40 to week 20

2018/2019 2019/2020
With influenza activity on model 70 226 70 386
Assuming no influenza activity 68 354 69 139
Our model estimated deaths by flu 1 872 1 247
FluMOMO estimated deaths by flu 3 331 na
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Figure 5: Average probability of dying from flu.
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4. Conclusions

)emodel presented shows that there is scope to FluMOMO
improvement. Using negative binomial regression instead of
overdispersion Poisson is not the key issue but allows model
comparisons using AIC (which is important when we have
several explanatory variables). However, changing the
mathematical baseline to a more demographic, meteoro-
logical, and health-based approach to mortality allows us to
better understand mortality and to forecast deaths and
deaths allocated to flu with more accuracy.

Excess mortality analysis will be straightforward and
easier to explain with this model. )is model has the same
degree of difficulty to apply than traditional FluMOMO.)e
model also shows that not only are deaths by flu lesser than
those presented in traditional FluMOMO (which overesti-
mate them as 78%), but the probability of dying by flu is
decreasing over time.

Finally, the model also helps to understand deviations
from expected mortality.

5. Discussion

It is not possible to compare this study with other studies
because FluMOMO was just updated in 2018 and there are
not yet published works in this respect. However, com-
parison with FluMOMO, within our framework, did not
show evidence of lag effects considered by FluMOMO for
influenza activity. It was not possible to do the same analysis
for extreme temperatures due to the absence of common
data for that.

)e main limitation of this work is that we do not
identify different models for different age bands. We are
aware that age effect, influenza activity index, heat wave
effects, and COVID-19 deaths also depend on age bands.
Indeed, several improvements could be done with this
model.

Firstly, to consider age bands, our model is estimated to
all the age bands together. )is could show different be-
haviours of this model, as the age effect is not the same for all
age bands. Secondly, we did not split the study between
genders. Age effects may be different when we consider it.
Finally, other variables could be used, as the minimum and
maximum temperatures. )is could help to understand
influenza activity index and heat waves.

)e autoregression considered shows some accuracy.
Eventually, other nonlinear structures could be considered,
but the attempts we did to improve the results, with different
lag structures, were not successful.

Age distribution in Portugal was considered to have a
linear impact on deaths. )is was done because the evolu-
tion, since 2009, had been linear. For the period between
2009 and 2020, it was easy to do the fit because the prob-
ability of dying in Portugal increased linearly.

However, it is possible that death’s relation with ageing
becomes nonlinear as the population average age increases
above some threshold.

)e effect of influenza on mortality may vary from
season to season and we did not consider that completely

because we just used two seasons (flu season and no-flu
season). )e former is an objective variable, as flu season is
always defined as ISO-weeks from week 40 of year x to week
20 of year x+ 1. To compensate any deviation, heat waves
were introduced. )e latter may be subjective, but it is very
important to understand mortality as it was the case in July
2020.
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