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Abstract
Background  Ewing’s sarcoma is a childhood bone and soft tissue cancer with poor prognosis. Treatment outcomes 
for Ewing’s sarcoma patients have improved only modestly over the past decades, making the development of new 
treatment strategies paramount. In this study, the combined targeting of ribonucleotide reductase (RNR) and WEE1 
was explored for its effectiveness against Ewing’s sarcoma cells.

Methods  The RNR inhibitor triapine and the WEE1 inhibitors adavosertib and ZN-c3 were tested in p53 wild-type 
and p53 mutant Ewing’s sarcoma cells. The combination of adavosertib with the PARP inhibitors olaparib and veliparib 
was tested for comparison. Combinatorial effects were determined by flow cytometric analyses of cell death, loss of 
mitochondrial membrane potential and DNA fragmentation as well as by caspase 3/7 activity assay, immunoblotting 
and real-time RT-PCR. The drug interactions were assessed using combination index analysis.

Results  RNR and WEE1 inhibitors were weakly to moderately effective on their own, but highly effective in 
combination. The combination treatments were similarly effective in p53 wild-type and p53 mutant cells. They 
synergistically induced cell death and cooperated to elicit mitochondrial membrane potential decay, to activate 
caspase 3/7 and to trigger DNA fragmentation, evidencing the induction of the apoptotic cell death cascade. 
They also cooperated to boost CHK1 phosphorylation, indicating augmented replication stress after combination 
treatment. In comparison, the combination of adavosertib with PARP inhibitors produced weaker synergistic effects.

Conclusion  Our findings show that combined inhibition of RNR and WEE1 was effective against Ewing’s sarcoma 
in vitro. They thus provide a rationale for the evaluation of the potential of combined targeting of RNR and WEE1 in 
Ewing’s sarcoma in vivo.

Keywords  Ewing’s sarcoma, Targeted therapy, Ribonucleotide reductase, WEE1, PARP, Triapine, Adavosertib, ZN-c3, 
Olaparib, Veliparib
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Background
Ewing’s sarcoma (ES) is a highly malignant tumour of 
bone and soft tissue that occurs primarily in childhood 
and adolescence [1, 2]. The standard of care therapy 
of ES consists of intensive neoadjuvant induction che-
motherapy, followed by surgery and/or radiation and 
adjuvant consolidation chemotherapy [3]. A plethora 
of consecutive studies since the 1960s led to a remark-
able progress in the treatment of ES: the 5-year survival 
rate for localised disease increased from less than 10% 
before the introduction of chemotherapy to ∼ 75% today 
[4]. However, the prognosis for patients with primary 
disseminated disease or relapse remains poor, with a 
5-year survival rate of less than 40% [2]. Most notewor-
thy, only minimal gains in treatment efficacy with regard 
to response and survival of ES patients have been made 
since the turn of the century, indicating that the optimisa-
tion of cytotoxic chemotherapy dosing and combinations 
has reached its limits [5]. New therapeutic approaches, 
therefore, are needed to further improve the outcome of 
patients with ES [3, 6, 7].

ES is characterised by a balanced chromosome translo-
cation resulting in a fusion oncogene. The most frequent 
variant, accounting for 85% of cases, is the translocation 
t(11;22)(q24;q12), which leads to the fusion of the Ewing’s 
sarcoma breakpoint region 1 (EWSR1) gene of the FET 
family with the Friend leukaemia virus integration 1 
(FLT1) gene of the ETS family [8]. This translocation 
gives rise to the fusion oncoprotein EWS::FLI1, which 
acts as a neomorphic transcription factor by regulating 
the expression of genes involved in, e.g., cell proliferation, 
cell migration, cell cycle control, cell death and signal 
transduction [1, 9]. EWS::FLI1 hence is a natural candi-
date target for ES. Direct EWS::FLI1 targeting, however, 
is complicated by its function as a transcription factor [6, 
10].

Yet EWS::FLI1 could be exploited indirectly by tar-
geting its downstream mediators [6, 10]. For instance, 
EWS::FLI1 promotes R-loop formation and blocks BRCA 
function– conferring a ‘BRCAness’ phenotype [11]– 
leading to high levels of endogenous replication stress in 
ES cells [12]. ES is thus supposed to be particularly sensi-
tive to agents that target the replication stress response 
(RSR) [13–16]. The ATR/CHK1/WEE1 signalling cascade 
is a pivotal mediator of RSR and, as such, a promising 
anticancer target [17–19]. In line with this conception, 
preclinical studies have already demonstrated single-
agent activity of ATR, CHK1 and WEE1 inhibitors in 
ES [20–22]. Furthermore, RSR targeting is an appealing 
approach, as RSR is more important for the proliferation 
and survival of cancer cells than for normal cells, which 
offers the prospect of limiting medication-related side 
effects [17].

However, RSR-targeted drugs are rarely persistently 
effective as monotherapy in the majority of tumours [23]. 
Moreover, single-agent treatments are generally insuf-
ficient to achieve long-lasting remission in ES patients 
[3]. Since the development of drug resistance may be 
overcome by combination treatment, we recently set 
out to identify effective combination partners for RSR-
targeted inhibitors as a therapeutic strategy for ES. We 
have shown that the ATR inhibitor (ATRi) VE821 effec-
tively cooperated with the HSP90 inhibitor AUY922 [24] 
as well as the ribonucleotide reductase (RNR) inhibitors 
(RNRi) triapine (also known as 3-AP) and didox [25] in 
killing ES cells.

RNRi hold particular promise for enhancing the effec-
tiveness of RSR-targeted agents [18]. RNR catalyses the 
rate-determining step in the synthesis of deoxyribonucle-
otides (dNTPs) [26]. The upregulation of the RNR sub-
unit M2 (RRM2; also known as β2) increases the supply 
of dNTPs, fostering the recovery from replication stress, 
thus counteracting the effects of RSR-targeted therapeu-
tics [27, 28]. RRM2 overexpression was reported to be 
associated with poor overall survival in ES patients [29], 
and RRM2 was identified as a potential treatment target 
in ES [30]. However, although initially responsive to the 
RRM2 inhibitor triapine, ES cells were found to develop 
relative resistance to the drug over time, suggesting that 
RNRi monotherapy will not be sufficient for durable dis-
ease control [29].

Single-agent therapy with either RSR-targeted drugs 
or RNRi is therefore very likely to be inadequate for the 
treatment of ES, but their combination holds promise. 
In a former study, we demonstrated that combined ATR 
and RNR inhibition produced a synergistic antineoplas-
tic effect in ES cells [25]. In the present one, we have 
extended the exploration into the feasibility of combined 
RSR and RNR inhibition to the combination of triapine 
with inhibitors of the ATR downstream kinase WEE1, 
a promising therapeutic target in itself [31, 32]. In both 
studies, we used the RNRi triapine because it has been 
shown to be effective against cancer cells that are resis-
tant to the widely applied RNRi hydroxyurea [33] and 
because it is one of the most commonly used RNRi in 
clinical trials [34–37]. We show here that triapine syn-
ergised with the WEE1 inhibitors (WEE1i) adavosertib 
(also known as AZD1775 and MK-1775) and ZN-c3 (also 
known as azenosertib) in exerting anticancer action on 
ES cells, pointing to the usefulness of this drug combina-
tion in the therapy of ES.

Methods
Cell culture
WE-68 (RRID: CVCL_9717) cells were kindly provided 
by Dr F. van Valen (Münster, Germany), SK-ES-1 cells 
(RRID: CVCL_0627) and A673 cells (RRID: CVCL_0080) 
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were purchased from the DSMZ (Braunschweig, Ger-
many) and Sigma Aldrich (Deisenhofen, Germany), 
respectively. RPMI 1640 medium (Capricorn Scientific, 
Ebsdorfergrund, Germany) was used to culture WE-68 
and SK-ES-1 cells, and DMEM (Lonza, Basel, Switzer-
land) was used to culture A673 cells. Media were sup-
plemented with 10% foetal bovine serum (Capricorn 
Scientific), 100 units/ml penicillin G sodium and 100 µg/
ml streptomycin sulphate (Lonza). Cells were cultured 
in rat-tail collagen-coated (5 µg/cm2; Merck, Darmstadt, 
Germany) cell culture vessels. Cells were maintained 
in an incubator at 37  °C and 5% CO2 and passaged at 
approximately 90% confluence. Mycoplasma contamina-
tion was ruled out with the qPCR Mycoplasma Testkit 
from AppliChem (Darmstadt, Germany).

Treatment of cells
WE-68 and SK-ES-1 cells were cultured in 24-well tis-
sue culture plates; cells were seeded at 75,000 cells/well 
for flow-cytometric analyses and at 100,000 cells/well 
for caspase 3/7 activity measurements. A673 cells were 
cultured in 6-well tissue culture plates; cells were seeded 
at 100,000 cells/well for flow-cytometric analyses and at 
150,000 cells/well for caspase 3/7 activity measurements. 
For PCR analyses, cells were cultured in 6-well tissue cul-
ture plates, WE-68 and SK-ES-1 cells at 400,000 cells/
well and A673 cells at 150,000 cells/well. For immunob-
lotting, cells were seeded in 25 cm2 tissue culture flasks 
at 106 cells/flask. Twenty-four hours after seeding, cells 
were treated with triapine (0.125–1 µM; Selleck Chemi-
cals, Planegg, Germany), adavosertib (0.05–0.5 µM; 
Selleck Chemicals), ZN-c3 (0.3–0.5 µM; Selleck Chemi-
cals), olaparib (0.1–2 µM; Biomol, Hamburg, Germany) 
and/or veliparib (2.5–20 µM; Biomol) and incubated 
for 24 h (caspase 3/7 activity, immunoblotting, PCR) or 
48 h (flow-cytometric analyses). In the respective experi-
ments, cells were pretreated with the pan-caspase inhibi-
tor z-VAD-fmk (20 µM; Enzo Life Sciences, Lörrach, 
Germany) 1 h before treatment with triapine, adavosertib 
and/or ZN-c3.

Flow-cytometric analysis of cell death, loss of 
mitochondrial transmembrane potential (Δψm) and DNA 
fragmentation
Cell death was determined by flow-cytometric analysis 
using propidium iodide (PI; Sigma Aldrich) to assess cell 
membrane integrity. After harvesting, cells were incu-
bated in 2 µg/ml PI in PBS at 4 °C for 5 min in the dark. 
Loss of Δψm was determined by flow-cytometric analy-
sis using 3,3’-dihexyloxacarbocyanine iodide (DiOC6(3); 
Thermo Fisher Scientific, Dreieich, Germany). Cells were 
incubated with 50 nM DiOC6(3) at 37 °C for 45 min in the 
dark prior to harvesting. DNA fragmentation was deter-
mined by assessing cells for PI incorporation into DNA. 

After harvesting, cells were washed twice with PBS and 
fixed in 70% ethanol at − 20 °C overnight. After washing, 
cells were resuspended in PBS containing 1% glucose, 
2.5 µl/ml ribonuclease A (Roche, Mannheim, Germany) 
and 50 µg/ml PI and incubated at 4 °C for 45 min in the 
dark. 10,000 cells (cell death and Δψm loss) or 20,000 cells 
(DNA fragmentation) per sample were analysed on a BD 
FACS Canto II (Heidelberg, Germany) with BD FACS-
Diva software. Gates were placed to exclude debris and 
aggregates.

To assess the combination treatments for synergistic 
or antagonistic effects, the results of the cell death deter-
minations were analysed using the combination index 
(CI) method according to Chou and Talalay [38] with 
Calcusyn software from Biosoft (Cambridge, UK). Theo-
retically (i.e., under ideal conditions), CI values of < 1, = 
1 and > 1 indicate synergistic, additive and antagonistic 
effects, respectively. Here, only CI values < 0.8 were con-
sidered synergistic.

Caspase 3/7 activity
Caspase 3/7 activity was measured using the caspase 
3/7 substrate acetyl-Asp-Glu-Val-Asp-amido-4-methyl-
coumarin (Ac-DEVD-AMC, Bachem, Weil am Rhein, 
Germany). After harvesting, cells were lysed in 10 mM 
NaH2PO4/NaHPO4, 10 mM Tris-HCL (pH 7.5), 130 
mM NaCl, 10 mM Na4P2O7, 1% Triton X-100 at 4 °C for 
15  min in the dark. Samples were mixed with 20 mM 
Hepes (pH 7.5), 10% glycerol, 2 mM DTT and 25 µg/ml 
Ac-DEVD-AMC. The fluorescence of the released AMC 
was detected on a Tecan Infinite M200 Pro (Crailsheim, 
Germany) plate reader using an excitation wavelength 
of 355 nm and an emission wavelength of 440 nm. Rela-
tive caspase 3/7 activities are provided as the ratio of the 
emission of treated to untreated cells.

Immunoblotting
Cells were centrifuged at 250 x g for 5 min and lysed in 
200  µl RIPA buffer (Abcam, Cambridge, UK) supple-
mented with 20 µl/ml protease and phosphatase inhibitor 
cocktails (Serva Electrophoresis, Heidelberg, Germany). 
30  µg of protein per sample were prepared in Laemmli 
SDS sample buffer (Thermo Fisher Scientific) and incu-
bated at 85  °C for 3  min. After standard SDS-PAGE 
using 4–12% precast gels (Serva), proteins were electro-
phoretically transferred to PVDF membranes (Thermo 
Fisher Scientific). After blocking for 1 h in TBS (pH 7.6) 
containing 5% BSA and 0.1% Tween-20, the membranes 
were incubated overnight at 4 °C with the following anti-
bodies: anti-CHK1 (1:300; Cell Signaling Technology 
(CST), Leiden, Netherlands, #2360, RRID: AB_2080320), 
anti-phospho-Ser345-CHK1 (1:300; CST, #2348, RRID: 
AB_331212) and anti-p53 (1:300; Santa Cruz Biotechnol-
ogy, Heidelberg, Germany, #sc-126, RRID: AB_628082). 
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Equal loading of protein was verified by the detection 
of GAPDH (1:3000; CST, #2118, RRID: AB_561053). 
HRP-conjugated anti-mouse IgG (1:3000; CST, #7076, 
RRID: AB_330924) and HRP-conjugated anti-rabbit IgG 
(1:3000; CST, #7074, RRID: AB_2099233) were used as 
secondary antibodies followed by detection of specific 
signals using Immobilon Forte Western HRP Substrate 
(Sigma Aldrich). Imaging was done on an MF ChemiBis 
3.2 imaging system (DNR Bio Imaging Systems, Neve 
Yamin, Israel).

Real-time RT-PCR
Procedures were done in accordance with the manu-
facturers’ instructions. RNA was isolated using Peqgold 
Total RNA Kit including DNase digestion (VWR Inter-
national, Dresden, Germany) and reverse-transcribed 
into cDNA using the Omniscript RT Kit (Qiagen GmbH, 
Hilden, Germany). Real-time PCR was performed on 
an Applied Biosystems 7900HT Real-Time PCR System 
(Thermo Fisher Scientific). Reactions were carried out 
as duplicates using Applied Biosystems Gene Expression 
Assays and TaqMan Universal PCR Master Mix. Gene 
expressions of CDKN1A (ID: Hs00355782_m1), BBC3 
(ID: Hs00248075_m1) and TP53 (Hs01034249_m1) were 
normalised to B2M (ID: Hs00187842_m1) gene expres-
sion levels. Data analysis was done with SDS2.4 software 
(Applied Biosytems). The relative gene expression levels 
were calculated with the 2(–ΔΔCt) method.

Statistical analysis
Results presented are the mean ± SEM of each three 
independent experiments. A heteroscedastic, two-tailed 
Student’s t test was used for statistical analysis using 
Microsoft Excel (*p < 0.05, **p < 0.01, ***p < 0.001). Addi-
tional statistical analysis (shown in Tables S11–S16) was 
done by Kruskal-Wallis test followed by Dunn’s test using 
RStudio version 4.3.0.

Results
Combination treatment of triapine with WEE1i synergises 
in the induction of cell death in ES cells
To assess a possible favourable antineoplastic interac-
tion of RNR and WEE1i in ES, we initially determined 
cell death by flow cytometric analysis of PI uptake. We 
used three ES cell lines with different p53 status, namely, 
p53 wild-type WE-68 cells, p53 homozygous missense 
mutant (C176F) SK-ES-1 cells [39] and p53-deficient 
A673 cells [40], to address a potential impact of p53 on 
the combination effect. Cells were treated with the RNRi 
triapine and the WEE1i adavosertib for 48 h. In WE-68 
and A673 cells, single treatment with either agent elic-
ited maximally 23.4 ± 3.9% cell death in the concentration 
range investigated, while triapine-adavosertib combina-
tion treatment resulted in up to 57.8 ± 4.5% cell death 

(Fig.  1A). SK-ES-1 cells were more sensitive to triapine, 
i.e., triapine single treatment induced up to 38.4 ± 1.5% 
cell death. Yet in combination with adavosertib, which 
was marginally cytotoxic on its own, triapine-induced 
cell death amounted up to 77.4 ± 2.8% (because of this 
strong combination effect in SK-ES-1 cells, we used 
slightly lower concentrations of adavosertib in this cell 
line). To test the combination effects for synergism, we 
analysed the data using the CI method [38]. In WE-68 
cells, triapine-adavosertib combination treatment pro-
duced strong synergistic effects, except for the combina-
tions with 0.125 µM triapine, and for 0.25 µM triapine 
with 0.1 µM adavosertib (Fig.  2a; numerical values are 
given in Table S1). In SK-ES-1 cells, synergism was seen 
in all treatment combinations but those including 0.125 
µM triapine (Fig. 2a; numerical values are given in Table 
S2). In A673 cells, the CI analysis demonstrated a syner-
gistic interplay between triapine and adavosertib, except 
for the combinations of 0.125 µM triapine with 0.1 and 
0.2 µM adavosertib, and for the combination of 0.25 µM 
triapine with 0.1 µM adavosertib (Fig. 2a; numerical val-
ues are given in Table S3).

To test for a potential class effect of WEE1i in ES cells, 
we examined another WEE1i, ZN-c3. The combination of 
triapine with ZN-c3 induced equivalent cell death as the 
combination with adavosertib (Fig. 1B; compare Fig. 1A). 
Single treatments with ZN-c3 resulted in moderate cell 
death, with a maximum of 43.3 ± 3.5% in SK-ES-1 cells. 
Triapine-ZN-c3 combination treatment-triggered cell 
death reached 65.3 ± 2.3% in WE-68 cells, 83.1 ± 1.0% 
in SK-ES-1 cells and 53.9 ± 4.4% in A673 cells. The CI 
analysis demonstrated synergism for this RNR-WEE1i 
combination, too (Fig. 2B; numerical values are given in 
Tables S4 to S6). Synergistic effects were observed for all 
triapine-ZN-c3 combinations in the three cell lines, with 
the exception of most of the combinations with 0.125 µM 
triapine.

Combination treatment of triapine with WEE1i induces 
apoptosis
To gain insight into the mode of RNRi-WEE1i-induced 
cell death, we analysed the effects of the combina-
tion treatment by a number of read-outs. Since most 
cell death pathways including apoptosis involve mito-
chondria [41], we first studied the action of the triap-
ine-adavosertib combination on Δψm dissipation by 
flow-cytometric analysis of DiOC6(3) staining. In keep-
ing with the findings of the cell death determinations, 
triapine and adavosertib applied as single agents elic-
ited weak to moderate effects in WE-68 and A673 cells, 
whereas their combination induced Δψm decay in up to 
94.3 ± 0.4% of WE-68 cells and up to 81.6 ± 2.0% of A673 
cells (Fig. 3A). In SK-ES-1 cells, triapine single treatment 
was again more effective, leading to 57 ± 4.1% Δψm loss 
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Fig. 2  CI values for triapine plus adavosertib or ZN-c3 in ES cells. Based on data from (A) Fig. 1A and (B) Fig. 1B, CI values were calculated with the Chou-
Talalay method

 

Fig. 1  RNRi and WEE1i cooperate in inducing cell death in ES cells. Cells were exposed to triapine in combination with (A) adavosertib or (B) ZN-c3 for 
48 h. Cell death was determined by flow-cytometric analysis of PI uptake. Means ± SEM of each three independent measurements are shown
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Fig. 3 (See legend on next page.)
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at its highest concentration. In conjunction with ada-
vosertib, however, the effect was increased to 90.9 ± 0.7%. 
To test for the involvement of caspases as a second indi-
cator for apoptosis, we assessed caspase 3/7 activity 
after a 24-h treatment. In WE-68 and SK-ES-1 cells, the 
results of this assay matched those of the cell death and 
Δψm decay determinations: single treatments with triap-
ine or adavosertib induced some caspase 3/7 activation, 
while the combination treatment produced potentiated 
effects (Fig. 3B). However, in A673 cells, the treatments 
activated caspase 3/7 to a much lesser extent, i.e., triapine 
induced weak caspase 3/7 activity only in combination 
with 0.1 µM or 0.2 µM adavosertib.

To evaluate whether caspase 3/7 activation was not 
only a side effect but essential for triapine-adavosertib-
elicited cell death, we used the broad-spectrum cas-
pase inhibitor z-VAD-fmk. As demonstrated in Fig.  3C, 
z-VAD-fmk impinged on triapine-adavosertib-triggered 
cell death in WE-68 and SK-ES-1 cells, but had little 
effect in A673 cells, consistent with the weak caspase 3/7 
activation in these cells. The pan-caspase inhibitor also 
markedly alleviated triapine-adavosertib-mediated Δψm 
decay in WE-68 cells, but not in the other two cell lines 
(Fig. 3D). To further substantiate the apoptosis-inducing 
action of triapine-adavosertib combination treatment, we 
assessed DNA fragmentation by flow-cytometric deter-
mination of the sub-G1 fraction of cells with DNA < 2n. 
Figure 3E shows that triapine-adavosertib provoked DNA 
fragmentation in the three cell lines. It also shows that 
z-VAD-fmk completely prevented DNA fragmentation in 
WE-68 cells and partially in SK-ES-1 and A673 cells.

We further examined whether also the combination 
of triapine with ZN-c3 triggered the apoptotic pathway 
of cell death. As judged by determining Δψm dissipation 
and caspase 3/7 activity, the combination of triapine with 
ZN-c3 produced a similar outcome as the combination 
of triapine with adavosertib (Fig. 4A, B; compare Fig. 3A, 
B). The pan-caspase inhibitor had a similar impact on 
triapine-ZN-c3-induced cell death and Δψm loss as on 
the triapine-adavosertib-induced ones as well (Fig. 4C, D; 
compare Fig.  3C, D). Likewise, the two triapine-WEE1i 
combinations produced equivalent effects with regard to 
DNA fragmentation (Fig. 4E; compare Fig. 3E).

The combination of adavosertib with PARP inhibitors 
produces less pronounced synergistic effects against ES 
cells
For comparison with the combination of WEE1i and 
triapine, we also tested the combination of WEE1i and 
poly(ADP-ribose)-polymerase (PARP) inhibitors (PARPi) 
in WE-68 and SK-ES-1 cells. PARP is another major 
participant in the DNA damage response [42], mak-
ing it an important target in the treatment of cancers 
[43, 44], including paediatric solid malignancies [45, 
46], particularly ES [47]. We examined the combina-
tion of adavosertib and PARPi in exactly the same way 
as the combination of adavosertib and triapine, just by 
substituting a PARPi for triapine. Fig. S1 shows that the 
two PARPi tested, olaparib and veliparib, elicited cell 
death and Δψm loss in a concentration-dependent man-
ner. These effects were enhanced by the addition of ada-
vosertib. The CI analysis revealed that the majority of 
adavosertib-PARPi combinations were synergistic, albeit 
less so than the RNRi-WEE1i combinations (Tables S7 to 
S10).

Combination treatment of triapine with WEE1i exacerbates 
the replication stress response and activates p53
To gain further insight into the triapine-WEE1i combina-
tions’ mode of action, we asked whether the treatment 
would interact in enhancing replication stress. Since 
the phosphorylation of CHK1 is considered a reliable 
marker of active replication stress [48], we determined 
phospho-Ser345-CHK1 by immunoblotting. As depicted 
in Fig.  5A, both triapine-adavosertib and triapine-ZN-
c3 boosted CHK1 phosphorylation relative to the single 
treatments in the three cell lines, thus evidencing aug-
mented replication stress after combination treatment. 
Furthermore, the combination treatments resulted in a 
decrease of CHK1 protein expression, most notably in 
A673 cells.

Given the pivotal role of the tumour suppressor protein 
p53 in human cancer biology, including response to ther-
apy [49], we also asked whether triapine in combination 
with WEE1i had an effect on p53 in ES cells. To this end, 
we determined p53 abundance by immunoblotting and 
p53 target gene expression by real-time RT-PCR after 
a 24-h treatment. Figure  5B shows that both triapine-
WEE1i combinations increased p53 levels in p53 wild-
type WE-68 cells. Missense mutant p53 in SK-ES-1 cells 
was found to be accumulated to the high level typical of 
p53 mutant cancers [50], but was not further enhanced 

(See figure on previous page.)
Fig. 3  Triapine and adavosertib cooperate in inducing apoptosis in ES cells. Cells were exposed to drugs for (B) 24 h or (A, C, D, E) 48 h. (C, D, E) z-VAD-fmk 
was applied 1 h before treatment with triapine-adavosertib. (A, D) Loss of Δψm was determined by flow-cytometric analysis of DiOC6(3) staining. (B) Cas-
pase 3/7 activity was determined using the fluorogenic substrate Ac-DEVD-AMC; relative caspase 3/7 activities are the ratio of treated cells to untreated 
cells. (C) Cell death was determined by flow-cytometric analysis of PI uptake. (E) sub-G1 cells were determined by flow-cytometric analysis of PI-stained 
ethanol-fixed cells. Means ± SEM of each three independent measurements are shown (*p < 0.05, **p < 0.01, ***p < 0.001; (C, D) black bars vs. grey bars)
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Fig. 4 (See legend on next page.)
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by the treatment. p53-deficient A673 cells predictably did 
not display p53 expression. The combination treatments 
had no effect on TP53 gene expression, demonstrating 
that the effect on p53 abundance occurred at the post-
transcriptional level (Fig. S2).

Figure  6 shows that the increase in p53 abundance 
was accompanied by a strong induction of two major 
p53-transactivated genes, CDKN1A (encoding the cell 
cycle-inhibitory protein p21) and BBC3 (encoding the 
proapoptotic protein PUMA) [49], in the p53 wild-type 
cells. Interestingly, triapine-WEE1i combination treat-
ment also led to the induction of CDKN1A and BBC3 
expression in the p53 mutant cells, although to a much 
lower extent than in the p53 wild-type cells.

Discussion
In this study, we continued our investigation of the com-
bined inhibition of RNR and the ATR/CHK1/WEE1 
pathway as a viable option for the treatment of ES. Our 
previous study on this subject showed that the combina-
tion of RNRi with ATRi exerted synergistic anticancer 
activity in ES [25]. Our present study demonstrates that 
the combination of RNRi with WEE1i was also syner-
gistically effective against ES. This work thus comple-
ments the previous one and further supports the concept 
of combined targeting of RNR and the ATR pathway as 
a promising treatment approach for ES. Additional sup-
port for the utility of RNRi combined with ATR pathway 
inhibitors in ES comes from studies on the cooperative 
action of RNRi with inhibitors of CHK1 [51, 52].

Most notably, we found here that the combination 
of the RNRi triapine with either WEE1i adavosertib or 
ZN-c3 greatly enhanced their individual effects. The 
CI analyses evidenced that the combination effect was 
indeed synergistic at most drug concentrations tested. 
Adavosertib has already been shown to be effective in 
ES [53–57], yet our study is the first to demonstrate the 
effectiveness of ZN-c3 in ES cells, pointing to a class 
effect of WEE1i in ES. ZN-c3 offers the potential advan-
tage of better kinase selectivity compared to other WEE1 
inhibitors including adavosertib [58].

Although it is known that the inhibition of WEE1 
results in RRM2 depletion [59, 60], the mechanism that 
accounts for the cooperative action of combined ATR/
CHK1/WEE1 pathway and RNR inhibition has not yet 
been conclusively clarified. A plausible explanation, 
however, is the following: Cancer cells generally suffer 
from high replication stress [18]. The inhibition of RNR 

decreases the concentration of dNTPs, further increas-
ing replication stress. This results in the activation of 
the ATR pathway, which serves to cope with replication 
stress. ATR pathway inhibitors disable this protective 
reaction, ultimately causing cancer cell death [61]. Con-
sistent with this explanation, our experiments showed 
that triapine-WEE1i combination treatment resulted in 
exacerbated replication stress, as evidenced by greatly 
enhanced CHK1 phosphorylation after combination 
treatment. Additional evidence for increased replication 
stress comes from the finding that the combination treat-
ments reduced CHK1 protein levels, consistent with the 
observation that replication stress-triggered CHK1 phos-
phorylation at Ser345 induced the polyubiquitination 
and degradation of CHK1 [62].

Our experiments further revealed that the coopera-
tive action of triapine-WEE1i combination treatment 
involved the mitochondrial pathway of apoptosis, as 
assessed by determining Δψm dissipation, caspase 3/7 
activation and DNA fragmentation. The different mea-
surements followed a similar pattern, with the exception 
of caspase 3/7 activation in A673 cells, thus confirming 
the robustness of the results. The use of the pan-caspase 
inhibitor z-VAD-fmk further corroborated the induction 
of apoptosis by triapine-WEE1i, as it reduced cell death 
and DNA fragmentation. It should be noted, however, 
that z-VAD-fmk did not fully prevent cell death, imply-
ing that the combination treatments harnessed both cas-
pase-dependent and independent cell death pathways. In 
WE-68 cells, z-VAD-fmk also affected triapine-WEE1i-
induced Δψm dissipation, suggesting that the mitochon-
drial apoptotic function depended in part on caspases, 
possibly as a result of a feedback amplification loop [63]. 
These results are in agreement with our previous study 
on the effect of combining triapine with ATRi [25] as well 
as another study that reported apoptosis induction in 
response to concomitant ATR pathway and RNR inhibi-
tion [53] in ES cells.

In addition, we found the combination effect to be 
independent of the cells’ p53 mutational status as tri-
apine combined with WEE1i was similarly effective in 
p53 wild-type, p53 missense mutant and p53-deficient 
ES cells. Previous studies yielded contradictory results 
on the impact of p53 status on the sensitivity to WEE1i. 
Some demonstrated effectiveness of WEE1i selectively 
in p53 mutant cells [64–66], whereas others reported no 
association between p53 functionality and responsive-
ness to WEE1i [22, 67, 68]. These inconsistencies were 

(See figure on previous page.)
Fig. 4  Triapine and ZN-c3 cooperate in inducing apoptosis in ES cells. Cells were exposed to drugs for (B) 24 h or (A, C, D, E) 48 h. (C, D, E) z-VAD-fmk was 
applied 1 h before treatment with triapine-ZN-c3. (A, D) Loss of Δψm was determined by flow-cytometric analysis of DiOC6(3) staining. (B) Caspase 3/7 
activity was determined using the fluorogenic substrate Ac-DEVD-AMC; relative caspase 3/7 activities are the ratio of treated cells to untreated cells. (C) 
Cell death was determined by flow-cytometric analysis of PI uptake. (E) sub-G1 cells were determined by flow-cytometric analysis of PI-stained ethanol-
fixed cells. Means ± SEM of each three independent measurements are shown (*p < 0.05, **p < 0.01, ***p < 0.001; (C, D) black bars vs. grey bars)
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Fig. 5  RNRi and WEE1i cooperate in increasing CHK1 phosphorylation and p53 abundance. Cells were exposed to triapine in combination with ada-
vosertib or ZN-c3 for 24 h. (A, B) p-CHK1, CHK1, p53 and GAPDH abundance were determined by immunoblotting; the blots are representative of each 
three independent experiments
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Fig. 6  RNRi and WEE1i cooperate in inducing p53 target gene expression. Cells were exposed to triapine in combination with adavosertib or ZN-c3 for 
24 h. CDKN1A and BBC3 expression levels were determined by real-time RT-PCR and normalised to B2M expression levels; relative gene expression levels 
are the ratio of treated cells to untreated cells. Means ± SEM of each three independent measurements are shown (*p < 0.05, **p < 0.01, ***p < 0.001)
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explained by differences in the intrinsic chromosomal 
instability of the tumours examined [32]. In any case, the 
p53-independent action of RNRi-WEE1i combination 
treatment in ES cells is an important result from the clin-
ical perspective. Mutations in TP53 are rare in ES, but 
the ∼ 7% of ES patients with mutant TP53 are relatively 
insensitive to chemotherapy and radiotherapy and have a 
worse than average outcome [69–73]. Somatic mutations 
are generally infrequent in ES, with STAG2 being the 
most commonly mutated gene (∼ 17% of cases) [70–72]. 
(STAG2 is a subunit of the cohesin complex, and its inac-
tivation can cause aneuploidy in cancer [74]). Co-occur-
rence of TP53 and STAG2 mutations is associated with 
a dismal prognosis in ES [72], patients with these muta-
tions are therefore particularly in need for new therapies. 
We observed RNRi-WEE1i combination treatment to be 
effective in TP53/STAG2 double-mutant SK-ES-1 cells, 
indicating that it may be an option also for these difficult-
to-treat cases.

Yet we also noted that triapine-WEE1i combina-
tion treatment produced an increase in p53 abundance 
and a strongly enhanced expression of the p53 target 
genes CDKN1A and BBC3 in p53 wild-type ES cells. 
The activation of the p53 pathway may thus contrib-
ute to the cytotoxic effect of combined RNR and WEE1 
inhibition in p53-proficient cells. Noteworthy, triapine-
WEE1i-induced CDKN1A and BBC3 expression was not 
restricted to p53 wild-type cells, but also occurred, albeit 
to a lesser degree, in mutant p53 ES cells. This result 
implies that not only did triapine-WEE1i kill ES cells 
independently of functional p53, but it also provoked 
gene expression in a p53-independent manner, just like 
the combination of triapine with ATRi [25].

We also assessed the combination of WEE1i with 
PARPi, with the following rationale: ‘BRCAness’ tumours 
including ES are considered to be particularly susceptible 
to PARPi [75], and olaparib was found to be highly effec-
tive against ES in vitro [76–78]. However, no objective 
clinical response was observed in a phase II trial of olapa-
rib in ES patients [79], suggesting that PARPi need to be 
combined with other agents to achieve a clinical response 
in ES [47]. Since PARPi cause replication stress and acti-
vate the ATR pathway [18], the targeting of the latter by 
inhibiting ATR, CHK1 or WEE1 is a rational approach to 
overcome PARPi resistance [80, 81]. This approach, how-
ever, has not yet been tested in ES. Our measurements 
showed that the combination of WEE1i with PARPi was 
also synergistically active in ES cells, but less so than the 
combination of WEE1i with RNRi. These data therefore 
warrant a more in-depth assessment of WEE1i-PARPi 
combination treatment in ES.

This study has some limitations. Its aim was to inves-
tigate whether the combination of RNRi with WEE1i 
could exert synergistic antineoplastic effects on ES cells. 

It was focused on drugs that had already been tested in 
clinical trials to facilitate clinical translation of the find-
ings. Therefore, our study did not attempt to dissect the 
on-target mechanism of combined RNR-WEE1 inhibi-
tion. Additional investigations, such as RRM2 or WEE1 
knockdown, RNA interference or CRISPR-based gene 
editing, will be required to clarify this point. Further-
more, since our study was restricted to in vitro investi-
gations, we cannot make any statement about potential 
adverse side effects of combined RNRi-WEE1i treatment. 
Future xenograft studies may shed light on the toxicity of 
this drug combination.

Conclusion
This study suggests that the combination of RNRi and 
WEE1i may be an effective strategy for the therapy of ES. 
It thus provides a basis for preclinical in vivo and poten-
tially clinical development of this drug combination. 
Since the combination of RNRi with either ATRi [25] 
or WEE1i (this study) showed similar anti-ES activity in 
vitro, a relevant clinical question will be which combi-
nation might be more effective and/or less systemically 
toxic.
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