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Abstract 
Many biotechnological applications deal with nitrification, one of the main steps of the global nitrogen cycle. The biologi-
cal oxidation of ammonia to nitrite and further to nitrate is critical to avoid environmental damage and its functioning has 
to be retained even under adverse conditions. Bacteria performing the second reaction, oxidation of nitrite to nitrate, are 
fastidious microorganisms that are highly sensitive against disturbances. One important finding with relevance for nitrogen 
removal systems was the discovery of the mainly cold-adapted Cand. Nitrotoga, whose activity seems to be essential for 
the recovery of nitrite oxidation in wastewater treatment plants at low temperatures, e.g., during cold seasons. Several new 
strains of this genus have been recently described and ecophysiologically characterized including genome analyses. With 
increasing diversity, also mesophilic Cand. Nitrotoga representatives have been detected in activated sludge. This review 
summarizes the natural distribution and driving forces defining niche separation in artificial nitrification systems. Further 
critical aspects for the competition with Nitrospira and Nitrobacter are discussed. Knowledge about the physiological capaci-
ties and limits of Cand. Nitrotoga can help to define physico-chemical parameters for example in reactor systems that need 
to be run at low temperatures.
Key points 
• Characterization of the psychrotolerant nitrite oxidizer Cand. Nitrotoga
• Comparison of the physiological features of Cand. Nitrotoga with those of other NOB
• Identification of beneficial environmental/operational parameters for proliferation
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Introduction

Nitrification is the biological oxidation of ammonia to 
nitrate in two steps, performed by highly specialized ammo-
nia oxidizing bacteria/archaea (AOB/AOA) and nitrite oxi-
dizing bacteria (NOB). This process is of environmental 
importance to avoid accumulation of harmful ammonia 
and nitrite, which can result in human and aquatic animal 
health risk (Camargo and Alonso 2006). Furthermore, the 
endproduct of nitrification–nitrate-causes eutrophication of 
effluent-receiving waters from wastewater treatment plants 
(WWTPs), but can be reduced to nitrous oxide and molecu-
lar nitrogen by nitrifying and heterotrophic denitrifying 

bacteria. Therefore, nitrification is essential to remediate 
excessive N-nutrients from sewage and contributes to global 
nitrous oxide emissions.

In engineered systems, ammonia oxidation, the first step 
of nitrification, is mainly performed by Betaproteobacteria  
of the genus Nitrosomonas (Koops and Pommerening-
Röser 2001). In contrast, NOB, which consume the product  
of ammonia oxidation, are a very heterogenous group 
and their members are spread over the phylogenetic tree 
(Fig. 1). Nitrospira is considered as key NOB in municipal  
and industrial WWTPs (Daims et al. 2006; Wu et al. 2019) 
with a high phylogenetical and metabolic diversity (Pester  
et al. 2014; Koch et al. 2015). The awareness of this NOB 
increased once again with the discovery of comammox 
Nitrospira, combining ammonia and nitrite oxidation in 
a single cell (Daims et al. 2015; Van Kessel et al. 2015). 
Although research on nitrite oxidation has a long tradition 
in microbiology, an impressive taxonomic and physiological 
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diversity was uncovered only within the last few years (Koch 
et al. 2014, 2015; Daims et al. 2016; Spieck et al. 2020a, b; 
Mueller et al. 2021).

Only a few years ago, the nitrite-oxidizing genus Cand. 
Nitrotoga was discovered among nitrifiers in permafrost-
affected soil from Samoylov Island in the Lena Delta (Alawi 
et  al. 2007). Diverse microbial communities are able to  
survive the harsh environmental conditions and Cand.  
Nitrotoga coexists with Nitrospira and Nitrobacter in this 
N-limited ecosystem (Wagner et al. 2001; Sanders et al. 
2019). No representative of the latter two NOB was cultivated 
at low temperatures and solely Cand. Nitrotoga arctica could 
be enriched when incubation temperatures between 4 and 
17 °C were used, which are lower than the in situ maximum 

temperature of Siberian soil during summer. Cells of Cand. 
Nitrotoga are irregularly shaped short rods or cocci, which are  
characterized by a distinct ultrastructure with an unusually 
wide periplasmic space, hence the name “toga” (Alawi et al. 
2007; Fig. 2a). Like other NOB, they live in microcolonies, 
but the biofilm formation is less pronounced than in Nitrospira 
or Nitrobacter (Fig. 2b). The individuals are connected by a 
loose structure of extracellular polymeric substances (EPS) in 
small aggregates, which can occur in close vicinity to AOB 
(Lücker et al. 2015). Phylogenetically, the cold-adapted NOB 
belongs to the Betaproteobacteria-like ammonia oxidizing  
bacteria (Nitrosomonas, Nitrosospira) (Fig. 1).

Since the description of N. arctica in 2007, an increas-
ing number of Cand. Nitrotoga representatives have been 

Fig. 1  Phylogenetic tree (NJ) based on 16S rRNA genes showing the 
relationships of known genera of nitrite oxidizing bacteria (in red) in 
their respective phylum/class between each other, with closely related 

non-nitrifying bacteria (in black) and ammonia oxidzing bacteria/
archaea (in blue). The scalebar indicates 0.1 estimated nucleotide 
substitutions per site
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detected in natural as well as engineered ecosystems. Suc-
cessful enrichments were initiated with samples from per-
mafrost soil, activated sludge, freshwater and marine biofil-
ters, rivers, coastal sediment, and the terrestrial subsurface 
(Alawi et  al. 2007, 2009; Boddicker and Mosier 2018; 
Hüpeden et al. 2016; Ishii et al. 2017; Keuter et al. 2017; 
Kitzinger et al. 2018; Wegen et al. 2019).

Typical for most NOB, growth of Cand. Nitrotoga with 
nitrite as substrate is slow with generation times of 44–54 h 
(Nowka et al. 2015a; Ishii et al. 2017). To date, there are 
only two pure cultures available (Kitzinger et al. 2018;  
Ishii et al. 2020), and as described for Nitrospira (Nowka 
et  al. 2015b), isolation is time-intensive and requires a  
combination of several methods, mainly to eliminate  
accompanying heterotrophic bacteria that adhere to and use 
organic material excreted by the NOB. Furthermore, growth 
of the NOB might benefit or even require the exchange of 
metabolites or other cofactors like ammonium (Wegen et al. 
2019; Ishii et al. 2020) in coculture with heterotrophs. Cand. 
Nitrotoga could be frozen by a special cryopreservation 
method (Vekeman et al. 2013), but reactivation of stored 
cultures is less successful than for other NOB and deposition 
in bacterial culture collections was not possible due to the 
extensive need of manpower. As a consequence, no strain has 
been validly described and Nitrotoga is still a Candidatus  
taxon (Oren et al. 2020).

Notably, since Cand. Nitrotoga was not classified by the 
RDP database (Navada et al. 2020a), it can be—and possibly 
often was—easily overlooked in 16S rRNA-based analyses. 
Therefore, to target these NOB in studies of N-removal sys-
tems, appropriate methods should be used.

Occurrence in natural habitats

The environmental distribution of Cand. Nitrotoga-related 
16S rRNA gene sequences confirmed that many of these 
NOB are associated with low temperatures in extreme 

environments. However, closely related 16S rRNA gene 
sequences were not restricted to cold climates, but were 
found to be globally distributed from the tropics to the 
poles over a wide range of temperatures. A search against 
sequences in the NCBI Sequence Read Archive found that 
sequences of these NOB were detected mainly in samples 
from soils, wastewater, sediments, and freshwater, and in 
some of the samples, a temperature of about 30 °C was 
measured (Boddicker and Mosier 2018).

Polar regions are a typical habitat for Cand. Nitrotoga 
(Alawi et al. 2007; Achberger et al. 2016; Kohler et al. 2020) 
and, for example, in the subglacial Lake Whillans in the 
West Antarctic, it was among the most abundant bacteria 
and the only NOB (Christner et al. 2014). In this deep cold 
freshwater habitat, which is covered by an 800-m ice sheet, 
nitrification is one of the drivers for primary production to 
sustain microbial life. Accordingly, Cand. Nitrotoga was 
also found in high-elevated (peri)glacial soils and they were 
likely involved in nitrification in soils exposed to extreme 
freeze–thaw cycles (Pradhan et al. 2010; Schmidt et al. 
2009). Strong temperature fluctuations were also measured 
in annual cycles of a seasonally ice-covered river in Canada. 
Here, the abundance of Cand. Nitrotoga increased in the 
late winter season in correlation with a rise in the nitrogen 
concentration (Cruaud et al. 2020). In a subalpine peatland 
in China, Cand. Nitrotoga was identified as one of a few 
keystone species of the bacterial communities (Tian et al. 
2020) and it was the most abundant nitrifier in cryoconite 
granules on glacier surfaces in China (Segawa et al. 2020).

Further natural habitats for Cand. Nitrotoga are temperate 
freshwater, groundwater, or  CO2-rich mineral water (Krauze 
et al. 2017). High abundances were found in an ice-covered 
Canadian lake (Fournier et al. 2021) and in the Laurentian 
great lakes (Paver et al. 2020). Four different Cand. Nitro-
toga cultures were enriched from urban- or agriculturally 
impacted rivers in CO, USA (Boddicker and Mosier 2018), 
and it was also detected in the tidal reach of the Yangtze 
river (Fan et al. 2016). Additionally, different kinds of filter 

Fig. 2  Electron micrographs 
of ultrathin sections of Cand. 
Nitrotoga cells revealing the 
characteristic ultrastructure. a 
Cand. N. arctica in division, 
with the extraordinary wide 
periplasmic space of particu-
late nature. b Microcolony of 
Cand. Nitrotoga with cells sur-
rounded by thin layers of EPS. 
cm = cytoplasmic membrane, 
p = periplasm, om = outer mem-
brane, cy = cytoplasm
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systems used for the production of drinking water provided a 
suitable surface to enrich high cell numbers of Cand. Nitro-
toga reaching about 20% of the 16S rRNA gene sequences 
(Kaarela et al. 2015; Cai et al. 2016; Albers et al. 2018; 
White et al. 2012; Table S1). In drinking water distribution 
systems, Cand. Nitrotoga coexisted together with Nitrospira 
and Nitrobacter and its abundance increased when the water 
was disinfected with chloramine (Waak et al. 2019).

Additionally, Cand. Nitrotoga is a main NOB involved 
in primary production driven by geochemical processes 
in caves and subsurface soils. Its activity was revealed in 
the sulfur- and ammonium-based chemolithotrophy in the 
Movile cave, Romania (Chen et al. 2009), and a strain was 
enriched from samples of the Äspö Hard Rock Laboratory, 
Sweden (Keuter et al. in preparation). It became obvious 
that Cand. Nitrotoga often occurs in Fe-based microbial 
ecosystems, e.g., in a groundwater seep (Roden et al. 2012), 
the Sitarjevec Mine, Slovenia (Toplak et al. 2021), the  
mentioned Äspö Hard Rock Laboratory (Ionescu et al. 2015)  
or Fe-rich paddy soil (Naruse et al. 2019). Interestingly,  
the next related taxonomically described bacteria are the 
iron oxidizers Gallionella ferruginea and Sideroxydans 
lithotrophicus. Comparative genomics of Cand. Nitrotoga 
from river sediment and water column samples revealed  
an array of genes for iron acquisition, which may offer a 
competitive advantage in iron-limited environments, but 
siderophores were not present (Boddicker and Mosier 2018).  
As iron-sulfur centers are involved in the transformation of 
nitrite to nitrate (Meincke et al. 1992), the availability of this  
element is crucial to maintain the energy delivering reaction  
active.

Cand. Nitrotoga in engineered ecosystems

Wastewater treatment plants

The occurrence of Cand. Nitrotoga is not restricted to  
environmental habitats with more or less low dissolved 
inorganic nitrogen concentrations, but it also proliferates  
in nutrient-rich wastewaters and activated sludge. This 
became apparent with cultivation of a potential new player 
in municipal N-removal systems. Incubations at 10–17 °C of 
activated sludge (AS) from a WWTP in Hamburg resulted 
in the selective enrichment of the second cultivated Cand. 
Nitrotoga representative with preference for low temperatures 
(Alawi et al. 2009). Cand. Nitrotoga was since then detected 
in many full-scale municipal WWTPs and laboratory or 
pilot-scale bioreactors operated with AS, but its occurrence  
seemed to be dependent on the geographic location (Table S1)  
with a clearly different distribution than Nitrospira (Cohen 
et al. 2019). Seasonal high abundances were observed in 
WWTPs located in cold or moderate climates (see below).  

In the WWTP in Hamburg, the cell numbers of Cand.  
Nitrotoga were rather low compared to Nitrospira (Fig. 3); 
however, labeled fatty acid profiles suggested that it was well 
metabolically active (Kruse et al. 2013a).

So far, Cand. Nitrotoga is the only known psychrotolerant 
NOB (Moyer et al. 2017) and the capability to oxidize nitrite 
also at temperatures too low for other cultured NOB broad-
ens biotechnological applications in order to save energy for 
heating processes. Wastewaters in temperate climate zones 
are rarely above 20 °C (Dempsey 2017) and frequently 
undergo seasonal nitrification failure in winter, because a 
reduced water temperature below 13 °C reduces activity of 
most nitrifiers (Johnston et al. 2019).

Recirculating aquaculture systems

Comparable to activated sludge, nitrification in biofilters of 
recirculating aquaculture systems (RAS) is mostly dominated  
by Nitrospira (Foesel et al. 2008; Keuter et al. 2011; Kruse 
et al. 2013b; Hüpeden et al. 2020) but especially in the North- 
ern Hemisphere reports about occurrences as well as functional  
dominance of Cand. Nitrotoga are increasing. Cand. Nitrotoga  
occurred in high abundances (> 40%) in cold freshwater and  
brackish RAS (8per mill salt) in Norway (Navada et al. 2019, 
2020a). It was also the main NOB in a cold freshwater RAS in  

Fig. 3  Microcolonies of Cand. Nitrotoga in activated sludge of the 
WWTP Hamburg-Dradenau, sampled in early spring. Nitrotoga cells 
were labeled by fluorescence in  situ hybridization (FISH) with the 
oligonucleotide probe Ntg122 (Lücker et  al. 2015), and appear as 
pleomorphic short rods in red. Nitrospira (green) was labeled with 
probes Nsp662 and Nsp712, Nitrosomonas (yellow) with probes 
Nm190 and Nm1225. All bacteria were staind with DAPI (blue). The 
image was taken with a Zeiss LSM 800
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Northern Germany, which was operated at a slightly acidic pH  
of 6.8 (Hüpeden et al. 2016). Furthermore, Nitrospira and/or 
Cand. Nitrotoga were the most abundant NOB in freshwater as  
well as brackish RAS bioreactors in Finland (Pulkkinen 2020).  
In the freshwater system, their distribution seemed dependent 
on the type of bioreactor (probably with different oxygenation 
of the biofilms, see below), because Nitrospira (as NOB and 
comammox) dominated the fixed bed reactor, whereas Cand. 
Nitrotoga was most abundant in the moving bed reactor. From 
the biofilters of a marine RAS running with North Sea water, the  
first marine cultures of this NOB could be enriched and further 
characterized (Keuter et al. in preparation). Its role in nitrifica-
tion in this RAS however seemed minor. With the relatively 
high occurrence of Cand. Nitrotoga in non-saline WWTPs, it 
is rather surprising that the cold-adapted NOB was not found 
in more freshwater aquaculture systems. Its presence in marine 
systems however seems less likely, given that in general, 16S 
rRNA gene sequences of Cand. Nitrotoga in marine settings 
were rarely detected (Boddicker and Mosier 2018).

Lessons learned from Cand. Nitrotoga 
cultures

Temperature adaptation

Low temperature is a main selective factor responsible for 
the dominance of Cand. Nitrotoga (Alawi et al. 2009; Lücker 
et al. 2015) and nearly all cultures grow well at 4 °C, in 
contrast to Nitrospira and Nitrobacter (Ushiki et al. 2013; 
Nowka et al. 2015b; Fig. 4). Cand. Nitrotoga arctica grows 
best between 10 and 17 °C and for most other strains of  
these NOB temperature optima between 17 and 22  °C 
were determined (Alawi et al. 2007; Hüpeden et al. 2016; 
Wegen et al. 2019; Ishii et al. 2017, 2020; Keuter et al. in 
preparation). An exception is the isolate Cand. Nitrotoga 
fabula from a WWTP in Austria, which is not adapted to 
low temperatures and only poorly grew < 20 °C (optimum at 
24–28 °C) (Kitzinger et al. 2018). Interestingly, the isolate 
with a bean-like shape revealed a different morphology than 
other cultivated Cand. Nitrotoga strains, and the 16S rRNA 
gene sequence forms a sublineage in the phylogenetic tree. 
In accordance, the ANI (average nucleotide identity) values 
between Cand. Nitrotoga fabula and other cultures of this 
genus are rather low (Keuter et al. in preparation).

Influence of the substrate concentration

At first, the new genus of NOB seemed to be already inhib-
ited by relatively low substrate concentrations, especially 
in comparison to Nitrobacter (Alawi et al. 2007; Bartosch 
et al. 1999). Meanwhile, new additional data from cultivated 
strains are available and higher tolerance levels were found 

in correlation with the findings of Lücker et al. (2015). Three 
Cand. Nitrotoga strains (from marine aquaculture, coastal 
sediments, and Cand. Nitrotoga fabula) were resistant 
to > 20 mM, whereas cultures obtained from permafrost soils 
were nitrite-sensitive and did not grow in > 4 mM (Ishii et al. 
2020; Kitzinger et al. 2018; Keuter et al. in preparation).

Biochemistry

The key enzyme of nitrite oxidation, the nitrite oxidoreductase  
(NXR), is a molybdopterin-binding enzyme within the DMSO  
reductase type II family (Meincke et al. 1992; Lücker et al. 
2010), which occurs in two different forms. The Nitrobacter- 
type NXR is bound to the inner side of the cytoplasmic and  
intracytoplasmic membranes (Spieck et al. 1998) and is closely  
related to nitrate reductases (NarG) of denitrifying bacteria 
(Kirstein and Bock 1993). The Nitrospira-type NXR faces 
the periplamic space and is related to the NXR in anaerobic 
ammonium-oxidizing Brocardiaceae (Lücker et al. 2010). 
Mostly, the substrate affinity of NOB with a periplasmic NXR  
(Nitrospira, Nitrospina) is higher in comparison to NOB 
with a cytoplasmic localization (Nitrobacter, Nitrococcus, 
Nitrolancea), and the inhibition threshold for nitrite is lower 
(Off et al. 2010; Nowka et al. 2015a).

Cand. Nitrotoga contains a new type of periplasmic 
nitrite oxidoreductase, which is phylogenetically distinct 
to the key enzymes with the same localization (Kitzinger 
et al. 2018; Boddicker and Mosier 2018) and  Km values for 
nitrite (measured with total cells) revealed values between 

Fig. 4  Nitrite oxidation of five Cand. Nitrotoga strains at an  
incubation temperature of 4  °C. The consumption of about 1  mM 
nitrite took between 15 (strain BS) and 30 (marine strain) days.  
Values are means ± standard deviations (error bars) for three  
biological replicates. Cand. N. arctica and Cand. Nitrotoga sp. 1052 
originate from permafrost soil (Alawi et  al. 2007; Keuter et  al. in 
preparation), strain BS from activated sludge (Wegen et  al. 2019), 
strain HW29, and the marine strain from aquaculture biofilters 
(Hüpeden et al. 2016; Keuter et al. 2017)
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those of Nitrospira and Nitrobacter. In detail, the  Km was 
in a moderate range of 25–89 µM nitrite for the different 
species of Cand. Nitrotoga (Ishii et al. 2017; Kitzinger et al. 
2018; Nowka et al. 2015a; Wegen et al. 2019) and there-
fore presents rather a K-strategist (like Nitrospira) than an 
r-strategist (like Nitrobacter). The maximum specific activ-
ity of Cand. Nitrotoga  (Vmax = 19–52 µmol nitrite/mg protein 
per hour) lies in the Nitrospira range, but is clearly lower 
than the oxidation rates of Nitrobacter (Kitzinger et al. 2018; 
Nowka et al. 2015a; Wegen et al. 2019).

Carbon fixation and adaptation to high DO

With regard to  CO2 fixation, Cand. Nitrotoga differs from 
the other NOB with periplasmic NXR by using the Calvin-
Benson-Bassham (CBB) cycle like Nitrobacter, Nitrococcus,  
and nitrite-oxidizing Chloroflexi (Boddicker and Mosier 2018;  
Kitzinger et al. 2018; Sorokin et al. 2012; Spieck et al. 2020b).  
This cycle requires a higher energy input than the reductive 
TCA cycle used by Nitrospira and Nitrospina (Berg 2011). 
Another concern is that some enzymes of the rTCA cycle 
are oxygen-sensitive, and therefore, this cycle is widespread 
among anaerobic or microaerobic bacteria. Its functioning  
in aerobic bacteria like Nitrospira requires enzymatic  
adaptations (Lücker et al. 2010). In contrast, the enzymes of 
the CBB cycle have a high robustness to molecular oxygen 
(Berg 2011), which can effect a competitive advantage  
over Nitrospira in high-oxygen habitats, as was shown for 
Nitrobacter (Downing and Nerenberg 2008; Huang et al. 
2010). Nevertheless, in accordance with their microaerophilic  
ancestors, Cand. Nitrotoga as well as Nitrospira can cope 
with low DO since at least some species have a high affinity 
cytochrome  cbb3 oxidase (Bayer et al. 2021; Boddicker and 
Mosier 2018; Kitzinger et al. 2018).

Apart from the enzymatic equipment, it is speculated that 
lipid patterns are involved in protection from high DO like 
regulation by hopanoid abundance in some NOB, but not in 
Cand. Nitrotoga (Elling et al. submitted).

Low pH values

Two strains of Cand. Nitrotoga, N. arctica and HW29, were 
highly enriched from slightly acidic environments and had 
low pH optima of 6.4 and 6.8, respectively. Sustaining the 
reduced pH during cultivation, Nitrospira was finally elimi-
nated from Cand. Nitrotoga (Hüpeden et al. 2016; Wegen 
2017). It seemed therefore that low pH was another selec-
tive factor for the competition between Cand. Nitrotoga 
and Nitrospira. However, tests for pH preferences of other 
Cand. Nitrotoga cultures showed that the pH optimum lies 
in the neutral to slightly alkaline range as typical for nearly 
all NOB (Ishii et al. 2020; Kitzinger et al. 2018). Further 
examples from bioreactors revealed that Cand. Nitrotoga 

neither grew better in pH of 6.4 than in 7.4, nor could it 
dominate over Nitrospira at low pH levels (Wegen et al. 
2019). Accordingly, FISH-microautoradiography (MAR) of 
a nitrite-oxidizing enrichment showed that both NOB were 
active at a pH of 6.4 (Hüpeden 2016). Therefore, adaptation 
of Cand. Nitrotoga to low pH values cannot be generalized, 
and in summary, the pH value appeared less stringent for 
NOB selection than temperature.

Influence of ammonium

Some NOB of the phylum Chloroflexi (Nitrolancea, 
Cand. Nitrocaldera) turned out to require an external 
N-source for assimilation, because genes for the reduction 
of nitrite to ammonium are missing (Sorokin et al. 2012; 
Spieck et al. 2020a, b). Similarly, reproducible growth of 
Cand. Nitrotoga sp. BS and AM1 could only be recov-
ered by addition of ammonium (Ishii et al. 2017; Wegen 
et al. 2019). Ammonium auxotrophic Cand. Nitrotoga 
cells might have adapted to metabolic networks in nature, 
where nutrients are exchanged in bacterial communities 
(Pande and Kost 2017). This way, Cand. Nitrotoga sp. 
AM1P and BS could save energy for nitrite reduction 
to ammonium (Ishii et al. 2017). Other Cand. Nitrotoga 
representatives were not stimulated by ammonium and 
can grow on nitrite as sole nitrogen source (Boddicker 
and Mosier 2018; Kitzinger et al. 2018; Keuter et al. in 
preparation).

In Cand. Nitrotoga cultures, the tolerance limit for ammo-
nium was 30–40 mM (Ishii et al. 2017; Wegen et al. 2019). 
Although this NOB could neither be found by FISH nor by 
specific PCR primers in reactor types receiving a very high 
ammonium influent as present for example in animal render-
ing (Lücker et al. 2015), in wastewater short-term experi-
ments (24 h), Cand. Nitrotoga survived in the presence of 
1150 mg  L−1 total ammonia nitrogen (TAN) (≙ 82 mM) 
(Li et al. 2020). In comparison, these concentrations are far 
below the activity inhibition value of ammonium measured 
for Nitrobacter (Hunik et al. 1993).

Alternative metabolism

Organic matter or other substrates are important if 
they are suitable to accelerate or replace growth on 
nitrite. The genome of Cand. Nitrotoga fabula contains 
a complete pathway for hydrogen oxidation as possi-
ble alternative energy source (Kitzinger et al. 2018), 
but presents a less f lexible metabolism comparable 
to Nitrospira (Koch et  al. 2014, 2015). Apart from  
the capacity for lithoautotrophic growth with nitrite as 
substrate and  CO2 as carbon source, Cand. Nitrotoga 
strains can use simple organic substances as known 
for other NOB (Steinmüller and Bock 1976; Spieck 
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et al. 2006). The nitrite oxidation rate was stimulated 
by pyruvate and lactate (Ishii et al. 2020) or acetate 
and dextrose (Boddicker and Mosier 2018) and Cand. 
N. fabula has a transporter system for branched amino 
acids (Kitzinger et al. 2018). Yet, it is not clear if the 
activity increase results from mixotrophic growth, or 
from hydrogen peroxide detoxification as known for 
AOA (Kim et al. 2016; Ishii et al. 2020). A study of Yi  
et al. (2019) investigated the response of the microbial  
community to changes in soil nutrients and found that 
Cand. Nitrotoga abundance was strongly positively 
correlated with total nitrogen, further suggesting the 
use of an elevated concentration of substrate and/or of 
organic matter released by the degradation of complex 
substances. In addition, genome annotations of Cand. 
Nitrotoga strains revealed that they carry genes for 
sulfite oxidation, which might be used as alternative 
energy source (Boddicker and Mosier 2018; Kitzinger 
et al. 2018). The use of sulfur compounds correlates 
with the metabolic repertoire of other NOB (Füssel 
et  al. 2017; Lücker et  al. 2013; Palomo et  al. 2018; 
Starkenburg et al. 2008).

Urea is an important dissolved organic N-compound in 
domestic wastewater (Hanson and Lee 1971) and RAS, 
where it may be 12–13% of the total dissolved nitrogen 
excreted by fish (Dalsgaard et al. 2015). The capacity for 
cleavage of urea was found in most Nitrospira (except N. 
defluvii) (Koch et al. 2015), but not in Cand. Nitrotoga 
(Boddicker and Mosier 2018; Kitzinger et al. 2018), sup-
porting an advantage of the former NOB in the systems 
for water treatment.

Furthermore, Cand. Nitrotoga was one of the most 
prominent bacterial taxa (up to 6.8% of total bacteria) in 
anoxic/oxic reactor systems fed with acetate or glucose 
(Xing et al. 2018; Li et al. 2019). However, a possible 
denitrifying potential and mixotrophic or heterotrophic 
growth of Cand. Nitrotoga still require proofs from fur- 
ther experimental studies.

Competition of Cand. Nitrotoga 
with Nitrospira and Nitrobacter

The distribution of different NOB in the environment reflects 
the ecological niche differentiation based on distinct meta-
bolic features. As a consequence, cultivation conditions have 
to be altered in order to meet requirements of specialized 
nitrifiers. For example, lowering the substrate concentration 
resulted in the enrichment of Nitrospira versus Nitrobacter 
from activated sludge and soils (Bartosch et al. 1999, 2002). 
Several other parameters that influence the composition of 
NOB communities were identified, like temperature, DO, 
pH, and salt (Alawi et al. 2009; Huang et al. 2010; Hüpeden 
et al. 2016; Navada et al. 2019). Since multiple environ-
mental or operational parameters determine the composition 
of the NOB community, it is not easy to define conditions 
which support the dominance of Cand. Nitrotoga in a given 
habitat. Some parameters and applications which facilitated 
a high abundance of this NOB in water treatment are listed 
in Table 1 and table S1 and are discussed in the following 
sections. Screening of the literature was restricted to the 
name “Nitrotoga” which might lead to some bias in inter-
pretation and underestimation of the global distribution, but 
enabled the most comprehensive view on these NOB.

Low temperature

The nitrifying community in most WWTPs consisted of 
Nitrospira as main NOB (Daims et al. 2006). Nevertheless, 
in a screening of WWTPs in Central Europe, Scandinavia, 
and North America, Cand. Nitrotoga turned out to belong 
to the core community and outcompeted Nitrospira in  
some of the plants (Lücker et al. 2015; Chen et al. 2020; 
Saunders et al. 2016). Its relative 16S rRNA gene sequence 
abundance can reach 0.5–2% or even 4% (Johnston et al. 
2019; Numberger et al. 2019; Saunders et al. 2016; Kruglova 
et al. 2020). In reactor systems for the treatment of ammonia- 
contaminated airstreams operated at 10 °C, Cand. Nitrotoga  
constituted the only detected NOB (Gerrity et al. 2016). As  

Table 1  Critical parameters for selection of Cand. Nitrotoga over Nitrospira (condensed version of table S1)

Selective factor Value Molarity Comment Reference

Low temperature  < 17 °C Most strains Alawi et al. 2009
Low pH 5.5–6.8 Some strains Hüpeden et al. 2016
High DO 1–3 mg  L−1 31–94 µM Lower affinity than Nitrospira Zheng et al. 2020
High nitrite 4.2–420 mg N  L−1 0.3–30 mM Lower affinity than Nitrospira Lücker et al. 2015; 

Nowka et al. 2015a
High FA 220 mg N  L−1 15.7 mM Less inhibited than Nitrospira Li et al. 2020
High FNA 1.8 mg N  L−1 0.13 mM Less inhibited than Nitrospira Ma et al. 2017
High sulfide  < 20 mg S  L−1  < 0.6 mM More resistant than Nitrospira Delgado Vela et al. 2018
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mentioned above for natural habitats, its abundance often  
varied seasonally and temperature variations were identified  
as main environmental factor for niche occupation (Liu et al.  
2021; Zhao et al. 2020). The highest cell numbers of Cand. 
Nitrotoga were observed in late winter or in spring (Keene 
et al. 2017; Miłobędzka and Muszyński 2017; Numberger 
et al. 2019; Kruglova et al. 2020; Kim et al. 2021) when the  
temperature is still too low for optimal growth of other NOB.  
A temperature-dependent shift in the NOB community was 
confirmed in a bioreactor experiment with inorganic mine 
waters (Table S1; Karkman et al. 2011). Other bioreactor 
experiments revealed that strains of Cand. Nitrotoga are 
able to compete with Nitrospira defluvii at a temperature 
of 17 °C, but the abundance of Cand. Nitrotoga decreased 
when the temperature increased to 22 °C (Wegen et al. 
2019).

A comparison of the seasonal nitrifying community 
between bench-scale and a lagoon WWTP in Canada 
revealed that the identified nitrifying bacteria (Nitroso-
monas, Nitrospira, Cand. Nitrotoga) remained active even 
at low temperatures of 2–6 °C (Skoyles et al. 2020). Whereas 
Nitrospira dominated within the BioCord biofilm at bench-
scale, Cand. Nitrotoga was more abundant in the field sam-
ples where the NOB had to withstand day and night cycles 
with alternating temperatures. Investigations about  N2O 
emissions in water treatment confirmed the importance of 
Cand. Nitrotoga for low temperature nitrification (10–20 °C) 
during seasonal dynamics (Reino et al. 2017; Vieira et al. 
2019; Gruber et al. 2021).

However, microautoradiography of activated sludge 
showed activity of Cand. Nitrotoga in a broad range from 4 
to 27 °C (Lücker et al. 2015), which indicated that the func-
tion of these NOB is not restricted to low temperature, and, 
as mentioned above, not all Cand. Nitrotoga strains are cold-
adapted or even psychrotolerant. For instance, close relatives 
of mesophilic Cand. Nitrotoga fabula were less competitive 
with Nitrospira at cold conditions and seem to be responsi-
ble for nitrite oxidation in warm water (> 20 °C) N-removal 
systems as observed in China and Australia (Liu et al. 2021; 
Zheng et al. 2020; Petrovski et al. 2020; Table S1).

Low DO

Oxygen supply in large-scale WWTPs is expensive and 
oxygen limitation is a strategy to save energy but also 
needed for systems using anammox (anaerobic ammonia 
oxidation). The half-saturation constants for oxygen are 
far lower for Nitrospira than for Nitrobacter (Blackburne 
et al. 2007; Dytczak et al. 2008); for Cand. Nitrotoga 
these kinetic coefficients were not yet produced. In a par-
tial nitritation-anammox (PNA) system for the treatment 
of municipal wastewater in Sweden, both Nitrospira and 
Cand. Nitrotoga resisted operation at intermittent aeration 

(Gustavsson et al. 2020), which is founded in their adap-
tation to microaerophilic habitats (Boddicker and Mosier 
2018; Lücker et al. 2010). However, in an SBR, Cand. 
Nitrotoga was found to have a lower affinity to dissolved 
oxygen than Nitrospira (Zheng et al. 2020; Table 1 and 
S1), and a stepwise increase of the DO level in a PNA 
reactor from 0.4 to 1.8 mg  L−1 (13–56 µM) led to an 
increase of Cand. Nitrotoga versus Nitrospira (Qian et al. 
2021), which confirmed the tolerance of Cand. Nitrotoga 
against DO mentioned above. A DO of 2–2.5 mg  L−1 
(= 62.5–78 µM) was evaluated as suitable condition for the 
out-selection of Nitrospira and Cand. Nitrotoga for par-
tial nitrification-anammox (Jiang et al. 2018); therefore, 
intensive aeration has to be applied with caution when 
enrichment of Cand. Nitrotoga is required.

An experiment on artificial nitrifying biofilms in AS 
(17 °C) revealed that thickness has a strong influence on 
the composition of the microbial community with Cand. 
Nitrotoga being almost restricted to thin biofilms (50 µm), 
which can be fully oxygenated (Suarez et al. 2019). In con-
trast, Nitrospira also colonized a thick biofilm (400 µm), 
which contained completely anoxic regions, with the high-
est abundance detected in 200 µm depth. The biovolume 
fraction of Cand. Nitrotoga amounted to 2.7% in the 50 µm 
biofilms, but only 0.5% in the 400 µm biofilms (Piculell 
et al. 2016). These results demonstrate different responses 
to oxygen gradients of the NOB, as also shown by Zhang 
et al. (2018).

High N‑load

Based on different substrate affinities mentioned above, 
Nitrospira is able to compete under low nitrite conditions, 
whereas Nitrobacter and Cand. Nitrotoga might benefit 
from higher substrate concentrations (Nowka et al. 2015a). 
This kind of competition was investigated by Kinnunen 
et al. (2017), who found that Cand. Nitrotoga outcompeted 
Nitrospira in a biofilm community at increased nitrite  
loading (1 mg N  L−1 = 70 µM) and Nitrospira dominated 
at a tenfold lower substrate concentration. Likewise, using 
marker lipids for NOB community analyses in activated 
sludge, the Cand. Nitrotoga-typical fatty acid 16:1 cis9 
was labeled with 13C-bicarbonate at nitrite concentrations  
between 0.3 and 30 mM. In contrast, the fatty acid 16:1 
cis11, which is characteristic for Nitrospira defluvii,  
showed 13C-incorporation in AS samples exposed to 
maximum 3 mM nitrite (Kruse et al. 2013a). In addition 
to the substrate affinity, it was found that the competition 
between Nitrospira and Nitrobacter is also driven by the 
dilution rate (Winkler et al. 2017), but data for the minimal  
hydraulic retention time of Cand. Nitrotoga are rare.
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FA and FNA

Free ammonia (FA) and free nitrous acid (FNA) are known 
to cause severe inhibition to numerous bioprocesses in 
WWTPs and are gainfully used to suppress NOB in order to 
enhance partial nitrification in combination with anammox 
(Kim et al. 2006; Wang et al. 2016; Zhou et al. 2011; Yu 
et al. 2021). The inhibition thresholds for FA and FNA dif-
fer between NOB genera and Nitrobacter was less inhibited 
than Nitrospira (Blackburne et al. 2007; Duan et al. 2019). 
Cand. Nitrotoga can grow in the presence of relatively high 
concentrations of FA (up to 220 mg  NH3-N  L−1 = 15.7 mM; 
Li et al. 2020), which can be used as selective factor for 
enrichment (Ishii et al. 2017). In accordance, Cand. Nitro-
toga became the dominant nitrite oxidizer, while Nitrospira 
was inhibited in water treatment under exposure to FNA 
and FA (Li et al. 2020; Zheng et al. 2020; Wang et al. 2021; 
Table 1 and S1). Similar to Nitrobacter, which revealed a 
residual activity of 10% in the presence of 1.0 mg  HNO2-N 
 L−1 (71 µM) (Blackburne et al. 2007), Cand. Nitrotoga, but 
not Nitrospira, tolerated 1.87 mg  HNO2-N  L−1 (134 µM; at 
a pH of 6.0) (Ma et al. 2017).

Inhibition of NOB in water treatment

Nitrite oxidation is a very sensitive process, which can cause a 
chaotic instability of the whole nitrification process (Graham  
et al. 2007). While this is unfavorable in conventional aerobic  
nitrification systems, a specific inhibition of NOB followed  
by accumulation of nitrite is the goal when partial nitritation- 
anammox is used. For this purpose, an anaerobic pretreatment  
(Kouba et al. 2017a) or sulfide addition combined with a FA 
shock (see above) were used as stressors (Seuntjens et al. 
2018). Other relevant factors which can suppress NOB are 
intensive aeration, high nitrate (low water exchange), salt 
addition (by the influent water), or chemicals (industrial 
wastewaters). Since Cand. Nitrotoga might be less affected 
than Nitrospira (or other NOB), the influence of some of these  
factors is discussed in the following.

Nitrate accumulation

Nitrate inhibition is of special interest in recirculating aqua-
culture systems, where no denitrification unit is installed. In 
accordance, nitrite oxidizers on biocarriers from marine and 
brackish RAS have shown decreased nitrification rates with 
increasing nitrate concentrations (Keuter 2011). Most Cand. 
Nitrotoga cultures oxidized nitrite with a reduced rate in the 
presence of 10–20 mM nitrate (Kitzinger et al. 2018; Wegen 
et al. 2019; Keuter et al. in preparation). This value is in the 
same range as those determined for Nitrospira lineage I + II 
from AS (Nowka et al. 2015b), but much less than, e.g., for a 

marine Nitrospira isolated from a RAS (Keuter et al. 2011), 
Nitrospira moscoviensis (Ehrich et al. 1995), or Nitrobacter 
(Hunik et al. 1993). Although these levels should not be 
reached in RAS for the well-being of the reared animals 
(Camargo et al. 2005), they are not uncommon, and thus can 
be a factor shaping the nitrifying communities, in the worst 
case reducing nitrifying potentials of the biofilters.

Salt inhibition

Critical salinity changes are required in RAS, e.g., during 
the production of Atlantic salmon or in coastal wastewater  
collection systems, which are infiltrated by seawater (Kinyage  
et al. 2018). Salt inhibition of nitrification can also occur 
where municipal and industrial sewage is combined, and 
Nitrobacter and Nitrospira are known to resist osmotic stress  
(Hunik et al. 1993; Moussa et al. 2006; Qiu and Ting 2013).

The Cand. Nitrotoga strains in culture seem to tolerate  
only low salinity concentrations, even one isolated from 
coastal sediment (Ishii et al. 2017). Alone, a strain of Cand. 
Nitrotoga enriched from a biofilter of a marine RAS had 
optimal growth between 0.5 and 3% NaCl (Keuter et al. in  
preparation). Nevertheless, Cand. Nitrotoga was resistant  
towards salt-spiked water (1.5% NaCl) in bioreactor experi- 
ments (Karkman et al. 2011) and was the dominant NOB tol- 
erating rising salinities up to 3.2% in freshwater moving bed  
bioreactors (Navada et al. 2019). It was concluded that Cand.  
Nitrotoga represents an important NOB in cold-water nitri- 
fying systems with variable salinities (Navada et al. 2020a,  
b). These findings showed once again that physiological 
limits tested in cultures may differ from those in situ, and  
that Cand. Nitrotoga is underrepresented by the few strains  
in culture so far.

Sulfide inhibition

Hydrogen sulfide is produced biologically from sulfate 
in sewers and in anaerobic niches within treatment plants  
(Delgado Vela et al. 2018), and is discussed as electron 
donor for denitrification. Since sulfide especially inhibits 
NOB, it is used to establish partial nitritation/anammox 
(Kouba et al. 2017b). Batch experiments revealed that sulfide 
inhibition of nitrite oxidation depends on the microbial  
community and a Nitrospira-rich community was more 
inhibited than a community containing Cand. Nitrotoga and 
Nitrobacter (Delgado Vela et al. 2018). After a treatment of 
150 mg S  L−1 (4.7 mM), Cand. Nitrotoga was more resilient 
than Nitrospira (Seuntjens et al. 2018) and a similarly high 
tolerance level (128 mg S  L−1 or 4 mM) was reported for 
Nitrobacter (Sekine et al. 2020). Correspondingly, Maestre  
et  al. (2009) investigated the bacterial community in a 
biotrickling filter treating high loads of  H2S and found a 
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Cand. Nitrotoga fabula-like 16S rRNA gene sequence  
cluster, which might belong to resistant NOB.

Resistance against chemicals and reactive oxygen 
species

Cand. Nitrotoga have repeatedly been found at contami-
nated sites like polluted rivers, petrochemical, or antibi-
otics-contaminated wastewaters (Brümmer et al. 2003; Li  
et al. 2011; Song et al. 2020). Their abundance was low 
in oil sands tailing ponds (Ramos-Padrón et al. 2011) 
but they belong to the dominant genera in biodegrada-
tion of naphthenic acids in process waters of oil sands 
(McKenzie et al. 2014). Notably, Zeman et al. (2014) con-
cluded that Cand. Nitrotoga might be a novel hydrocarbon 
degrader due to the high relative abundance of 42% after  
a 12-month incubation at 30 °C. Survival in contami-
nated environments might be facilitated by an array of 
antibiotic and metal resistance genes in these organisms 
(Boddicker and Mosier 2018; Kitzinger et al. 2018). Sev-
eral antibiotics were tested on cultures, and used in isola-
tion procedures of this NOB (Ishii et al. 2020). When the 
effect of chromium for N-removal of granular sludge was 
investigated, Cand. Nitrotoga was able to tolerate 5 mg Cr 
(VI)  L−1 (96 µM) which otherwise has a strong negative  
impact on NOB (Zheng et al. 2018).

With respect to their genomic interior, Cand. Nitrotoga 
should be able to resist oxidative stress to a certain degree 
(Boddicker and Mosier 2018; Ishii et al. 2020). This might 
be of relevance for dewatering sewage or disinfection in 
RAS with  H2O2 (Alasri et al. 1992; Yang et al. 2018), but 
detailed studies on cultures were not performed so far. On 
the other hand, a low-dose UVA irradiation was success-
fully applied as new approach to eliminate NOB (Nitro- 
spira and Cand. Nitrotoga) for N-removal via anammox 
(Chu et al. 2020).

Possible application of Cand. Nitrotoga 
in phosphorus removal?

To protect receiving waters from eutrophication, munic-
ipal wastewater treatment plants have to remove not 
only excess nitrogen but also phosphorus. The process 
relies on a diverse bacterial community, which is able to 
store phosphorus intracellulary (Lawson et al. 2015). A 
novel polyphosphate accumulating organisms in domestic  
sewage (NCBI Accession number AB247475) was found 
with a high level of 16S rRNA gene sequence identity 
(99.0%) to Cand. N. arctica 6680. The novel nitrite oxi- 
dizing betaproteobacterium was further detected in several  
biological phosphorus removal plants (Kong et al. 2007; 
Ji and Chen 2010; Keene et al. 2017) and represented the  

only NOB in nitrifying-denitrifying phosphorus-accu- 
mulating granules in an activated sludge system operated 
at 12 °C (Figdore et al. 2018). Furthermore, both, Cand. 
Nitrotoga and Nitrospira, were found in low numbers in 
an enhanced biological phosphorus removal bioreactor 
(EBPR, 13–20 °C), but only Cand. Nitrotoga remained 
active during 120 days of operation with large changes of  
operational parameters across the different bioreactor redox  
zones (Lawson et al. 2015). These findings hint to a possible  
involvement of Cand. Nitrotoga in the phosphorus cycle and  
genes for phosphorus storage were found in some Cand.  
Nitrotoga strains (Boddicker and Mosier 2018; Ishii et al.  
2020) as already known for other NOB. Additionally, elec- 
tron-dense granules assumed to represent polyphosphate  
were observed in high numbers in cells of Cand. Nitro- 
toga in activated sludge (Alawi et al. 2009). Whether Cand.  
Nitrotoga have indeed a function in phosphorus removal in  
water treatment warrants further attention.

In general, NOB are survivalists supported by the stor-
age of diverse reserve material. Nitrobacter uses polyphos-
phate as metabolic buffer (Eigener and Bock 1972) and 
C-storage compounds like poly-ß-hydroxybutyrate (PHB) 
and glycogen (van Gool et al. 1971). Glycogen deposits 
are present in all NOB, which was confirmed by genomic 
analyses for Cand. Nitrotoga (Kitzinger et al. 2018; Ishii 
et al. 2020). Notably, the combined removal of nitrogen 
and phosphorus with C-storage (PHA) at low temperature 
and participation of Cand. Nitrotoga seems promising at 
low C/N ratio (Yang et al. 2019).

Microdiversity of Cand. Nitrotoga 
populations

In two reported cases, different strains of Cand. Nitrotoga 
have been enriched from the same source material (Ishii 
et al. 2020; Wegen et al. 2019), and these strains appeared 
to be adapted to differing nitrite concentration or tempera-
tures. This could be an example of ecological niche sepa-
ration in Cand. Nitrotoga, similar to previous findings in 
Nitrospira (Maixner et al. 2006). Diversity within the genus 
based on niche differentiation is still a new avenue for Cand. 
Nitrotoga-focused research, but experiments that used con-
trasting substrate conditions let us suggest that respectively 
different Cand. Nitrotoga strains are active in the same 
habitat (Kruse et al. 2013a; Lücker et al. 2015). Molecular 
surveys of biofilm communities in RAS or flow-through 
microcosms could differentiate between several representa-
tives of Cand. Nitrotoga and the resident strain could not 
be replaced by invaders of the same genus despite their low  
phylogenetic distance (Navada et al. 2020a; Kinnunen et al.  
2018). The coexistence of multiple NOB, even if they are  



7133Applied Microbiology and Biotechnology (2021) 105:7123–7139 

1 3

closely related, supports stabilization of the system in case 
of disturbances (Santillan et al. 2020).

Conclusion

The perception that nitrite oxidation at low temperature is 
mainly driven by highly specialized bacteria of Cand. Nitro-
toga was confirmed by cultivation-based studies, metagenomic  
surveys, and biotechnological experiments. The phylogenetic  
distinct nitrite oxidoreductase points to a separate evolution 
event, and despite the same orientation in the periplasmic space,  
Cand. Nitrotoga and Nitrospira differ in their substrate affinity  
and carbon fixation pathway. Consequently, these competitors  
can be separated by selected nitrite concentrations and elevated  
DO, which can be used to stabilize low-temperature nitrification  
processes. In terms of inhibition of NOB for partial nitrifica-
tion/anammox, the robust Cand. Nitrotoga is highly resistant 
against treatment with FA and FNA, exposure to sulfide, and 
toxicants and survives harsh conditions similar to Nitrobacter.  
Therefore, Cand. Nitrotoga is a suitable candidate for nitrite 
oxidation under stress as necessary for the treatment of indus-
trial sewage.

In contrast to other NOB, Cand. Nitrotoga occupies its 
own physiological niche of low temperature and is therefore 
an important NOB for N-removal in natural and engineered 
ecosystems which are influenced by seasonal temperature 
fluctuations. It often is not permanently prevalent like Nitro-
spira, but rather reveals a “bloomy” distribution when con-
ditions are advantageous in competition with other NOB.

In future, genome analyses might give further hints for  
additional physiological capacities of this NOB. Iden- 
tification of the promoting factors for growth of Cand.  
Nitrotoga (e.g., elevated  CO2 concentrations, organic mat-
ter, iron) provides the background for advanced nitrogen 
removal techniques. Especially cycling between anaerobic 
and aerobic incubation for enhanced biologically phosphorus 
removal (EBPR) is a worthwhile matter of future research.
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