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Abstract: Choline is an officially established essential nutrient and precursor of the neurotransmitter
acetylcholine. It is employed as a cholinergic activity marker in the early diagnosis of brain disorders
such as Alzheimer’s and Parkinson’s disease. Low levels of choline in diets and biological fluids,
such as blood plasma, urine, cerebrospinal and amniotic fluid, could be an indication of neurological
disorder, fatty liver disease, neural tube defects and hemorrhagic kidney necrosis. Meanwhile, it is
known that choline metabolism involves oxidation, which frees its methyl groups for entrance into
single-C metabolism occurring in three phases: choline oxidase, betaine synthesis and transfer of
methyl groups to homocysteine. Electrocatalytic detection of choline is of physiological and patholog-
ical significance because choline is involved in the physiological processes in the mammalian central
and peripheral nervous systems and thus requires a more reliable assay for its determination in
biological, food and pharmaceutical samples. Despite the use of several methods for choline determi-
nation, the superior sensitivity, high selectivity and fast analysis response time of bioanalytical-based
sensors invariably have a comparative advantage over conventional analytical techniques. This
review focuses on the electrocatalytic activity of nanomaterials, specifically carbon nanotubes (CNTs),
CNT nanocomposites and metal/metal oxide-modified electrodes, towards choline detection using
electrochemical sensors (enzyme and non-enzyme based), and various electrochemical techniques.
From the survey, the electrochemical performance of the choline sensors investigated, in terms of
sensitivity, selectivity and stability, is ascribed to the presence of these nanomaterials.

Keywords: electrocatalytic activity; choline; electrochemical sensor; carbon nanotubes; metal ox-
ide; nanomaterials

1. Introduction

Choline is a trimethyl-β-hydroxyethyl-ammonium (quaternary) compound found in
plant and animal cells as phospholipids, phosphatidylcholine, phosphocholine, lysophos-
phatidylcholine, choline plasmalogens and sphingomyelin [1–3], with the structural for-
mula presented in Figure 1.

Choline can be oxidized to betaine through an enzymatic process involving choline
dehydrogenase and betaine dehydrogenase; hydrolyzed to trimethylamine by the bacte-
rial deaminase enzyme; acetylated to acetylcholine by a cytosolic enzyme called choline
acetyltransferase; and phosphorylated to phosphocholine by choline kinase [4,5]. Choline
metabolism is closely related to that of different B vitamins and methionine. The pathways
of choline and one-carbon metabolism intersect at the formation of methionine from homo-
cysteine [6,7]. Methionine is regenerated (re-methylated) from homocysteine in a reaction
catalyzed by betaine homocysteine methyl transferase, in which betaine, a metabolite of
choline, serves as the methyl donor [5,8–10]. Choline is an essential nutrient officially estab-
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lished by the Institute of Medicine and is required for several physiological functions [6,11].
Figure 2 presents choline and folate metabolism.
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Figure 2. Choline metabolism. Betaine donates a methyl group to Hcy, for the formation of methio-
nine which is converted to SAM, an important methyl donor. PtdCho is produced by SAM and
PtEtn. PtdCho, PCho, SM and GPCho are components of the cell membrane produced from choline
and can be hydrolyzed to form choline. PCho is also formed by PtdChO. Choline is synthesized
through the action of phosphatidylethanolamine (PEMT) in the liver. Betaine and acetylcholine are
synthesized from choline. Methyl-THF is a product of folate metabolism which can also be formed
from the methyl group donated by betaine. Metabolism of folate and choline intersects because
methyl tetrahydrofolate produced from folate metabolism can also donate a methyl group for the
formation of methionine from Hcy [12].

1.1. Importance of Choline in the Body

Choline produces lecithin, sphingomyelin and all essential components of the cell
membrane. Lecithin is a phosphatidylcholine-rich fraction synthesized during com-
mercial purification of phospholipids and sometimes added to foods as an emulsifying
agent [10]. Choline is involved in several physiological functions at different stages of
the life cycle [6,13]. Choline modulates the integrity of deoxyribonucleic acid (DNA) and
is required for neural coordination in the central nervous system (CNS), being a precur-
sor to acetylcholine (ACh). ACh aids the signaling of the cell membrane, transport of
lipoproteins, spinal cord structure, cognitive functioning, muscle control and metabolism
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of methyl groups, particularly homocysteine [1,7,8,10,11,14–24]. At a periconceptional
stage, choline prevents neural tube defects (congenital disabilities of the brain, spinal cord
or spine). At the pregnancy/prenatal period, choline aids proper brain and memory forma-
tion and maternal placental and liver function and protects the fetus from environmental
abuse such as alcohol that could lead to abnormalities in behavior, organ structures, fetal
loss and congenital disability [6,7,13]. Additionally, in premenopausal women and men,
choline prevents subclinical organ dysfunction such as fatty liver, and liver and muscle
damage [6,7]. Choline regulates the gall bladder and cholesterol metabolism and prevents
excessive fat build-up in the liver [6–8]. Choline has been used to mitigate the effects of
Parkinsonism and tardive dyskinesia [7,8,20–23]. Figure 3 presents the devastating impact
of choline deficiency.
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Figure 3. Health effects of choline deficiency.

1.2. Sources of Choline

Choline can be obtained through de novo biosynthesis, diets and supplements which
involve methylation of phosphatidylethanolamine to phosphatidylcholine [1,10,20].

1.2.1. De Novo Biosynthesis of Choline

Choline can be acquired through endogenous biosynthesis in the liver by means of the
phosphatidylethanolamine N-methyl transferase (PEMT) pathway [13,25]. Choline enters
the mitochondrion via a specific carrier-mediated transport mechanism but is metabolized
into betaine through a series of reactions, catalyzed by enzymes choline dehydrogenase
and betaine aldehyde dehydrogenase [26]. Its precursors, which are exogenous agents
consisting of lecithin, choline alphoscerate and citicholine, are converted to choline in vivo
for de novo synthesis and maintenance of cell membrane phospholipids and neurotransmit-
ters such as acetylcholine and dopamine [27]. Although the PEMT pathway represents an
important source of choline, dietary intake of choline is necessary to maintain the normal
function of cells, tissues and organs [10,13,22].

1.2.2. Dietary Sources of Choline

Since de novo synthesis alone cannot adequately meet choline requirements in the
human diet [8,10,13,22], there is a need for sourcing through sufficient intake from a variety
of choline-rich foods (liver, fish, dairy products, whole grain, vegetables and egg, especially
egg yolk), and dietary choline supplements which can be absorbed into the system by
choline transporters (lipoprotein) [1,10,20,24,28,29]. A detailed list of choline-containing
food is available in the United States Department of Agriculture database [29]. Adequate
intake (AI) for choline can be estimated through the prevention of liver damage as assessed
by measuring serum alanine [28]. Adequate choline intakes required in men, women,



Molecules 2021, 26, 6512 4 of 17

pregnant women, lactating women, infants and children as set by the Institute of Medicine
are 425, 550, 450, 550, 125–150 and 200–325 mg/day, respectively [10,15,22,24]. However,
high intake of choline results in hypotension with corroborative evidence of cholinergic
side effects (sweating and diarrhea) and fishy body odor [7,9]. To prevent hypotension, the
tolerable upper intake level (UL) of choline for adults and pregnant and lactating mothers
is 3.5 g/day [7,9]. Choline’s health significance and effects when deficient in humans
have necessitated the use of different analytical assays for its determination. However, the
detection of choline is quite challenging since it lacks chromophores, fluorophores and
electroactive groups [30].

1.3. Justification for the Review on Choline

Several analytical assays are used for the determination of choline. These include
GC-MS [31–33], thin-layer chromatography (TLC) [28], ion chromatography [34], liquid
chromatography with electrospray ionization-isotope dilution mass spectrometry (LC-
ESI-IDMS) [3], high-performance liquid chromatography-fluorescence detection (HPLC-
FLD) [24], high-throughput methods based on normal-phase chromatography-tandem
mass spectrometry (LC-MS/MS) [20], liquid chromatography with an electrochemical detec-
tor (LC-ED) [2], paired-ion HPLC [31], proton nuclear magnetic resonance (1H NMR) [18],
capillary zone electrophoresis with an indirect UV detector (CE-UV) [35], enzyme-based
chemiluminescence [36,37] and flow injection analysis [1,17]. These methods have been
found to be reliable and applicable for choline sensing in real samples. However, they are
time demanding, costly and cumbersome with complex instrumentation which makes them
not readily accessible for routine laboratory practices. These, or part of these drawbacks,
have been overcome by introducing electrochemical sensors.

Electrochemical choline sensors, which could be non-enzyme or enzyme based, also
known as the biosensors, employ some electrochemical methods such as cyclic voltam-
metry (CV), square-wave voltammetry (SWV), electrochemical impedance spectroscopy
(EIS) and amperometry. The analysis response times of these sensors are relatively fast
with superior sensitivity and selectivity, and at low cost in contrast to conventional meth-
ods. However, in order to enhance the performance of these sensors, nanomaterials such
as carbon nanotubes (CNTs), which could be single walled (SWCNT) or multi-walled
(MWCNT), and metal oxide nanomaterials are coupled with the sensors to improve their
performance [38]. Examples of applied metal oxide nanomaterials in choline sensors
include oxides of manganese, zirconium, zinc, iron (III) and nickel (MnO2, ZrO2, ZnO,
Fe3O4 and NiO, respectively) [39–44]. There are very good reviews on choline determina-
tion [10,45]; however, electrocatalytic oxidation of choline specifically on carbon nanotubes
and nanomaterials has not previously been explored.

This review is aimed at summarizing and highlighting the types of nanomaterials
such as carbon nanotubes and metals/metal oxides employed as electrode modifiers in
electrochemical sensors for the electrocatalytic detection of choline. The selectivity of
the electrodes and their practical applicability for choline detection in real samples are
also investigated.

2. Electrochemical Sensors for Choline Detection
2.1. Choline Biosensor (Enzymatic Electrochemical Sensors)

A biosensor is a self-contained integrated device that provides information of an
analyte in the form of an electrical signal, with the aid of biological sensing elements
(biomolecules) such as enzymes, antibodies, proteins, microbes and deoxyribonucleic acid
(DNA) immobilized on the transducer (electrode or set of electrodes), which is an electro-
chemical method [38,46]. These biological sensing elements enhance the specificity and
sensitivity of biosensors [38]. The electrical signal is proportional to the concentration of
the detected analytes resulting from the interaction of the analytes with the immobilized
biomolecules on the electrode [38,46]. Great attention is drawn to electrochemical biosen-
sors, particularly the amperometric choline oxidase (ChOx) base, in which the choline
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concentration is determined indirectly depending on the determination of hydrogen perox-
ide (H2O2) from the catalytic oxidation of choline in the presence of oxygen [11,47,48], as
represented in Equation (1).

Choline + O2 + H2O ChOx→ Betaine + 2H2O2 (1)

However, this approach demands a high over-potential for H2O2 oxidation, leading to
interference since most electroactive species in real samples are electrochemically oxidized
at this potential [39,47]. To reduce the over-potential and increase the signal, the use of
horseradish peroxidase (HRP) [49,50] and, to a greater extent, nanomaterials has been
introduced in biosensors [11].

Recently, nanomaterials such as carbon nanotubes (single-walled carbon nanotubes
(SWCNTs) and multi-walled carbon nanotubes (MWCNTs)), polymer (polyaniline, chitosan,
polyallylamine, polyvinyl sulphate) nanowires, graphene oxide and Prussian blue, together
with metal and metal oxide nanoparticles such as gold (Au), platinum (Pt), zinc oxide
(ZnO), zirconium (IV) oxide (ZrO2), manganese (IV) oxide (MnO2) and nickel oxide (NiO),
have been incorporated in biosensors due to their possession of a high electrocatalytic
effect, biocompatibility, fascinating electronic and optical properties, chemical/physical
stability and high degree of electron transfer between biomolecules and the electrode
surface [11,38–41,43,51]. These nanomaterials significantly impact the catalytic activities
of the enzymes and increase the stability of the enzymes, which, in turn, results in an
improved sensitivity and specificity of biosensors [11].

2.2. Non-Enzymatic Choline Electrochemical Sensors

Considerable attention has been drawn to electrochemical sensors in the detection
of biological, environmental and pharmaceutical analytes due to their simplicity, stability,
high sensitivity and selectivity with rapid responses and low costs. Electrochemical sensors
consist of electrodes such as working, auxiliary and reference electrodes. The sensing or
working electrode could be a glassy carbon, gold, carbon paste or platinum electrode and is
the reaction point [46,52,53]. The counter or auxiliary electrode maintains the potential ap-
plied at the sensing electrode, and the reference electrode prevents drifting of the potential,
thus providing a stable and precise voltage value [44,46,54]. The principle of electrochem-
ical sensors is based on the reaction of the analytes of interest at the sensing electrode
with a resulting electrical signal which corresponds to the concentration of analytes [54].
Signals of electrochemical sensors are amplified by modifying the sensing electrode surface
with nanocatalysts, also known as nanomaterials (CNTs, metals, metal oxide nanoparticles,
conducting polymers) [38]. This is due to their high electrocatalytic effect, tensile strength,
chemical stability and high electron transfer rate between biomolecules and the electrode
surface ascribed to the large surface area [38]. There has been little research conducted
on choline oxidation using non-enzyme-based electrochemical sensors [42,44,55] which is
probably due to the non-electroactive nature of choline. However, electrochemical sensors
hold the possibility of detecting choline in real samples if integrated with ferromagnetic
nanoparticles, which have been reported to possess an inherent enzymatic activity similar
to that seen in natural peroxidase [30].

3. Nanomaterials and Their Electrocatalytic Activity towards Choline Detection
3.1. Application of CNTs (MWCNTs) and Their Composites for Choline Sensing

CNTs are a class of nanomaterial with wide application in the design of electro-
chemical sensors due to their fascinating structure, chemical stability, high surface area,
excellent electrical conductivity, strong absorptivity, good biocompatibility and acceleration
of the electron transport rate between biomolecules and the electrode [41,56–61]. Up to
present, modified electrodes supported by CNTs, specifically MWCNTs and their com-
posites (MWCNT-metal, MWCNT-metal oxide and MWCNT-polymer composites), have
been applied for the electrocatalysis of choline. These nanocomposites have demonstrated
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improved electrocatalytic activity towards choline, which is ascribed to the stabilization of
the nanoparticles (metal and metal oxide) and their sustained integrity, aided by MWCNTs,
a carrier [58,62]. In addition, the synergistic catalytic effect of the nanocomposites improves
the performance of choline sensors.

Qu et al. developed a biosensor using a layer-by-layer method where MWCNT and
polyaniline (PANI) multilayer films were alternately assembled on a glassy carbon electrode
(GCE) (MWCNT/PANI)3/PANI)3) [63]. The biosensor was thereafter amplified by immobi-
lizing choline oxidase on the modified electrode, resulting in a ChOx/(MWCNT/PANI)3/
PANI)3/GC electrode. The electrochemical performance of the biosensor to choline under
the established experimental conditions (ChOx concentration, multilayer film and pH)
was examined by subsequent addition of 0.05 mM choline into phosphate buffer solution
(PBS), at a fixed +0.4 V potential, with a resultant 1 × 10−6 –2 × 10−3 M linear response
and 0.997 correlation coefficients [63]. The limit of detection (LoD) was calculated to be
0.3 µM. The interference study of the biosensor response to choline in the midst of different
species such as ascorbic acid (AA) and uric acid (UA) added successively in PBS showed
non-interference in the choline signal by the various species [63]. The stability of the elec-
trode was investigated by probing its response to 0.5 mM choline oxidation. After 15 days,
the sensitivity of the electrode was the same as the initial electrode response but decreased
to 80% of the original values after one month [63]. The improved catalytic activity of the
electrode was linked to the protective effect of the PANI film in favor of increasing the
amount of MWCNTs immobilized on the GCE and the electrostatic interaction between the
negatively charged MWCNTs and positively charged PANI [63].

In another study, Purdir et al. fabricated a biosensor by co-immobilizing enzymes
(acetylcholinesterase and choline oxidase) onto a nanocomposite of carboxylated MWCNT/
zirconium oxide (ZrO2NPs) electrodeposited on the GCE surface (AChE/ChO/c-MWCNT/
ZrO2NPs/GCE) as a working electrode for choline detection, as illustrated in Scheme 1 [41].
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Scheme 1. Electrode modification process of AChE/ChO/c-MWCNT/ZrO2NPs/GCE. Scheme 1. Electrode modification process of AChE/ChO/c-MWCNT/ZrO2NPs/GCE.

The electrochemical behavior of choline on the proposed biosensor was examined
using cyclic voltammetry in 0.1 mM choline, prepared in PBS (pH 7.4) at a 50 mV s−1

scan rate. The maximum current response for choline was observed at a +0.2 V potential.
The sensitivity and LoD of the electrode were evaluated using amperometry at a +0.2 V
potential [41]. The current response of the electrode increased in the choline chloride con-
centration range from 0.05 to 200 µM, with a resultant 0.01 µM LoD. The sensor was void
of interference during choline measurement in the presence of AA, UA, dopamine (DA),
lactic acid (LA), heparin, sodium, copper (III) sulphate (CuSO4), potassium chloride (KCl),
sodium chloride (NaCl) and magnesium (II) chloride (MgCl2) of the same concentration
(1.0 mM) [41]. Purdir et al. also investigated the storage stability of the biosensor at 4 ◦C
over a period of 60 days and discovered 50% loss of the electrode initial activity towards
choline, which was claimed to be superior to some choline biosensors reported in the litera-
ture [41]. The reproducibility of the electrode for five consecutive measurements within a
day and after 1 week yielded a 1.35% and 2.5% coefficient of variation, indicating a good
reproducibility. The designed biosensor displayed good practical application for choline
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detection in sera of Alzheimer’s patients and healthy persons with 98 ± 0.2 and 90 ± 0.3
mean recoveries, respectively [41]. The analytical performance of the designed biosensor
was observed to be greatly enhanced with the incorporation of c-MWCNT/ZrO2NPs [41].

In another study, Zhang et al. reported the development of a stable choline biosensor
based on the synergic effect of MWCNT and zinc oxide (ZnO) nanocomposite on a pencil
graphite electrode, while ChOx was electrostatically immobilized on the modified electrode
(PDDA/ChOx/ZnO/MWCNT/PGE) at an applied potential (+0.6 V) [40]. PDDA was
employed as a binder. The choline dynamic concentration range was from 1 to 0.8 mM, with
a sensitivity of 178 µA mM−1 cm−2 using the amperometric technique. The detection limit
was found to be 0.3 µM [40]. The biosensor displayed good selectivity for choline in the
presence of 0.1 mM UA, acetaminophen, AA, 0.2 mM cysteine, 7 mM glucose and 10 mM
serine. Choline recovery in blood plasma samples exceeded 95%. The reproducibility of the
electrode towards 0.5 mM choline from six experiments returned a 2.36% relative standard
deviation (RSD) [40]. Long-term stability was established by the biosensor over 90 days,
with a 5.4% decrease in the original response, which was attributed to the synergetic effects
of the MWCNTs/ZnONPs [40].

Qin et al. modified a platinum (Pt) electrode with positively charged polyallylamine,
negatively charged MWCNTs and polyvinyl sulphate (PVS), while poly film (PVS/PAA)3,
serving as a perm selective layer, was alternately adsorbed continuously on the modified
electrode with a multilayer film of choline oxidase/polydiallyldimethylammonium chloride
(ChOx/PDDA). This resulted in a ChOx/PDDA)n/(PVS/PAA)3/MWCNT/Pt electrode for
the determination of choline [59]. The output of the current response was optimized by
increasing the ChOx/PDDA layer on the electrode, step wisely, in 3.0 × 10−4 M choline
with ChOx/PDDA)n/(PVS/PAA)3/MWCNT/Pt and (ChOx/PDDA)n/(PVS/PAA)3/Pt elec-
trodes. An improved current response was reported with an increase in the number of layers
in the electrode with MWCNTs, owing to the excellent electron transfer ability of MWC-
NTs [59]. With the optimal conditions selected, a calibration curve over a linear response
choline concentration range from 5× 10−6–1× 10−4 to 5× 10−7–1× 10−4 M (S/N = 3) was
constructed for (ChOx/PDDA)n/(PVS/PAA)3/Pt) and (ChOx/PDDA)n/(PVS/PAA)3/
MWCNTs/Pt accordingly from the amperometric measurement. LoDs of 7 × 10−7 and
2 × 10−7 M were calculated for the respective electrodes [59].

From the interference study, the designed sensors were found to be selective for choline
in the presence of interfering species such as AA, UA and acetaminophen (AP) of equal con-
centration (0.1 mM) [59]. The selectivity of the electrode was linked to polymer-(PVS/PAA)3
which acted as an excellent selective film. A reproducibility study was conducted on
the ChOx/PDDA)n/(PVS/PAA)3/Pt and ChOx/PDDA)n/(PVS/PAA)3/MWCNTs/Pt elec-
trodes by six successive amperometric measurements for 0.1 mM choline, which yielded a
5.4 and 3.6% RSD, suggesting less reproducibility in the former [59]. The storage stability
of the electrodes was investigated at the interval of 4 days for a month. The study revealed
that the ChOx/PDDA)n/(PVS/PAA)3/MWCNTs/Pt electrode retained 89.5% of its initial
sensitivity, which was superior to ChOx/PDDA)n/(PVS/PAA)3/Pt, with 78.5% sensitivity
after a month [59].

In a different study, Qin et al. investigated the electrochemical behavior of choline
on a Pt electrode modified with a nanocomposite film of choline oxidase, MWCNTs,
AuNPs (GNPs) and PDDA (MWCNT/GNP/ChOx/PDDA/Pt) using amperometry. PDDA
was employed as a dispersant and binding material. The electrode displayed a higher
amperometric response to choline than the electrode of sole MWCNTs and GNPs which was
attributed to the synergic effect of GNPs and MWCNTs leading to an enhanced interaction
between the electrode and analytes (Figure 4). Thus, the MWCNT/GNP/ChOx/PDDA/Pt
electrode was used for further studies [60].
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Figure 4. Current–time response of (a) GNP–ChOx/PDDA/Pt, (b) MWCNT/ChOx/PDDA/Pt and
(c) MWCNTs/GNP/ChOx/PDDA/Pt electrodes upon successive addition of choline in 0.1 M PBS,
pH 7.6, at +0.6 V vs. Ag/AgCl. Reprinted with permission from [60]. Copyright (2010) Elsevier.

Linearity of the electrode was obtained from 0.001 to 0.5 mM with 12.97 µA/mM
sensitivity for MWCNTs-GNP-ChOx-PDDA/Pt [58]. From the interference study, the
electrode exhibited good selectivity and sensitivity towards choline determination in the
presence of possibly interfering species (0.1 M AA, 0.1 mM AP and 0.5 mM UA) [60].
Qin et al. reported an acceptable RSD value (3.7%) for five successive measurements from
a reproducibility study, while 82.5% of the electrode initial current response to choline was
found after one-month storage stability assessment [60].

Wu et al. employed a biosensor constructed by modification of a platinum electrode
with a MWCNT/AuNP film (MWCNT/AuNPs/Pt) for the detection of choline, taking into
account the merit of MWCNTs solubilized in chitosan and silica sol containing AuNPs and
choline oxidase [64]. The MWCNT/AuNPs/Pt electrode exhibited better electrocatalytic
activity for choline compared with AuNPs/Pt over a 0.05–1.6 mM choline concentration
range, as shown in Figure 5. This suggests an improved electron transport between
the analyte and electrode resulting from the presence of MWCNTs in the biosensing
interface [64]. A sensitivity of 3.56 µA/mM, a 15 µM LoD and a 0.983 regression value
were found for the electrode with optimal performance from the linear plot of current vs.
different choline concentrations (insert in Figure 4) [64].

The modified MWCNTs/AuNPs/Pt electrode was reproducible. The RSD value for
five successive 0.4 mM choline measurements was calculated to be 4.7%. The modified
electrode showed high stability after a month with a slight current drop, which was
attributed to the natural properties of the sol–gel, MWCNTs and AuNPs [64].

Magar et al. developed different amperometric choline biosensors. One of the biosen-
sors was based on immobilization of ChOx on a functionalized MWCNT-modified GCE
(ChOx/MWCNT/GCE); one was based on two drops of 1 µL gold nanoparticles/MWCNT/
GCE (ChOx/(GNP)2/MWCNT/GCE); and one was based on four drops of 1 µL of GNPs
(ChOx/(GNP)4/MWCNT/GCE). Immobilization of ChOx was conducted by glutaralde-
hyde cross-linking supported on the GCE surface with the aim of detecting choline quantita-
tively. By optimizing the operating potential, ChOx concentration and pH of the supporting
electrolyte, the sensors were able to detect choline over a certain concentration range using
amperometry [11]. ChOx/(GNP)4/MWCNT/GCE returned the best limit of detection
(0.6 µM) with 204 µA cm−2 mM−1 sensitivity over 3–120 µM choline concentrations. The
mechanism of the ion transport and the electrode surface characteristics was probed using
electrochemical impedance spectroscopy (EIS) [11]. A low charge transfer resistance (Rct)
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value was obtained with ChOx/(GNP)4/MWCNT/GCE compared with the other elec-
trodes studied. Information regarding the stability of the electrode was found to improve
with the presence of AuNPs and MWCNTs. The electrode demonstrated high selectivity
to choline in the midst of interference from AA, UA, DA and AC and was found to be
applicable in the sensing of choline in real samples (choline) [11]. The performance of the
sensor was attributed to the synergistic effect of the MWCNTs and gold nanoparticles.
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Choline detection was also carried out in another study by Sajjadi et al. on a func-
tionalized MWCNT- and ionic liquid (1-butyl-3-methylimidazolium tetrafluoroborated)-
modified electrode, immobilized with ChOx/RTIL/NH2-MWCNT/GCE using amperome-
try in PBS (0.2 M, pH 7) [56]. The amperometric response of the designed biosensor towards
choline was linear from 6.9 × 10−3–6.7 × 10−1 mM with a 0.998 regression value [56]. The
LoD and sensitivity value were found to be 2.7 µM and 2.59 µA/mM. The designed sensor
demonstrated reasonable reproducibility, high sensitivity and long-term stability [56].

It has been reported that ferromagnetic nanoparticles possess enzymatic proper-
ties which are close to what exist in natural peroxidase [30]; thus, they hold the po-
tential of being employed in the development of non-enzymatic electrochemical sen-
sors for choline sensing. Based on this, Uwaya et al. designed a choline sensor using
functionalized MWCNTs and biosynthesized Fe3O4 from Callistemon viminalis extracts
(leaf = Fe3O4L and flower = Fe3O4F) supported on a GCE (GCE/fMWCNT/Fe3O4) [42].
Electrocatalysis of 2mM choline on the designed sensors (GCE/fMWCNT/Fe3O4L and
GCE/fMWCNT/Fe3O4F) was conducted using CV at a 25 mV s−1 scan rate. The cur-
rent response was enhanced at the fMWCNT/Fe3O4-modified electrodes compared with
the other electrodes studied, indicating a faster rate of electron transfer. The interfacial
properties of the nanocomposite-modified electrodes were studied using EIS at a fixed
potential of +0.5 V within a frequency range of 100 kHz to 0.1 Hz. Smaller charge transfer
resistance (Rct) values of 0.587 and 0.795 KΩ were found at GCE/fMWCNT/Fe3O4L and
GCE/fMWCNT/Fe3O4F, respectively, compared with the bare electrode (349 KΩ), which
correlated with the CV experiments [42]. The small Rct values and the amplified current
at the nanocomposite electrodes were attributed to the Fe3O4 and fMWCNT interaction.



Molecules 2021, 26, 6512 10 of 17

Scheme 2 represents the proposed mechanisms of electrochemical reaction of choline on
the nanocomposite-modified electrode surfaces [42].
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Scheme 2. Reaction mechanism proposed for choline oxidation at nanocomposite-modified elec-
trode surfaces.

In order to ascertain the type of electrode reaction occurring and the kinetics of the
electrodes (GCE/fMWCNT/Fe3O4L and GCE/fMWCNT/Fe3O4F), scan rate studies rang-
ing from 25 to 400 mV s−1 were conducted in 2 mM choline prepared in LiCl of pH
7.3 using CV on the nanocomposite-modified electrode. The peak currents were found to
increase with the increase in the scan rate, the plot of the peak current vs. the square root
of the scan rate was linear and the charge transfer coefficients were 0.50 and 0.51 for the
respective electrodes which resembles an ideal diffusion-controlled reaction [42]. Choline
was determined quantitatively using SWV, with resulting 0.83 and 0.36 µM detection limits
for GCE/fMWCNT/Fe3O4L and GCE/fMWCNT/Fe3O4F, respectively. The electrodes
exhibited good selectivity to choline (0.1 mM) in the presence of 100 mM AA and 0.1 mM
DA using chronoamperometry and SWV [42]. In addition, the reproducibity study for six
successive measurements on the electrode yielded reasonable RSD values (6.2 and 4.5%).
The electrodes were successfully employed in practical sensing of choline in pharmaceu-
ticals with satisfactory recoveries [42]. The behavior of the sensor was attributed to the
improved electrocatalytic activity of the nanocomposites.

3.2. Application of Metal Oxide Nanoparticles for Electrocatalytic Detection of Choline

Metal oxide nanoparticles (MONPs) formed from their metal salts are significant
in the field of physics, chemistry and materials science [65]. MONPs possess structural
forms with an electronic structure that is capable of revealing semiconductor, metallic and
insulator properties. They display distinctive properties such as optical/electrical/thermal
properties owing to their excellent density, large surface area, biocompatibility and band
gap [66–68]. These properties have led to the application of MONPs in catalysis (photo-
catalysis, electrocatalysis). Examples of some metal oxide nanoparticles with application in
choline sensors are zinc oxide (ZnO), iron (III) oxide magnetite (Fe3O4), nickel oxide (NiO)
and manganese dioxide (MnO2) nanoparticles [39–42,44]. Metal oxide nanoparticles are
synthesized either through the chemical or the green route, as summarized in Figure 6 [69–73].

Yu et al. investigated the electrocatalytic performance of a nafion/choline/oxidase/
manganese dioxide-modified electrode (Nafion/ChOx/MnO2/GCE) using cyclic voltam-
metry in 0.1 mM choline chloride prepared in PBS pH 8 [39]. Their result showed a high
redox response at the modified electrode compared to the bare electrode (Figure 7), sug-
gesting increased activity linked to the large surface area and electrocatalytic property
of MnO2 with high permeability [39]. The authors also examined the influence of scan
rate variation from 20 to 500 mV s−1 on the redox current peaks using CV and discovered
a linear increase in the current peaks with a more positive shift in the potential peaks
as the scan rate increased, indicating a quasi-reversible redox process. A regression was
obtained from the plot of the current peaks with the square root of the scan rate, suggesting
a diffusion-controlled reaction [39].
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Figure 7. (A) Cyclic voltammogram of (a) a bare GCE, (c) Nafion/ChOx/GCE and (e) Nafion/
ChOx/MnO2/GCE without 0.1mM choline chloride; (b) a bare GCE, (d) Nafion/ChOx/GCE and
(f) Nafion/ChOx/MnO2/GCE in 0.1 mM choline chloride. (B) Amperometric responses obtained
upon the successive addition of choline chloride at an applied 0.7 V potential. Each current step
corresponds to an increase of 0.05 mM in the choline concentration. The insert in the upper-right
corner represents the relationship between the current and choline concentrations (0.008–1.0 mM),
while the lower-left corner inset shows the response time. Reprinted with permission from [39].
Copyright (2016) Elsevier.

The LoD and sensitivity of the electrode were determined. The oxidation peak currents
were seen to increase linearly with the successively increased addition of choline to 0.1 M
PBS at an applied +0.7 V potential. A 5 µM LoD value was obtained from the linear plot of
the oxidation peak current vs. the concentration using amperometry [39]. The designed
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sensor demonstrated excellent selectivity to choline amidst different interferents (1 mM
glucose, AP, DA, serine, 0.1 mM AA and 0.5 mM UA), with good resolved signals. Good
reproducibility (2.7% RSD) for five scans and storage stability (85%) over a month were
noticed using CV in 0.1 mM choline [39]. Additionally, the practical feasibility of the
electrode for choline proved successful in milk, milk powder and feedstuff with a good
recovery range (98–107) [39]. Yu et al. affirmed that the fabricated sensor holds the potential
for choline determination in the food industry, feed additives and all fields due to the
experimental results.

Bai et al. developed a biosensor for choline detection through a direct and simple elec-
trochemical deposition of a bio-composite consisting of chitosan hydrogel, choline oxidase
(ChO) and MnO2 onto a GCE. The electrocatalytic property of the electrode in the presence
and absence of 0.30 mM choline (choline chloride) prepared in 0.2 M borate buffer, pH 7.8,
was investigated using cyclic voltammetry at a 100 mV scan rate (Figure 8) [43]. The cyclic
voltammogram showed an enhanced current response at the ChOx/MnO2/Chit/GCE
(Figure 8A) [43], indicating a faster rate of electron transport which is due to the high
electrocatalytic property of MnO2.
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(curves (c,d)) in the absence (curves (a,c)) and presence of 0.30 mM (curves (b,d)) choline chloride in
0.2 M borate buffer solution (BPS), pH 7.8, at 100 mV s−1 scan rate. (B) Square-wave voltammograms
of ChOx/MnO2/Chit/GCE in the aforementioned buffer at different concentrations of choline
chloride (0, 0.02, 0.1, 0.2, 0.3, 0.7, 1.3 and 2.1 mM) from the top down. Reprinted with permission
from [43]. Copyright (2007) Elsevier.

The sensitivity and linearity of the designed sensor were examined using square-wave
voltammetry with a linear choline concentration in the range of 1 × 10−5 to 2.1 × 10−3 M.
Parameters used were as follows: 1.0, 0, 0.004 and 0.025 V initial, final, increment and
amplitude potential with a frequency of 15 Hz at an applied potential of 0.45 V [43]. The
cathodic current increased significantly with increasing choline chloride concentration
(Figure 8B). The fabricated sensor exhibited good selectivity to choline chloride (0.5 mM)
in the presence of 0.5 mM ascorbic acid and 0.10 mM uric acid. In addition, from the
reproducibility study of the electrode, a relative standard deviation of 4.4% in response to
0.10 mM choline for seven successive measurements was found, which is quite reasonable.
The biosensor was found to retain 90 and 80% of its initial response after a month and
2 months, respectively, from the storage stability study [43]. The performance of the sensor
was attributed to MnO2.

Sattarahmady et al. fabricated, characterized and found the application of chemi-
cally synthesized nickel oxide nanoparticles as a carbon paste electrode (CPE) modifier
(NiO–CPE) for electrochemical determination of choline. An increase in the peak current
was noticed on the modified carbon paste electrode (MCPE) compared with the CPE
(Figure 9A, B). The kinetics of the electrode towards choline oxidation was determined
by studying the impact of scan rate variations (1–1000 mV s−1) on the choline oxidation
peak current [44], as presented in Figure 9C. An increase in the peak current together with
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the peak potentials was observed with increasing scan rates. The coefficient of electrons
transferred was determined to be 0.52 from the graph of potential peaks vs. The logarithm
of scan rates. Additionally, the anodic peak currents were found to be linear to the square
root of the scan rate, indicating a diffusion-controlled process [44].
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Figure 9. Cyclic voltammogram (CV) of (A) a CPE and (B) an MCPE without (curve (a)) and with
(curve (b)) 10 m/mol choline, at scan rate of 50 mV s−1; (C) CV of different scan rates in the range of
1–1000 mV s−1; and (D) linear relationship of the anodic peak current and square root of the scan
rate. Reprinted by permission from [44]. Copyright (2014) Elsevier.

The limit of detection and sensitivity of the designed sensor were investigated using
amperometry. From the amperometric determination of choline at a 550 mV fixed potential,
a linear calibration curve was built (Figure 9D), with the linear choline concentration
response from 0.25 to 6.98 mM yielding a 60.5 mAmol−1 Lcm−2 sensitivity value [44]. LoD
and LoQ values of 25.4 µM and 84.7 µM were calculated. There was no observable chemical
interference in the investigation of the selectivity of the designed electrode to choline in the
presence of D-glucose, DA, L-AA, UA, L-Cysteine, N-acetyl-L-Cysteine, ephedrine and
pseudoephedrine. RSDs of 0.73 and 4.63 were found from the reproducibility study of the
modified and different electrodes by three amperometric measurements. A 4% drop in the
peak current was noticed from the stability study of the electrode after 50 cycles [44].

A summary of the surveyed electrochemical sensors (enzyme and non-enzyme based)
is presented in Table 1.

Table 1. Electrochemical choline biosensors.

S/N Working Electrodes Potentials
(V) Buffer Technique Linear

Range (µM)
LoD
(µM)

Sensitivity
(µA/µM) Application Ref.

1 ChOx/(MWCNTs/PANI)3/PANI)3/GCE +0.4/SCE PBS
(6.98) Amperometry 1–2000 0.3 *** *** [63]

2 AChE-ChO/cMWCNT/ZrO2/GCE +0.2 vs.
Ag/AgCl

PBS
(7.4) Amperometry 0.05–200 0.01 *** Serum [41]

3 PDDA/ChOx/ZnO/MWCNT/PGE +0.6 vs.
Ag/AgCl

PBS
(7.8) Amperometry 800–1000 0.3 0.178 *** [40]

4 ChOx/PDDA)n(PVS)PAA)3/MWCNT/Pt +0.6 vs.
Ag/AgCl PBS (8) Amperometry 0.5–100 0.2 0.012 *** [59]
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Table 1. Cont.

S/N Working Electrodes Potentials
(V) Buffer Technique Linear

Range (µM)
LoD
(µM)

Sensitivity
(µA/µM) Application Ref.

5 MWCNTs/GNP/ChOx-PDDA/Pt +0.35 vs.
Ag/AgCl

PBS
(7.6) Amperometry 1–500 0.3 0.012 *** [60]

6 MWCNTs/AuNP/Pt +0.6 vs.
Ag/AgCl PBS (8) Amperometry 50–800 15 3.5 × 10−3 *** [64]

7 ChOx/(GNP)4/MWCNT/GCE −0.3 vs.
Ag/AgCl

PBS
(8.5) Amperometry 3–120 0.6 0.204 Milk [11]

8 f-MWCNT/Fe3O4L/GCE +0.58 vs.
Ag/AgCl

PBS
(7.3) SWV 0.3–2.2 0.8 0.107 CDP [42]

9 f-MWCNT/Fe3O4F/GCE +0.58 vs.
Ag/AgCl

PBS
(7.3) SWV 0.3–2.2 0.3 0.673 CDP [42]

10 Nafion/ChOx/MnO2/GCE +0.7 vs.
Ag/AgCl PBS (8) Amperometry 8–1000 5 *** *** [39]

11 ChOx/MnO2/Chit/GCE +0.45 vs.
Ag/AgCl

PBS
(7.8) SWV 10–2100 *** *** *** [43]

12 NiO/CPE +5.5 vs.
Ag/AgCl NaOH Amperometry 250–6980 25.4 6 × 10−5 *** [44]

Note: *** is not stated.

4. Conclusions

This review describes electrochemical sensors for choline detection with fast response
times based on the electrocatalytic activity of MWCNT, MWCNT composite and metal
oxide nanomaterials as electrode modifiers. The literature review shows a wide use of
electrochemical biosensors with immobilized biological sensing molecules and little appli-
cation of non-enzyme-based sensors. The sensitivity and selectivity of the different sensors
were also investigated. The chemical selectivity and rapid detection of choline amidst
potential biomolecules interferents such as uric acid, lactic acid, dopamine, ascorbic acid,
cysteine, glucose, acetaminophen and acetylcholine, to mention but a few, are important
targets of electroanalytical research. This is because the potentials of most of these possible
interfering species are quite close, which could possibly lead to potential overlap. To this
end, highly selective recognition matrices such as polymers, nanomaterials and biological
recognition elements such as enzymes have been incorporated into choline sensors to
improve their selectivity in the presence of possible interferents. Hence, the selectivity of
the fabricated choline sensors reviewed in the presence of the aforementioned possible
interfering species was evaluated by various authors. The performance of the electrochem-
ical sensors in choline detection investigated in terms of sensitivity and selectivity was
ascribed to the presence of the nanomaterials. This could be due to their high electrical
conductivity, biocompatibility and high surface area which enhanced the rate of electron
transport between choline and the electrode surfaces. Considering the health importance
and the devastating effect of choline when inadequate, new and more research on choline
sensors employing different nanomaterials with application in real samples is imperative.
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