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Abstract

Background: The expression of PDK4 is elevated by diabetes, fasting and other conditions associated with the
switch from the utilization of glucose to fatty acids as an energy source. It is previously shown that peroxisome
proliferator-activated receptor γ coactivator 1α (PGC-1α), a master regulator of energy metabolism, coactivates in
cell lines pyruvate dehydrogenase kinase-4 (PDK4) gene expression via the estrogen-related receptor α (ERRα). We
investigated the effects of long-term high-fat diet and physical activity on the expression of PDK4, PGC-1α and
ERRα and the amount and function of mitochondria in skeletal muscle.

Methods: Insulin resistance was induced by a high-fat (HF) diet for 19 weeks in C57BL/6 J mice, which were either
sedentary or with access to running wheels. The skeletal muscle expression levels of PDK4, PGC-1α and ERRα were
measured and the quality and quantity of mitochondrial function was assessed.

Results: The HF mice were more insulin-resistant than the low-fat (LF) -fed mice. Upregulation of PDK4 and ERRα mRNA
and protein levels were seen after the HF diet, and when combined with running even more profound effects on the
mRNA expression levels were observed. Chronic HF feeding and voluntary running did not have significant effects on
PGC-1α mRNA or protein levels. No remarkable difference was found in the amount or function of mitochondria.

Conclusions: Our results support the view that insulin resistance is not mediated by the decreased qualitative or
quantitative properties of mitochondria. Instead, the role of PDK4 should be contemplated as a possible contributor to
high-fat diet-induced insulin resistance.

Keywords: Skeletal muscle, Mitochondria, Lipids, Glucose, Fuel switching
Background
A multitude of studies have postulated that obesity and
the metabolic syndrome caused by sedentary lifestyle and
western diet decrease the capacity of skeletal muscles to
oxidize the accumulated lipids [1,2]. Previously this has
been proposed to occur by decreased mitochondrial
content as well as mitochondrial biogenesis and func-
tion [3-8] suggesting an association between mitochon-
drial dysfunction and insulin resistance, the qualitative
and quantitative changes in mitochondria being poten-
tially the ultimate cause [9,10]. However, recent studies
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have convincingly shown that high-fat diet actually
increases mitochondrial biogenesis and fatty acid oxida-
tive capacity in skeletal muscle [11-13] and that lipid-
induced insulin resistance in the absence of physical ac-
tivity is strongly associated to incomplete β-oxidation
and mitochondrial overload or “mitochondrial stress”
[14]. Mitochondrial defects per se, e.g. deficient electron
transport chain, do not seem to be the cause of insulin
resistance [15].
Although reduced muscle mitochondrial content and

function have been proposed to be a consequence of phys-
ical inactivity and sedentary lifestyle, exercise efficiently
stimulates muscle oxidative capacity and thus corrects the
imbalance between fatty acid uptake and oxidation [16-18].
Furthermore, physical activity reduces the reliance on
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carbohydrates, thus increasing the proportion of fatty
acids used as an energy source and enhancing muscle fatty
acid oxidation, especially during submaximal exercise
[19,20].Peroxisome proliferator-activated receptor γ coac-
tivator-1α (PGC-1α) is a potential main regulator of the
metabolic program that has been shown to be acutely acti-
vated by exercise training and down-regulated by high-fat
feeding and sedentary lifestyle [21]. PGC-1α has known
roles in mitochondrial biogenesis and fatty acid oxidation.
The ability of PGC-1α to co-activate the orphan nuclear
receptor ERRα (estrogen- related receptor) results in the
activation of a broad mitochondrial program, including
the induction of oxidative phosphorylation and mitochon-
drial biogenesis [22-25]. It has been demonstrated both in
humans [26] and in rodents [27,28] that the expression of
PGC-1α is induced by exercise [29,30] after the activation
of PGC-1α promoter [28]. Despite the many functions of
PGC-1α in overall energy homeostasis, its function as a
potential regulator in glucose utilization pathways is not
well characterized [31].
The pyruvate dehydrogenase kinases (PDKs) regulate

the activity of pyruvate dehydrogenase complex (PDC),
which catalyzes the oxidative decarboxylation of pyruvate
in the glucose oxidation process. The isoform PDK4 is
highly expressed in liver, heart and skeletal muscle and is
regulated by exercise. Its expression is elevated with dia-
betes, fasting and other conditions associated with the
switch from the utilization of glucose to fatty acids as an
energy source [32,33]. It has been suggested that insulin
resistance is associated with dysregulation of the PDC in
skeletal muscle and that excess insulin would on the other
hand down-regulate the expression of PDK4 [25,34,35].
Interestingly, transcription factor ERRα and transcrip-
tional co- activator PGC-1α both induce PDK4 gene ex-
pression independently [31,36]. In addition, it has been
shown that PGC-1α is recruited to the PDK4 promoter by
ERRα, which stimulates further the expression of PDK4
[31,37,38]. Our primary aim was to study the effects of
high-fat diet and physical activity on the expression of
PDK4 and aspects of its regulation. We hypothesized that
when dietary carbohydrates are replaced by fatty acids as a
fuel for oxidation in muscle, the expression of PDK4 is
increased, and this elevation is regulated by the PGC-
1α/ERRα-pathway. Secondly, we studied the effect of
high-fat diet and physical activity on the amount and
function of mitochondria in skeletal muscle.

Methods
Animals and diets
Male C57BL/6 J mice (n= 58) were obtained from Taconic
(Ejby, Denmark) at the age of 6 weeks and were individu-
ally housed in standard conditions (temperature 22°C, hu-
midity 50± 10%, light from 8:00 am to 8:00 pm). After one
week of adaptation to new environment, the mice were
matched for body-weight (20.8 ± 1.4 g) and divided into
four groups. The mice received for 19 weeks ad libitum
either a lard- based purified high-fat diet (61% of energy
from fat, 19% protein, 20% carbohydrates 5.16 kcal/g;
D12492-Euro) to induce obesity and insulin resistance, or
a low-fat diet as a control diet (10% of energy from fat,
19% protein, 71% carbohydrates, 3.78kcal/g; D12450-Euro,
Purina Mills TestDietW, PMIW Nutrition International,
Richmond, IN, USA). The nutritional profile of the fat
content of the two diets was as follows (high-fat diet/low-
fat diet): cholesterol 229/18 ppm, linoleic acid 3.97/1.39%,
linolenic acid 0.36/0.19%, arachidonic acid 0.05/0.00%,
omega-3 fatty acid 0.36/0.19%, total saturated fatty acids
10.54/1.14%, total monounsaturated fatty acids 10.84/
1.30%. The groups of low-fat fed (LF) or high-fat fed (HF)
mice were either sedentary (LFsed or HFsed) or physically
active (LFexe or HFexe) throughout the experiment. Mice
were housed individually in cages and the physically active
mice had access to a running wheel, as previously
described [39]. The amount of running was monitored via
a computerized system across the study period. All mice
were weighed and food consumption was monitored at
three-week intervals. Feeding efficiency was calculated
(weight gained in mg per kilocalories consumed), but no
numerical results are presented and only significant differ-
ences are mentioned in the results. The protocols were
approved by the Animal Care and Use Committee of the
University of Jyväskylä.
The running wheels were locked for 12 hours before

sacrifice. After 3-hours’ fasting the animals were weighed
and then sacrificed by cervical dislocation. Blood and
serum samples were collected for the triglyceride, choles-
terol and free fatty acid measurements. The muscles ex-
tensor digitorum longus (EDL), soleus, gastrocnemius
and quadriceps femoris (QF) and epididymal fat pads
were excised from the animals, weighed and prepared
for further analysis. Total RNA isolation was done from
the left gastrocnemius. The muscle oxygen consump-
tion measurements were done from the right QF and
homogenates for the Western blotting and histological
samples were prepared from the left QF. Histological
samples were transversally oriented and mounted on
OCT compound (Tissue Tek, Sakura Finetek Europe)
and snap frozen in isopentane cooled with liquid ni-
trogen (−160°C). Electron microscopic analyses were
done from the soleus muscle. The experiment set up
and data collection points are summarized in Figure 1.

Serum analyses
After overnight fasting, a blood sample was collected at
intervention weeks 9 and 18 and the blood glucose level
was determined (HemoCue, Ängelholm, Sweden). Insu-
lin was analyzed with an Ultra Sensitive Rat Insulin
ELISA Kit according to manufacturer’s protocol (Crystal
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Chem Inc., Downers Grove, IL, USA). Insulin resistance
was estimated by multiplying the fasting values of glu-
cose and insulin. Triglycerides, total cholesterol and free
fatty acids were measured from the end-point serum
samples, of which triglycerides and cholesterol were mea-
sured using the VITROS DT60 II Chemistry System
(Ortho-Clinical Diagnostics, Rochester, NY, USA). The
Wako NEFA C test kit (Wako Chemicals GmbH, Neuss,
Germany) scaled down to a microplate format was used
to determine free fatty acids (FFA).

RNA extraction and cDNA synthesis
Total RNA was isolated from (approximately 50 mg of)
the gastrocnemius withTrizol reagent (Invitrogen, Carlsbad,
CA, USA) according to manufacturer’s instructions.
Muscle samples were homogenized with a FastPrep
(Bio101 Systems, USA) tissue homogenizer by using Lys-
ing Matrix D (Q-Biogene, USA). The concentration and
purity of RNA were determined photometrically at wave-
lengths of 260 nm and 280 nm. The integrity of RNA was
checked with agarose gel electrophoresis. Five micrograms
of total RNA was reverse transcribed to synthesize cDNA
(SuperScript III Reverse Transcriptase kit, Invitrogen). For
efficient mRNA transcription, a mixture of oligo pri-
mers (Oligomer, Helsinki, Finland), consisting of 20
dT residues followed by two additional nucleotides,
which anneal only at the 5’ end of the poly(A) tail of
mRNA, was used.
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Real-time quantitative PCR
The mRNA expression levels of ERRα, PCG-1α and
PDK4 were determined with the ABI 7300 Real-Time
PCR system (Applied Biosystems, Foster City, CA,
USA). The TaqMan primer and probe sets were designed
and synthesized by Applied Biosystems. The gene bank
accession numbers and Applied Biosystems assay IDs,
respectively were: NM_007953.2 and Mm00433142_m1
(ERRα), NM_008904.1 and Mm01208833_m1 (PGC-1α),
NM_013743.2 and Mm00443326_m1 (PDK4). The PCR
cycle parameters used were: +50°C for 2 min, +95°C for
10 min, 40 cycles at +95°C for 15 s, and +60°C for
1 min. All samples were analyzed in triplicate. The gene
expressions were normalized using a Quant-iT™ Pico-
GreenW assay (Invitrogen) according to manufacturer’s
instructions. The PicoGreen method was used to quanti-
tate the total amount of RNA-cDNA-hybrids from the
solution of reverse- transcribed mRNA products [40].

Western blotting
The QF muscle samples were hand-homogenized in 4%
homogenization buffer [10% SDS (w/v), 40 mM DTT,
5 mM EDTA, 0.1 M Tris–HCl pH 8 and protease inhibi-
tors 40 μg/ml aprotinin, 80 μg/ml PMSF and 40 μg/ml
leupeptin (Sigma, Saint Louis, USA)]. Western immuno-
blot analyses from the muscle lysates (samples contain-
ing 20 μg of total protein) were done as previously
described [41,42]. Briefly, PVDF membranes were incu-
bated overnight at 4°C with rabbit primary antibodies
against PGC-1α (1:1000, Calbiochem, Merck KGaA,
Darmstadt, Germany), PDK4 and ERRα (1:1200 and
1:3000 respectively, Novus Biologicals, Littleton, CO,
USA), and with goat antibody against cytochrome c
(CytC, 1:2000 Santa Cruz Biotechnology Inc., Santa
Cruz, CA, USA). Membranes were incubated with
horseradish peroxidase- conjugated secondary anti-
rabbit or anti-goat IgG antibody (Jackson ImmunoRe-
search Laboratories, PA, USA) diluted 1:50 000 or 1:70
000, respectively, in TBS-Tween (0.1%) with 2.5% milk
for 1 h followed by washing in TBS-T. Preliminary
experiments confirmed a proportional linear relationship
between protein loaded and, especially, Ponceau S but
also α-actin (1:20 000, Sigma) in quantification between
5 and 60 μg, demonstrating the suitability of Ponceau S
to be used as a method to control for loading [42]. Pro-
teins were visualized by ECL according to manufac-
turer's protocol (SuperSignal West femto maximum
sensitivity substrate, Pierce Biotechnology, Rockford, IL,
USA) and quantified using ChemiDoc XRS Quantity
One software (version 4.6.3. Bio-Rad, UK).

Image analysis of SDH activity
Serial cross-sections (8 μm) from the QF muscle were
cut in a cryomicrotome (−25°C). The activity of succinate
dehydrogenase (SDH) was used as a marker for muscle
fiber oxidative capacity as described by Pette and Tyler
[43].
The SDH-stained cross-sections (n = 4-12 animals/

group) were captured in full color using light micros-
copy (Olympus BX-50, Olympus Optical, Tokyo, Japan).
Digitally captured images (magnification 20 x) with a
minimum of three fields-of-view per muscle cross-section
were processed and analyzed using ImageJ software
(NIH, Bethesda, MD, USA). The images were converted
to 8-bit gray-scale (range of grey levels 0–255) images.
An intensity threshold representing minimal intensity
values corresponding to SDH activity was set manually
and uniformly used for all images (least oxidative gray
levels 46–90; most oxidative 140–255). The three inten-
sity scaled fractions representing different oxidative
capacities of fibers were expressed as the percentage of
the measured area.

Electron microscopic analysis of mitochondrial content
Pieces of soleus (n = 5 animals/group) were fixed with
3% glutaraldehyde in 0.1 M phosphate buffer for 2–2.5 h
at +4°C, and post-fixed with 1% osmium tetroxide in the
same buffer at +4°C for 1 h. The specimens were stained
in uranyl acetate, dehydrated in ethanol and embedded
in LX-112 (Ladd). Semithin sections were cut, stained
with toluidine blue and examined with light microscope
to optimize the transverse orientation. Thereafter, ultra-
thin sections were cut, mounted on grids and stained
with uranyl acetate and lead citrate. Micrographs were
taken from the best section of each block with a Jeol
JEM-1200 electron microscope at 2500 x primary mag-
nification. It was checked that micrographs were taken
from different cells (10–13 cells/section) and that sarco-
lemmal areas were included. In total 343 micrographs
were analyzed using AnalySIS software (Olympus). The
amount of subsarcolemmal mitochondria was expressed
as mitochondrial area (μm2) and related to the length of
sarcolemma (μm).

Measurements of mitochondrial respiration
The homogenization of QF muscle samples and isolation
for the mitochondrial respiration measurements was
done mainly according to Wardlaw et al. [44] with
minor modifications. Briefly, mitochondrial respiration
rates (30 μl of freshly prepared mitochondria) were mea-
sured at 25°C with a Clark-type oxygen electrode (Han-
satech Instruments Ltd, England) in a reaction medium.
Respiration rates were recorded in the presence of com-
plex I substrates pyruvate (5 mM) and malate (2.5 mM).
State 3 respiration was initiated by adding 150 mM ADP
(1.5 mM in buffer). Oxygen consumption was related to
the protein content of the suspension determined in tri-
plicates according to manufacturer’s instructions (BCA
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assay kit, Pierce). Mitochondrial respiration rates in the
QF muscle homogenates were measured using the same
procedure as the respiration of isolated mitochondria.

Statistical analysis
All data are presented as mean± SD. A repeated general
linear model was used with weight gain, feeding effi-
ciency and weekly running distance as parameters. Two-
way ANOVA was used to determine the effect of diet
(with 2 levels: low-fat diet and high- fat diet), exercise
(with 2 levels: with and without voluntary running), and
their interaction with the measured variables, as previously
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Results
Food consumption, body mass and tissue weight
The development of body weight is shown in Figure 2A.
After only 1 week of intervention, significantly higher
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Table 1 Physiological characteristics

Basic data Low-fat diet High-fat diet ANOVA P-value

Sedentary (n=14) Running (n=15) Sedentary (n=14) Running (n=15) Diet Running Diet*Running

Weight (g)# 32.6 ± 2.86 29.2 ± 1.72** 45.4 ± 5.29*** 44.4 ± 3.12***,¤¤¤ <0.001 0.008 0.051

Fat (mg) 799.13 ± 345.1 424.04 ± 65.4* 1767.38 ± 383.2*** 1925.06 ± 541.0***,¤¤¤ <0.001 0.275 0.009

Gastrocnemius (mg) 144.98 ± 12.6 141.12 ± 7.7 151.34 ± 8.6 154.81 ± 7.4**,¤¤¤ <0.001 0.936 0.137

Quadriceps femoris (mg) 206.53 ± 10.1 211.35 ± 11.8 220.61 ± 13.0** 228.23 ± 11.0***,¤¤¤ <0.001 0.045 0.646

EDL (mg) 12.96 ± 1.4 12.47 ± 1.1 13.19 ± 1.7 12.83 ± 1.1 0.721 0.500 0.404

Soleus (mg) 10.85 ± 1.6 11.81 ± 1.3 11.14 ± 1.2 13.80 ± 1.6***,}}},¤¤¤ 0.004 <0.001 0.028
#Logarithmic transformation for normality and comparison.
Body weight, epididymal fat mass, and the masses of gastrocnemius, quadriceps femoris, EDL and soleus muscles were measured at the end of the 19-week
experiment. The muscle masses are average of both limbs. * = vs. LFsed (P < 0.05), ** = vs. LFsed (P < 0.01), *** = vs. LFsed (P < 0.001), }}} = vs. HFsed (P<0.001),
¤¤¤ = vs. LFexe (P < 0.001). Results are means (±SD).
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body weight was observed in the HF-fed mice compared
to LF-fed mice. Thereafter, the body weight of the HF
mice increased continuously during the experiment.
After seven weeks of intervention a significant differ-
ence in body weight between the sedentary and their re-
spective running groups was seen throughout the rest of
the intervention. Consistent with their body weight, the
HF mice had heavier epididymal fat pads and quadriceps
femoris muscles (QF) than the LF mice (Table 1).
Feeding efficiency varied in the different groups

throughout the experiment. The feeding efficiency values
of the HF mice ranged from 16.75 ± 4.55 mg/kcal to
7.55 ± 4.15 mg/kcal during the three-week monitoring
intervals, and were significantly higher than those of the
LF mice (9.78 ± 2.25 mg/kcal and 3.85 ± 3.18 mg/kcal, re-
spectively). Running induced a slight decrease in feeding
efficiency in the LF mice.

Voluntary running
After four weeks of running, both the LF and HF groups
reached their maximum weekly running distance, which
then decreased gradually (Figure 2B). Consistent differ-
ences in the weekly running distance were observed after
12 weeks, the running distance of LF mice being signifi-
cantly higher than that of HF mice. However, no statisti-
cally significant difference between the groups in total
cumulative running distance (LF 422 ± 108 km, HF
339 ± 136 km) was observed.
Table 2 Blood profiles of the mice after the 19-week experim

Basic data Low-fat diet

Sedentary (n=14) Running (n=15) Seden

Total cholesterol (mmol/l)# 2.99 ± 0.88 2.70 ± 0.36 4.90

Triglycerides (mmol/l) 0.97 ± 0.23 1.05 ± 0.21 1.00

Free fatty acids (mmol/l) 0.82 ± 0.15 0.92 ± 0.16 0.49

Fasting glucose (mmol/l) 8.92 ± 1.17 8.45 ± 0.90 9.39

Fasting insulin (ng/ml)# 0.43 ± 0.24 0.27 ± 0.16* 2.25
#Logarithmic transformation for normality and comparison.
Fasting blood glucose and insulin were measured after 18 weeks. * = vs. LFsed(P <
(P < 0.05), ¤¤¤ = LFexe (P < 0.001). Results are means (±SD).
Blood glucose, insulin and lipid profile
The fasting glucose levels were significantly higher in the
HF compared to LF mice. There was also a difference
within the group of HF mice, with the runners having
higher fasting glucose (Table 2). The HF animals had sig-
nificantly higher fasting insulin levels compared to LF ani-
mals. Estimated insulin resistance indicated that already
after 9 weeks on the HF diet the HF mice were more insu-
lin resistant than the LF mice and that a significant posi-
tive effect of running was seen in both diet groups
(Figure 3). After 18 weeks on the HF diet the HF mice
were significantly more insulin resistant than the LF mice.
However, no statistical difference between the sedentary
and running animals in the HF diet group was observed
thereafter, which is concomitant with the decreased run-
ning activity seen in Figure 2B.
The high-fat diet had an effect on total cholesterol and

on free fatty acids (FFA), the cholesterol levels being
higher and, somewhat unexpectedly, the FFA levels
lower in the HF groups (Table 2). The HFexe and LFexe
groups also differed in total cholesterol, FFA and trigly-
ceride levels.
mRNA expression
The expression level of PDK4 (Figure 4A) in the HF-fed
animals, especially when combined with running, was
significantly higher than in the LFsed animals. No
ent

High-fat diet ANOVA P-value

tary (n=14) Running (n=15) Diet Running Diet*Running

± 0.54*** 4.52 ± 0.49***,¤¤¤ <0.001 0.033 0.795

± 0.24 0.90 ± 0.13¤ 0.274 0.807 0.089

± 0.13*** 0.44 ± 0.12***,¤¤¤ <0.001 0.572 0.108

± 1.12 10.53 ± 0.72***,}},¤¤¤ <0.001 0.201 0.003

± 1.11*** 2.14 ± 0.82***,¤¤¤ <0.001 0.125 0.112

0.05), *** = vs. LFsed (P < 0.001), }} = vs. HFsed (P < 0.01), ¤ = vs. LFexe



0

5

10

15

20

25

30

35

Low Fat Diet High Fat Diet Low Fat Diet High Fat Diet

9 weeks 18 weeks

Fa
st

in
g

 g
lu

co
se

 x
 f

as
ti

n
g

 in
su

lin

ANOVA
Diet P<0.001 
Running P<0.01 
Diet x Running NS

ANOVA
Diet P<0.001 
Running NS
Diet x Running P=0.063 

Figure 3 Estimated insulin resistance after 9 and 18 weeks of intervention. The insulin resistance of high fat diet groups differed
significantly from the low fat diet groups. Additionally, after 18 weeks on HF diet, running no longer had an ameliorating effect. n = 14–15
animals/group. ** = vs. LFsed (P< 0.01), *** = vs. LFsed (P< 0.001), ¤¤¤ = vs. LFexe (P< 0.001), }}= vs. HFsed (P< 0.01), NS =non-significant
(P> 0.1). Black bars= sedentary, grey bars= running.

Rinnankoski-Tuikka et al. Nutrition & Metabolism 2012, 9:53 Page 7 of 13
http://www.nutritionandmetabolism.com/content/9/1/53
change in the expression of PGC-1α mRNA levels after
HF diet or chronic exercise was observed (Figure 4B).
The expression of ERRα (Figure 4C) was significantly
up-regulated after HF feeding combined with running
than it was in the three other groups (P <0.05-0.01).

Protein expression
Exercise and diet both significantly increased the expres-
sion of PDK4 (P< 0.05) compared to LFsed mice, but
exercise had no additional effect on the HF mice
(Figure 5A).
Although the change was most pronounced in PDK4,

also PGC-1α (Figure 5B) and ERRα (Figure 5C) proteins
showed a similar trend: both running and high-fat feed-
ing increased the expression of each protein, but high-
fat feeding combined with running had no additive effect
on the protein expressions (no difference between the
HF groups). PGC-1α expression showed a slight, al-
though not statistically significant, effect for diet and for
running. Exercise increased the expression of ERRα in
the LF mice (P< 0.05).

Skeletal muscle oxidative capacity
Cytochrome c content measured by Western blotting
showed no statistically significant differences between
the groups (Figure 6A and 6B), although high-fat diet
had nearly significant (P = 0.072) main effect and com-
bination of HF and exercise showed significance com-
pared to LF sedentary group. Oxygen consumption of
the isolated mitochondria (Figure 6C) did not differ be-
tween the study groups. However, mitochondrial oxygen
consumption in muscle homogenate (Figure 6D) was
significantly increased in running groups (P< 0.02).
The soleus muscle was analyzed by electron micros-
copy, which showed clusters of mitochondria beneath
the sarcolemma, often located near the capillaries and
lipid droplets (Figure 7A and B). The area occupied by
mitochondria was ~20% larger in the HFexe mice than
HFsed mice and ~25% larger than in the LF mice
(Figure 7A), although the differences were not statisti-
cally significant. The ultrastructure of mitochondria was
normal in all groups.
Results from the SDH-staining of QF muscles (Table 3)

showed that the HFexe mice had a larger proportion of
the most oxidative fiber type area than the HFsed mice
(P <0.05).
Discussion
In the present study we observed concomitantly with ex-
plicit insulin resistance an up- regulated PDK4 expres-
sion along with less prominent ERRα expression in
response to the high-fat diet and/or to voluntary exer-
cise. We also found that high-fat diet did not alter the
oxidative capacity of isolated mitochondria or oxygen
consumption in the muscle homogenate. Voluntary run-
ning exercise improved insulin sensitivity during the first
9 weeks of the high-fat diet, but no longer after 18 weeks,
concomitantly with decreased running activity. The
effects of exercise on the mitochondrial parameters were
comparable or greater to those of the high-fat diet, but
in most cases exercise and high-fat diet did not have
additional/synergistic effects.
In addition to its ability to exert effects on oxidative

metabolism in muscle [45], it has been suggested that
PGC-1α controls skeletal muscle glucose metabolism
by increasing the amount of PDK4 via a PGC-1α/



Figure 4 The mRNA expression levels measured with
quantitative RT-PCR in gastrocnemius muscle. (A) In the mRNA
expression levels of PDK4 there was a statistical effect of diet. The
expression levels were significantly higher in HF mice groups
compared to LFsed animals and additionally in HFexe group
compared to LFexe. PGC-1α (B) expression level differences did not
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ERRα-dependent mechanism [31]. This is further sup-
ported by the finding that ERRα recruits PGC-1α to
the PDK4 promoter [37,38]. Our results show distinct
effects of high-fat diet and voluntary running on
PDK4 protein expression and, more elaborately, an
additive effect of both HF diet and voluntary running
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Figure 4

reach statistical significance between any of the groups. Also the
mRNA expression levels of ERRα (C) showed a statistical effect of
diet. HFexe mice had significantly higher expression in ERRα
compared to other groups. The results are expressed in relation to
the LFsed mean value. n = 14–15 animals/group. ** = vs. LFsed
(P< 0.01), *** = vs. LFsed (P< 0.001), }= vs. HFsed (P< 0.05), ¤¤ = vs.
LFexe (P< 0.01), NS = non-significant (P> 0.1). Black bars= sedentary,
grey bars= running.
on mRNA expression but not on protein expression.
Although we did not measure the activity of PDC in
our experiment, it is known that PDK4 negatively
regulates the PDC, thus inhibiting the entry of pyru-
vate to the Krebs cycle [46]. In addition, PDK4 has
been found to be a contributor to lipid-induced changes
of glucose metabolism in rodent and human studies
[47-49]. We speculate that increased PDK4 expression
after high-fat feeding and exercise is due to previous in-
crease in PGC-1α and ERRα expression, which subse-
quently blunts cellular glucose oxidation. Our results
suggest that in addition to molecular and cellular level
in vitro [31], PGC- 1α/ERRα-dependent regulation of
PDK4 expression also may operate in vivo in skeletal
muscle.
Previous studies have demonstrated that a high-fat

diet can increase the biogenesis of mitochondria and
fatty acid oxidative capacity in skeletal muscle [12,13]. It
can be suggested that not only in the state of increased
energy demand, such as exercise, but also in the case of
constantly increased energy supply with high fatty acid
availability, the oxidation of fatty acids can be intensi-
fied. This paradigm is supported by the present data,
which shows improved total mitochondrial capacity in
response to a high-fat diet for 19 weeks. These results
contradict previous findings according to which a high-
fat diet decreases the capacity of muscles to oxidize the
accumulated lipids [1,2], which would occur owing to
the decreased number of mitochondria, as reported in
the offspring of type 2 diabetic parents [6].
PGC-1α is considered the master regulator that coordi-

nates the gene expression of oxidative metabolism as well
as mitochondrial biogenesis in skeletal muscle [50,51]. In
our study the effect of chronic high-fat feeding for
19 weeks had no effect on the expression of PGC-1α. This
is in contrast to a previous study that showed decreased
PGC-1α expression in muscle after 1 week on a HF diet
that persisted down-regulated over 11 weeks [52]. In other
studies a high-fat diet for 4–5 weeks has even increased
muscle PGC-1α protein expression and the number of



ANOVA
Diet NS
Running P<0.001
Diet x Running NS

0

0,1

0,2

0,3

0,4

0,5

Low Fat Diet High Fat Diet
0

5

10

15

20

25

30

Low Fat Diet High Fat Diet

n
m

o
l/m

in
/m

g

C

A
Sedentary Running
LF   HF       LF     

D

§

n
m

o
l/m

in
/m

g

0

5

10

15

20

25

30

Low Fat Diet High Fat Diet

B

C
yt

C
 p

ro
te

in

ANOVA
Diet P=0.072
Running NS
Diet x Running NS

*

* *

HF

Figure 6 Measures of estimated oxidative capacity in skeletal muscle. Cytochrome c (CytC) content in Western blotting (A) when
normalized to Ponceau S (B) showed a trend of HF diet main effect (P= 0.072). n = 14–15 animals/group. The oxygen consumption of
mitochondria (C) in QF muscle did not show any statistical difference between the groups. n = 10–12 animals/group. (D) Oxygen consumption in
muscle homogenates was higher in the running groups than in the respective sedentary groups. n = 10–12 animals/group. * = vs. LFsed (P< 0.05),
}= vs. HFsed (P< 0.05), NS = non-significant (P> 0.1). Black bars= sedentary, grey bars = running.

Sedentary Running
LF HF LF HF

DANOVA
Diet NS
Running P<0.05 
Diet x Running NS

0

5

10

15

20

25

30

35

Low Fat Diet High Fat Diet

C

E
R

R
   

p
ro

te
in

 

0

5

10

15

20

25

30

35

40

Low Fat Diet High Fat Diet

B

P
G

C
-1

  p
ro

te
in

0

5

10

15

20

25

Low Fat Diet High Fat Diet

A

P
D

K
4 

p
ro

te
in

 

ANOVA
Diet P=0.061 
Running P=0.08 
Diet x Running NS

Figure 5 The protein expression levels in QF muscle. PDK4 (A) expression showed higher expression levels in all other groups, when
compared to LFsed mice. PGC-1α (B) showed no statistical differences between the groups. ERRα (C) expression was considered to show a
statistical effect of running. The protein expression results are normalized to the mean value of LFsed. (D) Representative Western blot images.
n = 14-15 animals/group. * = vs. LFsed (P <0.05), NS = non-significant (P> 0.1). Black bars= sedentary, grey bars= running.

Rinnankoski-Tuikka et al. Nutrition & Metabolism 2012, 9:53 Page 9 of 13
http://www.nutritionandmetabolism.com/content/9/1/53



0

0,2

0,4

0,6

0,8

1

1,2

Low Fat Diet High Fat Diet

µ
m

2 /
µ

m

A B

Figure 7 Oxidative capacity estimated by electron microscopy. (A) There were no statistical differences between any of the groups in the area
of subsarcolemmal mitochondria relative to the length of the sarcolemma when electron microscopic micrographs were analysed. n=5 animals/group.
Black bars = sedentary, grey bars= running. (B) Electron microscopic image from the subsarcolemmal mitochondria. Scale bar 2 μm.

Rinnankoski-Tuikka et al. Nutrition & Metabolism 2012, 9:53 Page 10 of 13
http://www.nutritionandmetabolism.com/content/9/1/53
mitochondria [11,12]. These discrepancies may be partly
due to differences in the fatty acid compositions of the
diets, since it has been shown that, depending on
their chain length and saturation level, fatty acids
have greatly varying effects on PGC-1α expression
[52]. PGC-1α mRNA and protein expression peak
rapidly after a stimulus, such as an exercise bout
[14,26,29] or an increase in the concentration of
serum fatty acids [53]. After a period of adaptation,
no change or only slight changes in PGC-1α mRNA
and protein levels have been observed, after 4 weeks
of high-fat diet [11] or, as in the present study,
after a high-fat diet and/or exercise for 19 weeks.
In addition to PGC-1α, ERRα, acting downstream of
PGC-1α, is also a critical transcriptional regulator of mito-
chondrial biogenesis and cellular energy metabolism
[24,28,31]. Moreover, ERRα is expressed in tissues dem-
onstrating a high capacity for fatty acid β-oxidation
[54,55]. In this study, we found a significant increase
in ERRα mRNA expression after a high-fat diet com-
bined with voluntary running, and in protein expres-
sion after a low-fat diet combined with running. We
believe that the modest changes observed in PGC-1α
and ERRα expression are remnants of previous high
increases caused by every single exercise bout and/or
dietary fatty acids. A limitation to our study is that we
measured only the transcript levels of PGC-1α, but not
alternative regulatory mechanisms. PGC-1α activity is
Table 3 Oxidative capacity estimated by SDH staining

SDH stain intensity Low-fat diet

Sedentary (n=4) Runnin

Least oxidative (%) 32.5 ± 18.0 39.4

Intermediate (%) 42.8 ± 12.3 35.8

Most oxidative (%) 24.7 ± 8.7 24.8

According to the SDH staining of the QF muscle, HFexe mice yielded the highest m
HFsed P < 0.05). } = vs. HFsed (P < 0.05).
also regulated by protein modifications, including phos-
phorylation, acetylation and ubiqitination [56].
High-fat feeding declines general physical activity in

rodents [57,58]. Similarly, in this study high-fat feeding
induced consistent reduction of wheel-running after 12
weeks of diet, although at the end of the experiment cu-
mulative running distances did not statistically differ
between LF and HF mice. Access to running wheels
increases general cage activity and affect several compo-
nents of energy balance (reviewed in Novak et al. [59])
that may have effects to the regulation of muscle metab-
olism. However, it is not possible to dissect the effects
of these factors in this study. In this study the HF mice
with or without exercise were severely insulin resistant,
as indicated by their increased levels of fasting insulin
and glucose, suggesting that they had developed a meta-
bolic condition resembling metabolic syndrome or type
2 diabetes [60]. In our experiment, we found the plasma
free fatty acid concentration to be significantly lower in
the HF animals compared to LF animals. Conceivably,
skeletal muscle had adapted to the chronic high-fat diet
to be able to better extract and oxidize circulating lipids.
The preference for fatty acids as an energy source is
reflected in elevated blood glucose. Our data may sug-
gest that both in chronic high-fat diet and in long-term
exercise training, the switch of fuel usage from glucose
to fatty acids is mediated by the elevated expression of
PDK4. It is known that during long-term exercise or
High-fat diet

g (n=12) Sedentary (n=8) Running (n=7)

± 15.2 49.8 ± 18.4 30.3 ± 26.2

± 7.3 33.4 ± 11.8 39.0 ± 15.6

± 11.1 16.8 ± 7.8 30.7 ± 16.8}

easure of SDH activity,i.e. the largest area of the most oxidative fiber types (vs.
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short-term fasting, the activity of PDC is attenuated in
conjunction with increased fatty acid usage [61]. Accord-
ingly, the expression of PDK4 is increased in fasting, dia-
betes and other conditions associated with switching from
glucose oxidation to fatty acid oxidation [62].
What is the mechanism behind high-fat diet-induced

insulin resistance? It has been shown that chronic high-
fat diet-induced insulin resistance, unlike insulin resist-
ance induced by acute increase in plasma free fatty acids
(i.e. Randle glucose fatty acid cycle), is not rapidly re-
versible [63]. On the basis of our studies, we agree that
most probably it is not the decrease in the amount or in-
trinsic function of mitochondria that leads to increased
intramyocellular lipids [12,13]. Our data on insulin re-
sistance and normal mitochondrial function support the
idea that lipids themselves or metabolites of lipid metab-
olism attribute to impaired response to insulin, e.g. via
altered cell membrane properties [64] or by affecting
IRS phosphorylation and GLUT4 translocation [65]. Our
data further suggest that the inhibition of pyruvate de-
hydrogenase by PDK4 is a possible contributor to insulin
resistance. In this scenario high-fat diet-induced insulin
resistance may be a consequence of the continuing regu-
latory process of PGC-1α/ERRα activated by chronic
high fatty acid availability. Our data also show that vol-
untary running exercise improved insulin resistance only
transiently during the 19-week high-fat diet, implying
that the regulatory power of fatty acids is superior to ex-
ercise. On the other hand, the inability of exercise to im-
prove insulin sensitivity after the 19 weeks of wheel
running in the experiment might be due to the reduced
amount of running during the latter half of the experi-
ment. The role of fatty acids in insulin resistance is a
complex process, with some fatty acids inducing and
others reversing skeletal muscle insulin resistance [66],
suggesting that a balanced fatty acid composition in the
diet would be beneficial for optimal muscle cell metabol-
ism and function.

Conclusions
We conclude that a chronic high-fat diet does not have a
negative effect on muscle mitochondrial function in spite
of severe insulin resistance. This finding suggests that,
contrary to frequent allegation, insulin resistance is not
mediated by the decreased qualitative or quantitative
properties of mitochondria. Instead, our data suggest that
the role of PDK4 should be contemplated as a possible
contributor to high-fat diet- induced insulin resistance.
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