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Abstract: Environmental pollution is a major threat that increases day by day due to various activities.
A wide variety of organic pollutants enter the environment due to petrochemical activities. Organic
contamination can be unsafe, oncogenic, and lethal. Due to environmental issues worldwide,
scientists and research communities are focusing their research efforts on this area. For the removal
of toxic organic pollutants from the environment, photocatalysis-assisted degradation processes have
gained more attention than other advanced oxidation processes (AOPs). In this manuscript, we
report a novel photocatalysis of copper and lanthanum incorporating cerium oxide (CeO2) loaded
on graphene oxide (Cu/La/CeO2/GO) nanocomposites successfully synthesized by hydrothermal
techniques. XRD results showed the presence of dopant ions and a crystalline structure. FESEM
images showed that the surface morphology of the synthesized nanocomposites formed a rod-
like structure. The highlight of this study is the in-situ synthesis of the novel Cu/La/CeO2/GO
nanocomposites, which manifest higher photodegradation of harmful organic dyes (Rhodamine
B (RhB), Sunset Yellow (SY), and Cibacron Red (CR)). In Cu/La/CeO2/GO nanocomposites, the
dopant materials restrict the rapid recombination of photoinduced electron–hole pairs and enhance
the photocatalytic activity. The degradation percentages of RhB, SY, and CR dye solution are 80%,
60%, and 95%, respectively. In summary, the synthesized nanocomposites degrade toxic organic dyes
with the help of visible light and are suitable for future industrial applications.

Keywords: visible light; degradation; wastewater; Rhodamine B; sunset yellow; cibacron red;
nanocomposites

1. Introduction

Every living organism in the world depends on water. Moreover, only a small percent-
age of the freshwater in the world is available for drinking and agriculture [1]. However,
the rapid growth of human activities, such as urbanization and industrialization, has had
a major impact on water resources. Industries such as the textile, leather, paper, medical,
pulp, and dyeing industries release their effluent into water resources without any pu-
rification, causing water pollution [1–3]. A higher amount of wastewater is generated by
the textile industry than by other industries. Effluent from the textile industry contains a
wide variety of dyes, which make the water colored, toxic, and carcinogenic for all living
organisms. During the dyeing process, 1–20% of the dye is lost, and it is directly disposed
of in water resources [4–6]. This wastewater contains high amounts of anthraquinone and
azo and heteropoly aromatic dyes. Among the textile dyes, azo dyes are a special class of
dye and are widely used, constituting 60–70% of all dye products [2,7–10]. Azo dyes are
classified by their aromatic compounds, which include one or more azo groups (–N=N–).
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Therefore, the wastewater from that industry is highly harmful to human and aquatic life
because the waste products have serious impacts on the environment [10–12].

To develop suitable techniques for the degradation and mineralization of dye-polluted
wastewater, many techniques are applied to degrade dye effluent, as follows: (1) physical
methods, such as membrane filtration, flotation, and sedimentation; (2) biological methods;
and (3) chemical methods, such as chemical coagulation, photocatalysis, Fenton or Fenton-
like oxidation, and ozone (O3) oxidation processes [13–15]. Although those treatment
methods have some advantages, they cannot fully degrade organic contaminants in indus-
trial wastewater [16]. Among the emerging techniques for textile effluent decontamination,
advanced oxidation processes (AOPs) are capable of mineralizing non-biodegradable and
toxic organic compounds [9,16,17]. AOPs are generally based on the in situ generation of
more active reactive species (OH•, H2O2, O3, O2, and O2

•−) [12,18]. In AOPs, the oxidation
process is primarily responsible for the removal of textile effluents. In recent decades,
metal oxide nanoparticles have attracted research efforts due to their high photocatalytic
activity and stability. Particularly, nano-sized ceria (CeO2) photocatalysis for the oxidation
of organic compounds has intrinsic advantages over other types of photocatalysis because
of its properties [19]. Ceria is a ceramic material used in fields such as fuel cells, gas sensors,
phosphors, polishing materials, energy storage devices, and catalysis.

For these applications, the research community constantly seeks to enhance the physic-
ochemical properties of ceria to attain better performance. Ceria is an emerging photocata-
lyst for dye wastewater treatment, and it has a bandgap of 3.2–3.4 eV, which is similar to the
bandgap of TiO2 [20,21]. Hence, ceria can be significantly enhanced by tuning the bandgap,
size, interface, and surface structure via doping with trivalent and divalent cations in the
crystal lattice. The reduction capability of ceria, from the Ce4+ ionic state to Ce3+ with the
incorporation of oxygen vacancies, makes it a strong contender for use as a catalyst or
photocatalyst. Copper oxide (CuO) is a narrow-bandgap (1.2 eV) p-type semiconductor
material that shows excellent catalytic properties [22–24]. The incorporation of copper
ions into the fluorite-type crystal structure of ceria can enhance its properties, such as the
oxygen storage capacity, sintering temperature, and photocatalytic activity. A synergetic
effect between Cu+/Cu2+ and Ce3+/Ce4+ results in higher interfacial redox activity, and
at the same time, the catalytic ability of Cu-doped CeO2 is changed or enhanced [25].
Moreover, the important trivalent metal ions that are generally considered include Sm3+,
Eu3+, Sc3+, Gd3+, and La3+, among others. La3+ has important applications in various
fields, particularly in electronic devices, photocatalysis, and optical and solid oxide fuel
cells. When trivalent La ions are doped into the ceria crystal lattice, the La3+ ions replace
Ce4+ ions and create a charge imbalance, which introduces oxygen vacancies into the
surface of the material. These surface defects are mainly responsible for the improvement
of the photocatalytic properties of the photocatalyst. Moreover, an efficient strategy is
to deposit the photocatalysts on conducting substrates to enhance the conductivity and
dispersibility [26–29].

Graphene, as a two-dimensional, hexagonal, single-layered carbon, has attracted atten-
tion to non-metal catalysts. Anchoring Cu/La/CeO2 catalysts on graphene is an important
solution for engineering the photocatalytic activity of Cu/La/CeO2. To the best of our
knowledge, no Cu/La/CeO2/GO-related photocatalytic application has been achieved
under visible light to date. In this study, we synthesized Cu/La/CeO2/GO nanocom-
posites through hydrothermal techniques. The photocatalytic ability of the synthesized
nanocomposites was studied using three different organic dyes (RhB, SY, and CR) under
irradiation with visible light. The role of reactive radicals was studied with the help of free
radical scavenging techniques. A possible degradation reaction mechanism for RhB, SY,
and CR dyes was explored to illustrate the reaction involved in photocatalysis. The results
revealed that Cu/La/CeO2/GO nanocomposites have a high potential for degradation of
organic compounds under visible-light irradiation.
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2. Materials and Methods

Cerium (III) nitrate hexahydrate (Ce(NO3)3.6H2O), copper (II) nitrate trihydrate
(CuH6N2O9), lanthanum (III) nitrate hexahydrate (La(NO3)3.6H2O), and sodium hydrox-
ide (NaOH) were purchased from Sigma-Aldrich, Taiwan. Any other modifications and
purifications were allowed for these materials. Moreover, double-distilled (DI) water was
used in all experiments.

2.1. Synthesis of Graphene Oxide (GO)

Modified Hummers’ preparation techniques were used to prepare the graphene oxide
(GO) [30]. In this experiment, 10 g of graphite powder was introduced into concentrated
sulfuric acid (100 mL) with 2 g of sodium nitrate and stirred in an ice-water bath to control
the solution temperature. Then, 5 g of potassium permanganate was added to the above
mixture, and the temperature of the solution was held at 20 ◦C until the mixture turned
green. The mixed solution was transferred to another water bath with a temperature of
35 ◦C, and 400 mL of DI water and 20 mL of hydrogen peroxide solution were added to
the solution before it was stirred for 1 h to extract potassium permanganate. Finally, the
solution was washed and cleaned with DI water several times. The cleaned GO solution
was dried and heated in a hot-air oven at 90 ◦C for 24 h.

2.2. Synthesis of Cu/La/CeO2/GO Nanocomposites

Hydrothermal techniques were used to synthesize Cu/La/CeO2/GO composites.
Equal (0.1) molar ratios of copper, cerium, and lanthanum precursor were placed into
separate beakers containing 20 mL of DI water. Those solutions were simultaneously
stirred magnetically for 30 min to obtain homogenous mixtures. After that, the copper and
lanthanum solutions were added dropwise into the cerium solution under magnetic stirring,
and 0.2 M NaOH solution was added as a reducing agent. The mixed solution was steadily
stirred for 1 h at ambient temperature. After stirring, 100 mg of reduced graphene oxide
was added to the above solution, which was further stirred for 1 h The resulting composite
solution was transferred to a statin-less, steel-lined autoclave and then heated in a hot-air
oven at 120 ◦C for 12 h. After the hydrothermal process, the autoclave was cooled naturally
at room temperature. The Cu/La/CeO2/GO composites were centrifuged and washed
with DI water and ethanol several times, and then the obtained composites were dried
in an oven at 90 ◦C for 24 h. The obtained powder composites were calcinated at 600 ◦C
for 3 h. The crystalline structure, surface morphology, functional groups, and elemental
surface chemistry of the synthesized composites were characterized by methods such as
X-ray diffractometry (XRD) and field-emission scanning electron microscopy (FE–SEM).

2.3. Characterization of Cu/La/CeO2/GO Nanocomposites

The hydrothermally prepared nanocomposites were characterized with various tech-
niques. The diffraction patterns of the nanocomposite were observed using X-ray diffraction
(XRD, D2 Phaser, Bruker, CuKα radiation (λ = 1.54 Å)). The surface structure and topogra-
phy were obtained with a field-emission scanning electron microscope equipped with an
energy-dispersive X-ray spectroscope ((FESEM-EDX, JEOL, JSM-7610F, Tokyo, Japan), and
(Hitachi Regulus 8100, JEOL JPS-9030, AlKα, Tokyo, Japan)), and by transmission electron
microscopy (TEM, JEM-2100F, JEOL, Tokyo, Japan). In addition, the degradation of wastew-
ater polluted with organic compounds was analyzed with a UV–visible spectrophotometer
(SHIMADZU, UV-2600, Kyoto, Japan).

2.4. Photocatalytic Activity

The photocatalytic performance of the hydrothermally synthesized nanocomposites in
the degradation of three different organic dyes, namely, RhB, SY, and CY, (Figure 1) under
visible-light irradiation was studied. The three different organic dyes were prepared with
concentrations of 10−4 moles. A 50 W tungsten-halogen lamp (340–850 nm, UV to NIR)
was used as the visible-light source. For the degradation process, 100 mL of dye solution
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was irradiated under visible light. For this experiment, 20 mg of nanocomposites was
added to the dye solution, which was constantly stirred. Before the experiment, the dye
solution with a catalyst added was stirred continuously at 30 min under the dark condition
to acquire an adsorption–desorption equilibrium condition. The solution mixture was
irradiated with visible light for 90 min under magnetic stirring, and every 10 min, 5 mL
of the solution was extracted for the study of the degradation/decolorization of dye with
a UV–visible spectrometer. Before the absorbance analysis, the extracted samples were
filtered using Whatman filter paper to remove the photocatalyst.
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Figure 1. Chemical structure of three different dyes.

3. Results and Discussion
3.1. Study of the Crystalline Structure

The XRD patterns of the hydrothermally synthesized Cu/La/CeO2/GO nanocom-
posites are depicted in Figure 2. The diffraction peaks of CuO were attributed to the
(−110), (111), (−112), (−202), (020), (202), (−113), (022), (311), and (004) planes, which
indicated the monoclinic structure of CuO crystals (JCPDS: 01-089-5895). The peaks due to
CeO2 also indicated the (111), (200), and (220) planes, which were attributed to the cubic
fluorite-structured CeO2 crystals (JCPDS: 03-065-0859) [19–22]. In addition, La2O3-related
peaks were attributed to the (002), (011), and (003) planes, which were indexed to the
hexagonal structure of La2O3 crystals (JCPDS: 01-083-1349) [23–26]. The GO-related peaks
also presented 2θ at 22.74◦. These results indicated that the dopant ions were successfully
doped into the ceria lattice structure due to the differences between the ionic radii of the
Cu2+ (77 pm), La3+ (103 pm), and Ce4+ (102 pm) ions, respectively.
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The nanocomposite crystalline size was also calculated using Scherrer’s equation:

D = kλ/(β(1/2) cosθ) (1)

where the incident X-ray wavelength (1.54 Å) and crystalline factor (0.94) are denoted
as λ and k, respectively, and the full width at half maximum (FWHM) of the peak and
the Bragg angles are denoted as β and θ, respectively. The average crystalline size of the
synthesized nanocomposites was approximately 16.43 Å. We concluded that the doping
of Cu/La atoms decreased the crystalline size of the prepared nanocomposites based on
the literature.

3.2. Surface Morphology and Topography Studies of Nanocomposites

The Cu/La/CeO2/GO morphology and structures were studied by FE–SEM analysis
(Figure 3a,b). The analysis revealed that the hydrothermal synthesis methods caused the
nanocomposites of Cu/La/CeO2/GO to grow into rod-like structures of uniform size.

TEM images of Cu/La/CeO2/GO nanocomposites are shown in Figure 3c,d. Figure 3a,b
presents TEM images of aggregated Cu/La/CeO2/GO nanocomposites showing that the
particle size was small. In addition, the nanocomposites were irregular in shape, and
their size was uneven. STEM–EDS elemental mapping showed the presence of all the
doping materials, as shown in Figure 3e–h. It was concluded that the Cu, La, Ce, and C in
Cu/La/CeO2/GO nanocomposites overlapped.
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3.3. Nanocomposites Surface Chemistry Studies

Figure 4 depicts the XPS survey and core-level high-resolution spectra of the Cu/La/
CeO2/GO nanocomposites. XPS is highly surface sensitive, which allows identification of
unknown materials and oxidation states on the surfaces of nanocomposites. The XPS survey
spectra clearly showed the presence of all the dopant materials in the nanocomposites
(Figure 4a). The high-resolution XPS cerium compound Ce 3d core-level spectra are
depicted in Figure 4b. The core-level spectra were deconvoluted into multiple peaks
corresponding to the Ce4+ and Ce3+ oxidation states. These peaks at 887.7, 891.9, 900.3,
906.1, 910.7, and 918.2 eV represented the Ce4+-binding energies. In addition, the other
binding energies of Ce3+ were at 884.4, 889.4, 903.1, and 908.7 eV. The presence of Ce3+ sites
on the surface of nanocomposites is crucial for the catalytic performance and regenerative
capacity (Ce3+ ↔ Ce4+) of ceria nanoparticles [31–33]. Figure 4c presents the Cu 2p high-
resolution spectra of Cu core-level spectra. The Cu 2p3/2 and Cu 2p1/2 peaks at 935.5
and 954.9 eV, respectively, indicated the formation of the Cu+ (Cu2O) oxidation state in
the nanocomposites. Concurrently, the Cu2+ oxidation peaks also formed at 942.1, 946.9,
960.5, and 966.2 eV, indicating the presence of the Cu2+ (CuO) oxidation state. The results
revealed that the copper was present in two forms (CuO and Cu2O) of oxidation states in the
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nanocomposites. Figure 4d also depicts the high-resolution La 3d core-level spectra. These
core-level spectra were deconvoluted into four peaks, all of which originated from the spin-
orbital splitting of the La 3d5/2 and La 3d3/2 states of La3+ oxidation. Figure 4e depicts the
high-resolution deconvoluted spectra of C1s for Cu/La/CeO2/GO nanocomposites, which
had four oxygen-related functional groups at 285.8, 287.02, 288.78, and 289.5 eV. These
oxygen-related functional groups were attributed to the C–O (hydroxyl), C=O (carbonyl),
O–C=O (carboxylic acid), and carbonate bonds, respectively [34–38]. Moreover, the C-C
(aromatic) and π–π interaction bonds were also present at 284.6 and 290.3 eV, respectively.
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3.4. Photocatalytic Activity of Synthesized Cu/La/CeO2/GO Nanocomposites

The photocatalytic degradation ability of the hydrothermally synthesized nanocom-
posites was studied via the degradation of organic pollutants. The photodegradation
of harmful organic dyes such as RhB, SY, and CR with nanocomposites and catalyst
alone required a long treatment time. Moreover, the degradation process did not occur
in the absence of visible light (Figure 5b). The degradation efficiency of the nanocom-
posites was studied using RhB dye, and the results confirmed that under visible light,
the catalyst had higher photocatalytic degradation efficiency. In addition, the degrada-
tion of the RhB dye solution by the nanocomposites was in the following order: pure
CeO2 < CeO2/GO < Cu/La/CeO2 (Figure S1 in Supplementary Materials). Figure 5a
depicts the analysis of the degradation path of RhB at the maximum wavelength of
550 nm [7,8]. The maximum absorption intensity of the RhB decreased with increasing
treatment time, indicating that the degradation percentage depended on the treatment time.
The degradation percentage of the aqueous solution was calculated by using the following
expression [7,8]:

Degradation percentage =
(C0 − Ct)

C0
× 100 (2)

where the dye concentrations before and after treatment are denoted as C0 and Ct.
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For a comparative study, the photocatalytic activity of the synthesized nanocomposites
was also analyzed for two other toxic dyes, namely, SY and CR. The photocatalytic degra-
dation of SY and CR organic dyes was observed using a UV–visible spectrophotometer at
wavelengths of 482 and 500 nm (Figure 6a,c) (Figures S2 and S3), respectively [10,14]. The
feature of Cu/La/CeO2/GO nanocomposite-assisted photodegradation is the shorter treat-
ment time for the degradation of toxic organic dyes. Thus, it was found that the synthesized
nanocomposites were highly efficient for the degradation of harmful organic dyes under
visible-light irradiation (Figure 6b,d). Moreover, maximum mineralization was observed in
the case of CR dye degradation within 50 min of treatment time. Therefore, because the
synthesized nanocomposites tend to form a higher number of electron–hole pairs, higher
numbers of hydroxyl and superoxide radicals were generated. These reactive radicals were
the major factor in the degradation of the organic pollutants under visible light.
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3.4.1. Photocatalytic Degradation Mechanisms

The catalyst-assisted photocatalytic degradation reaction is an advanced oxidation
process organized by a photocatalyst under visible-light irradiation. Pure CeO2 is a wide-
bandgap material that is active under UV light and allows rapid recombination of photoin-
duced electron–hole pairs. These are the main reasons for decreases in the photocatalytic
ability of the CeO2 nanoparticles. The Ce3+ ion, which is an excellent photocatalyst, is
obtained from the introduction of oxygen vacancies in the Ce4+ lattice. Moreover, divalent
or trivalent metal ion doping influenced the photocatalytic ability of CeO2, resulting in
higher degradation activity. Hence, the doping of Cu2+/La3+ divalent and trivalent ions
replaced the Ce4+ with Ce3+ in the CeO2 lattice and created surface defects in the form of
oxygen vacancies, while the bandgap of CeO2 was also reduced, which increased the light
absorption capability in the visible region [19–22,26]. These oxygen vacancies were largely
responsible for the photocatalytic activity of the materials. Moreover, in Cu/La/CeO2/GO
composites, GO acts as an electron transporter and acceptor because of its two-dimensional
planar structure. Thus, the conduction band photogenerated electrons from Cu/La/CeO2
transferred to the target pollutant directly with the help of GO. Concurrently, the trans-
ferred electrons on GO directly interacted with surface oxygen to produce more superoxide
radicals (O2

•−). Additionally, the recombination rate of the photogenerated charge carrier
in the CeO2 lattice was effectively restricted by the ions of the dopant materials. Therefore,
the visible light on the surface of the photocatalyst absorbed more energy, resulting in
electrons transferring from the valence band to the conduction band. Photogenerated
electron–hole pairs were generated, as were electrons in the conduction band and positive
holes in the valence band. The positive holes in the valence band reacted with H2O to
generate more active hydroxyl radicals (OH•), while the excited electrons reacted with
adsorbed oxygen to give superoxide radicals (O2

•−). These reactive species were the major
reason for the degradation of the targeted organic pollutants. Hence, these reactive species
directly interacted with organic molecules, causing oxidation, and excitation occurred.
Then the organic molecules transformed into non-hazardous organic molecules, water, and
carbon dioxide. The photocatalytic degradation of organic effluents under visible light is
expressed in the following equations [27–29]:

hν + Cu/Ce/La/GO→ CeO (h+ + e−) + GO (e−) (3)

GO(e−) + O2 → rGO + O2
•− (4)

e− + O2 → O2
•− (5)

Ce4+ + Cu+ = Ce3+ + Cu2+ (6)

Ce4+ + La3+ → Ce3+ (7)

Ce3+ + H2O2 → OH• + OH- + Ce4+ (8)

Ce4+ + H2O2 → Ce3+ + OH + H2O (9)

e− + O2 → O2
•− (10)

O2
•− + OH• + organic pollutants→ H2O + CO2 (degradation of dyes) (11)

3.4.2. First-Order Kinetic Rate Constant Reaction

The photocatalytic degradation of three different dyes was further evaluated with the
help of a pseudo-first-order kinetic rate constant, which can be expressed by the following
equation [9]:

ln (C/C0) = −kt (12)

where C and C0 are the concentrations of dyes before and after the treatment. The rate
constant and treatment time are denoted as k and t, respectively. Figure 7 shows the first-
order rate constant for the treatment time. The kinetic constants of RhB, SY, and CR were
−0.0114,−0.0188, and−0.0421 min, with half-lives of 0.7018, 0.7314, and 0.7445 min−1, and
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the correlation coefficients (R2) were 0.9876, 0.94062, and 0.93102, respectively. Therefore,
the rate constant mainly depended on the treatment time because the treatment time
increased with increases in the rate constant. As a result, the degradation of RhB, SY,
and CR was influenced by the generation of higher concentrations of various reactive
species [9–13].
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3.4.3. Radical-Trapping Experiments

Photocatalyst-assisted degradation mainly depends on the generation of various
reactive species, electrons, and holes. During the degradation reaction, the photocatalyst
produces electron–hole pairs under visible-light irradiation, which generates reactive
species such as OH•, H2O2, H+, O, and O2

•−. These active species play a vital role in
the photocatalytic degradation process. Radical scavenger experiments were carried out
using the nanocomposites to evaluate the types of reactive species that formed during the
photocatalytic degradation process. In this experiment, 2 M of ethylenediaminetetraacetic
acid disodium salt (Na2EDTA) and isopropanol (IPA) were used as superoxide radicals and
hydroxyl radical scavengers, respectively [39,40]. Figure 8 shows the results of the radical
scavenger degradation of three different dyes. RhB, SY, and CR dye degradation was
higher under visible-light irradiation in the absence of any radical scavengers. However,
the degradation efficiency decreased in the presence of Na2EDTA and IPA, respectively.
The results strongly suggested that OH• was generated as the major active species for the
degradation process, though the holes also contributed to the degradation process in the
photocatalytic process.
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3.4.4. Nanocomposite Stability Studies

To inspect the stability of the synthesized nanocomposites, a recycling experiment was
conducted, and the results are depicted in Figure 9. Three successive cycles were conducted
for RhB dye degradation under visible-light irradiation using 2 wt% Cu/La/CeO2/GO.
The synthesized nanocomposite showed excellent efficiency (86%) of RhB dye degradation
even in the third cycle, demonstrating the stability of the nanocomposites.
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4. Conclusions

Cerium oxide (CeO2) is a highly efficient photocatalyst, as it absorbs more visible light
than TiO2 and ZnO. The crystalline structure, surface morphology, and topography of the
hydrothermally synthesized nanocomposites were studied. Cerium oxide was engineered
by doping with Cu and La metal ions to increase visible-light absorption. Moreover, the
efficiencies of the photocatalytic degradation of RhB, SY, and CR organic dyes were 80%
(RhB), 60% (SY), and 95% (CR) with treatment times of 90, 90, and 50 min, respectively.
The photocatalytic degradation was improved by doping the metal ions, as well as the
graphene oxide, due to the higher electron mobility, high light absorption capability,
and restrictions of electron–hole pair recombination. In this regard, higher amounts of
various reactive radicals were generated, which facilitated the effective degradation of
the organic compounds. Accordingly, the hydrothermally synthesized Cu/La/CeO2/GO
nanocomposites appear to be promising photocatalysts for the degradation of toxic organic
dyes in aqueous solution.
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10.3390/ma14206143/s1, Figure S1: (a–c) Absorption spectrum of Rhodamine-B dye for various
catalysis with re-spect to treatment time, Figure S2: (a–c) Absorption spectrum of sunset yellow dye
for various catalysis with respect to treatment time, Figure S3: (a–c) Absorption spectrum of cibacron
red dye for various catalysis with respect to treatment time.
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17. Bilińska, L.; Gmurek, M. Novel trends in AOPs for textile wastewater treatment. Enhanced dye by-products removal by catalytic
and synergistic actions. Water Resour. Ind. 2021, 26, 100160. [CrossRef]

18. Kumar, M.J.K.; Kalathi, J.T. Low-temperature sonochemical synthesis of high dielectric Lanthanum doped Cerium oxide
nanopowder. J. Alloys Compd. 2018, 748, 348–354. [CrossRef]

19. Tinwala, H.; Shah, P.; Siddhapara, K.; Shah, D.; Menghani, J. Investigation of ionic conductivity of lanthanum cerium oxide nano
crystalline powder synthesized by co precipitation method. J. Cryst. Growth 2016, 452, 54–56. [CrossRef]

20. Ranjith, K.S.; Dong, C.-L.; Lu, Y.-R.; Huang, Y.-C.; Chen, C.-L.; Saravanan, P.; Asokan, K.; Kumar, R.T.R. Evolution of visible
photocatalytic properties of Cu-doped CeO2 nanoparticles: Role of Cu2+-mediated oxygen vacancies and the mixed-valence
states of Ce ions. ACS Sustain. Chem. Eng. 2018, 6, 8536–8546. [CrossRef]

21. Rostami, M. Photodecomposition and adsorption of hazardous organic pollutants by Ce-doped ZnO@ Ce-doped TiO2-N/S-dual
doped RGO ternary nano-composites photocatalyst for water remediation. J. Mol. Struct. 2019, 1185, 191–199. [CrossRef]

22. Mai, H.; Zhang, D.; Shi, L.; Yan, T.; Li, H. Highly active Ce1−xCuxO2 nanocomposite catalysts for the low temperature oxidation
of CO. Appl. Surf. Sci. 2011, 257, 7551–7559. [CrossRef]

23. Zhang, D.; Mai, H.; Huang, L.; Shi, L. Pyridine-thermal synthesis and high catalytic activity of CeO2/CuO/CNT nanocomposites.
Appl. Surf. Sci. 2010, 256, 6795–6800. [CrossRef]

24. Zhang, D.; Qian, Y.; Shi, L.; Mai, H.; Gao, R.; Zhang, J.; Yu, W.; Cao, W. Cu-doped CeO2 spheres: Synthesis, characterization, and
catalytic activity. Catal. Commun. 2012, 26, 164–168. [CrossRef]

25. Li, Y.; Cai, Y.; Xing, X.; Chen, N.; Deng, D.; Wang, Y. Catalytic activity for CO oxidation of Cu–CeO2 composite nanoparticles
synthesized by a hydrothermal method. Anal. Methods 2015, 7, 3238–3245. [CrossRef]

26. Lim, W.F.; Cheong, K.Y. Oxygen vacancy formation and annihilation in lanthanum cerium oxide as a metal reactive oxide on
4H-silicon carbide. Phys. Chem. Chem. Phys. 2014, 16, 7015–7022. [CrossRef]

27. Velliyan, S.; Rajendran, V. Study on the effect of Ce3+ doping on structural, morphological and optical properties of CuO
nanoparticles synthesized via combustion technique. Phys. B Condens. Matter 2021, 613, 413015. [CrossRef]

28. Deus, R.; Cortés, J.; Ramirez, M.; Ponce, M.A.; Andres, J.; Rocha, L.; Longo, E.; Simões, A. Photoluminescence properties of
cerium oxide nanoparticles as a function of lanthanum content. Mater. Res. Bull. 2015, 70, 416–423. [CrossRef]

29. Chahal, S.; Singh, S.; Kumar, A.; Kumar, P. Oxygen-deficient lanthanum doped cerium oxide nanoparticles for potential
applications in spintronics and photocatalysis. Vacuum 2020, 177, 109395. [CrossRef]

30. Sakthinathan, S.; Keyan, A.K.; Rajakumaran, R.; Chen, S.M.; Chiu, T.W.; Dong, C.; Vinothini, S. Synthesis of N-rGO-
MWCNT/CuCrO2 Catalyst for the Bifunctional Application of Hydrogen Evolution Reaction and Electrochemical Detection of
Bisphenol-A. Catalysts 2021, 11, 301. [CrossRef]

31. Vinothkumar, G.; Arunkumar, P.; Mahesh, A.; Dhayalan, A.; Babu, K.S. Size-and defect-controlled anti-oxidant enzyme mimetic
and radical scavenging properties of cerium oxide nanoparticles. New J. Chem. 2018, 42, 18810–18823. [CrossRef]
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