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Abstract 

Objective:  Use next-generation sequencing to develop microsatellite loci that will provide the variability necessary 
for studies of genetic diversity and population connectivity of two New World vulture species.

Results:  We characterized 11 microsatellite loci for black vultures (Coragyps atratus) and 14 loci for turkey vultures 
(Cathartes aura). These microsatellite loci were grouped into 3 multiplex panels for each species. The number of alleles 
among black vulture samples ranged from 2 to 11, and 3 to 48 among turkey vulture samples.
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Introduction
New World vultures (Cathartidae) are a monophyletic 
group that diverged from other bird species 55 mil-
lion years ago [1]. This group of scavenging-specialized 
birds provide critical ecosystem services [2], and one 
genus of this family is critically endangered, California 
Condor (Gymnogyps). Data from the US Breeding Bird 
Survey indicate that during 2005–2015, turkey vulture 
(Cathartes aura) populations grew by 3.1% annually and 
black vultures (Coragyps atratus) increased 5.9% annu-
ally during the same period [3]. These two species are 
well adapted to human-dominated landscapes [2, 4] and 
coincident with rising populations have been reports of 
increased property damage, livestock depredations, and 
aircraft safety issues associated with vultures [4–6].

Throughout most of their range, black vultures are resi-
dent year-round, but they do make irregular short-term 
movements in response to adverse weather conditions 
[4]. Turkey vultures are highly migratory with large num-
bers of wintering birds enlarging local populations in the 
southern US from late fall to early spring [4]. Both spe-
cies have expanded their ranges northward over the past 
50 years [4]. Using molecular methods to further investi-
gate the ecological characteristics of these species could 

help inform our understanding of the roles these birds 
play in their present and expanded range. The high muta-
tion rate and heritability of microsatellites make them 
ideal markers for studying demographic patterns [7].

Microsatellite loci have been developed for several Old 
World vulture species [8–11], yet only one  New World 
vulture species, the critically endangered California con-
dor (Gymnogyps californianus) [12]. Therefore, our goal 
was to use next-generation sequencing to develop micro-
satellite panels for two broad-ranging, genetically-diverse 
species of New World vultures, turkey vultures and 
black vultures. Development of species-specific mark-
ers reduces the risk of ascertainment bias that can occur 
when applying markers developed in other species [13]. 
These markers  could be used to reliably assess genetic 
diversity, population connectivity, relatedness among 
individuals, demographic parameters, and population 
boundaries for black and turkey vultures. In concert with 
ecological field studies such as satellite telemetry stud-
ies, this information can be used to better understand the 
ecology of black and turkey vultures across their ranges.

Main text
Methods
Tissue samples (muscle) for microsatellite primer devel-
opment were collected from black vultures and turkey 
vultures from control efforts in Alachua County, Florida 
in April 2004 and February 2011, respectively. Control 
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efforts were performed on military bases and conducted 
by the USDA, Wildlife Services, National Wildlife 
Research Center personnel to reduce collisions between 
vultures and military aircraft. DNA for shotgun genome 
sequencing and primer development was isolated from 
one tissue sample from each species using a modified 
ammonium acetate protocol (Gentra Puregene Kit QIA-
GEN, Hilden, Germany). Shotgun sequencing libraries 
were developed using a Nextera DNA Sample Prepara-
tion Kit (Illumina, San Diego, California, USA) following 
the manufacturer’s instructions. Libraries were pooled 
and sequenced in one 300  bp PE MiSeq v.3 (Illumina) 
run. The Perl script PAL_FINDER_v0.02.03 [14], which 
uses Primer3 [15] for primer design, was used to identify 
and design primers for potential microsatellite loci. The 
MiSeq run FASTA files were submitted to GenBank (SRA 
accession: PRJNA498072).

Samples used to evaluate amplification and heterozy-
gosity of selected primer pairs were obtained from sin-
gle populations of black vultures (n = 30) and turkey 
vultures (n = 30). Black vulture blood  samples were col-
lected at Everglades National Park, Florida in Novem-
ber and December 2012. Turkey vulture blood  samples 
were collected at Key West Naval Air Station, Florida in 
January and February 2013. DNA was isolated from the 
blood samples using the DNeasy Blood & Tissue Kit and 
QIAcube robotic workstations (QIAGEN). M13 primer 
sequences were added to the 5′ end of the forward primer 
in each primer pair. PCRs were performed in a 9-µL 
reaction using 1.0 µL of template DNA, 0.2  µL GoTaq® 
Flexi DNA polymerase (Promega, Madison, Wisconsin, 
USA), 2.0 µL 5× buffer (Promega), 1.0 µL dNTP (Pro-
mega), 1.0 µL MgCl2 25  mM (Promega), 1.0 µL of each 
10  µM primer, and 1.0 µL of 1  µM  M13 primer labeled 
with 6-FAM. All reactions were amplified on a Master-
cycler ep Gradient thermal cycler (Eppendorf, Hamburg, 
Germany) using the thermal profile initial denaturation 
at 94 °C for 5 min followed by 35 cycles of 94 °C for 30 s, 
58  °C for 45 s, and 72  °C for 45 s. Cycling was followed 
with a final extension for 5 min at 60  °C. PCR products 
were added to a mixture of HiDi Formamide (Life Tech-
nologies, Carlsbad, California, USA) and GeneScan 500 
LIZ Size Standard (Life Technologies). Samples were run 
on an ABI 3500 genetic analyzer (Life Technologies) and 
loci performance was manually evaluated using GeneMa-
pper v.5.0 (Life Technologies).

Loci were organized into three panels based on PCR 
product size range and primer complementarity using 
Multiplex Manager v.1.2 [16] for each species (Tables 1, 
2, 3). Forward primers were ordered from Applied Bio-
systems (Life Technologies) with the 5′ fluorescent dyes 
6-FAM, VIC, NED, and PET and PIG-tails [17] added 
to the 5′ end of the reverse primer to reduce stutter 

(Tables  1, 2). PCR chemistry and primer volumes were 
optimized for each panel using QIAGEN 2× Multiplex 
PCR Master Mix and 1.0 µL of template DNA. All reac-
tions were amplified on an Eppendorf Mastercycler ther-
mal cycler using the thermal profile: initial denaturation 
at 94 °C for 5 min followed by panel-specific number of 
cycles (Table 3) of 94 °C for 30 s, 58 °C for 45 s, and 72 °C 
for 45 s. Cycling was followed with a final extension for 
5  min at 60  °C. Samples were genotyped as described 
above.  

Loci were tested for Hardy–Weinberg equilibrium 
(HWE) and linkage disequilibrium with observed and 
expected heterozygosity calculated using Arlequin v.3.5 
[18]. Microsatellite loci were checked for the presence of 
null alleles using Micro-Checker v.2.2.3 [19].

Microsatellite loci designed for each species were 
tested for PCR amplification in the opposite vulture spe-
cies (BLVU markers with turkey vulture DNA samples 
and TUVU markers with black vulture DNA samples). 
Ten samples were used to test for amplification in each 
species. Cross-species PCR amplification was performed 
at the optimized PCR conditions for the target species.

Results
The MiSeq run generated 9,772,498 (2 × 4,886,249) reads 
for black vultures and PAL_FINDER identified 59,440 
reads with microsatellites. Primer pairs were selected 
randomly and targeted di-nucleotide, tri-nucleotide, and 
tetra-nucleotide repeats with minimal complexity in the 
repeat regions. Based on cost limitations, 58 black vul-
ture microsatellite loci were tested for amplification and 
polymorphism. Of these 11 loci were identified as poly-
morphic and amplified consistently. For these 11 loci, 
the number of alleles ranged from 2 to 11, observed het-
erozygosity ranged from 0.06 to 0.74, and the expected 
heterozygosity ranged from 0.06 to 0.84 (Table 1). After 
Bonferroni corrections [20], three loci showed significant 
deviation from HWE (BLVU-05, BLVU-11, and BLVU-
38) and no loci showed significant evidence of linkage. 
Estimates of heterozygote deficiency used to detect the 
presence of null alleles in microsatellite data [19, 21, 22] 
indicated the presence of null alleles in the black vulture 
loci BLVU-05, BLVU-11, and BLVU-38.

The MiSeq run generated 9,248,148 (2 × 4,624,074) 
reads for turkey vultures and PAL_FINDER identified 
60,353 reads with microsatellites. Primer pairs for 59 tur-
key vulture microsatellite loci were tested for amplifica-
tion and polymorphism. Of these 14 loci were identified 
as polymorphic and amplified consistently. For these 14 
loci, the number of alleles ranged from 3 to 47, observed 
heterozygosity ranged from 0.07 to 1.00, and the expected 
heterozygosity ranged from 0.39 to 0.99 (Table 2). After 
Bonferroni corrections [20], 2 loci showed significant 



Page 3 of 6Wostenberg et al. BMC Res Notes          (2019) 12:257 

deviation from HWE (TUVU-14 and TUVU-36) and no 
loci showed significant evidence of linkage. Null alleles 
were detected in the turkey vulture loci TUVU-14, 
TUVU-21, TUVU-36, and TUVU-39.

The majority of loci for each species amplified when 
tested using template DNA from the opposite species 
under optimized PCR conditions. Eight of 11 (72.7%) 
BLVU loci amplified using turkey vulture DNA samples, 
and 10 of 14 (71.4%) TUVU loci amplified using black 
vulture DNA samples (Additional file  1: Tables S1, S2). 
Five loci reliably amplified in both species (n = 10 of each 
species) and produced unique allelic distributions for 
each species and could thus be used to separate the spe-
cies and identify each uniquely in a single multiplexed 
PCR panel (Additional file 1: Table S3).

Discussion
The development of these microsatellite loci provides a 
new tool for studying New World vulture populations. 
Data generated from these markers could help better 
understand vulture demography, population structure, 
and relationships among individuals at a roost site. While 

both sets of microsatellite loci were variable for the sam-
ples tested, the TUVU loci included multiple hyper-
variable loci (loci with ≥ 20 alleles: TUVU-39, 20 alleles; 
TUVU-03, 30 alleles; TUVU-37, 34 alleles; and TUVU-
01, 47 alleles; Table 2). Not considering these four mark-
ers, the remaining 10 TUVU loci averaged 7.9 alleles 
per marker. The BLVU loci averaged 4.8 alleles across 11 
markers.

The evaluation of amplification of markers developed in 
one species in the other species (e.g. black vulture mark-
ers tested in turkey vultures) revealed that at least half of 
each set of loci generate PCR products in the other spe-
cies at the optimized PCR conditions, however only a few 
loci from each group performed particularly well. Among 
the BLVU loci, BLVU-09, BLVU-18, BLVU-27, BLVU-33, 
BLVU-36, and BLVU-39 generated clear polymorphic 
chromatograms with distinct alleles and could be used 
in addition to the turkey vulture microsatellite panels. 
Among the TUVU loci, TUVU-18, TUVU-21, TUVU-31, 
TUVU-33, and TUVU-45 generated clear polymorphic 
chromatograms with distinct alleles in black vultures.

Table 1  Primer sequences, motifs, and  characteristics of  the  11 microsatellite loci developed and  optimized 
from the black vulture (Coragyps atratus)

n is the sample size, NA is the number of alleles, HO is the observed heterozygosity, and HE is the expected heterozygosity
a  Showed significant deviation from Hardy–Weinberg equilibrium after Bonferroni corrections [20]
b  Showed evidence of null alleles

Locus Panel Dye label Primer sequence (5′–3′); F, 
forward; R, reverse

Repeat motif n Size range (bp) NA HO HE

BLVU-36 A 6-FAM F: CTG​AAC​GGA​AAC​AGA​GCT​GC AAAG​(7) AACG​(6) 30 223–242 4 0.68 0.66

R: CAC​TAT​GAC​CCC​TTA​TGA​CTC​TGG​

BLVU-11a,b A VIC F: CTT​GAA​GAG​CAA​AGT​CGG​GG AGT​(13) TTC​(11) 30 225–237 3 0.10 0.42

R: AGG​ACA​AAT​GTG​CCT​TTC​GG

BLVU-37 A PET F: CTA​ATG​GCT​CCA​GAC​CCA​GG TATC​(12) 30 258–266 3 0.52 0.46

R: TTT​TGT​CCA​CCT​CCT​GTC​CC

BLVU-05a,b B 6-FAM F: GAC​CTA​TCC​ACA​TGA​ATG​CC GA(37) AG(17) 30 295–317 9 0.32 0.64

R: GCC​TCT​GTT​AGT​ATT​CCA​TCCCC​

BLVU-38a,b B 6-FAM F: TGT​CAC​CTG​GAG​CTC​TGT​CC ATCT​(13) 30 168–188 5 0.29 0.62

R: TCA​TTA​GCA​TGA​AAT​GAA​GGTGC​

BLVU-09 B VIC F: CCT​CCA​TAG​ATG​TGC​CCT​AACC​ GAAA​(12) AAGG​(18) 30 272–320 5 0.39 0.39

R: ACA​GCT​TCT​CCC​TGT​GTC​CC

BLVU-18 B PET F: CTC​TCT​CTA​ACC​GGC​TCT​ACGC​ GTT​(10) 30 117–123 2 0.06 0.06

R: GAA​GAA​GAG​AGA​GGC​GGC​G

BLVU-33 C 6-FAM F: GGG​TAG​CAA​GAG​AAA​GAG​GGG​ AGAC​(6) GGAA​(7) 30 350–406 11 0.71 0.84

R: ATT​GTG​CAT​TTC​CTC​CTG​GC

BLVU-39 C VIC F: CTT​CCT​TCC​TCT​GCC​TGC​ TGCC​(14) 30 109–129 5 0.74 0.70

R: TGA​ACA​GGA​CTT​GAT​TGT​CTCC​

BLVU-40 C NED F: CCT​CTA​TTG​GCT​TCA​GCA​GG TTCC​(8) 30 274–282 3 0.45 0.50

R: GCA​AGA​GGA​AGA​GTG​GAA​GG

BLVU-27 C PET F: CCA​AAA​CCT​GCC​ACT​GTC​C AAAT​(12) 30 214–226 3 0.65 0.59

R: GGT​GAC​ATT​TTA​ATG​CTG​GGC​
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These microsatellite markers represent a robust subset 
of possible markers identified by our genome sequenc-
ing results. Financial limitations and planned stud-
ies for these markers resulted in the identified markers 
being sufficient  for our purposes. However, for other 

researchers with time and resources to pursue other 
markers, we have provided a summary of our PAL_
FINDER results for each species (Additional files 2, 3). 
We have identified the primer combinations we tested 
and made comments regarding their performance. In 

Table 2  Primer sequences, motifs, and  characteristics of  the  14 microsatellite loci developed and  optimized 
from the turkey vulture (Cathartes aura)

n is the sample size, NA is the number of alleles, HO is the observed heterozygosity, and HE is the expected heterozygosity
a  Showed significant deviation from Hardy–Weinberg equilibrium after Bonferroni corrections [20]
b  Showed evidence of null alleles

Locus Panel Dye label Primer sequence (5′–3′); F, forward; R, reverse Repeat motif n Allele size 
range (bp)

NA HO HE

TUVU-21b A 6-FAM F: TTG​TTT​GGC​TCC​ATG​TTT​GG CT(10) AC(8) AC(10) 30 202–210 3 0.20 0.39

R: ACA​CCC​ATT​CAA​ATG​CAA​GC

TUVU-06 A 6-FAM F: GAG​TCA​GCA​ATG​GTG​GTT​GC GAA​(25) GAA​(8) 30 326–533 17 0.77 0.83

R: ACT​GTA​GCA​GTG​ACG​GCA​GC

TUVU-31 A VIC F: AAG​TAA​ATA​GCT​GTC​TAA​CTG​TTC​ATCC​ TG(15) AT(8) 30 122–152 8 0.73 0.81

R: CTT​TCA​TGC​CTT​GAT​TTC​CC

TUVU-23 A NED F: GAA​ACG​GTA​TTT​GCC​TTG​CC TTCC​(12) 30 155–161 6 0.60 0.60

R: AAA​ACT​CCA​AGG​GGA​GGA​GG

TUVU-39b A PET F: GGT​TCA​GGT​GAG​AGA​AAC​CCC​ AAAG​(23) 30 188–311 20 0.77 0.90

R: GAA​AAC​CCC​TCT​GGG​AAA​CC

TUVU-14a,b B 6-FAM F: CCT​AGT​CCG​GAA​ACA​CAG​GG ATT​(14) ATT​(6) 30 347–371 7 0.50 0.75

R: TTA​AAC​TGA​AAT​GTG​TGA​AGA​AGC​G

TUVU-07 B 6-FAM F: TGG​GAT​GTG​AAG​GAG​AAC​AGC​ GGAA​(28) 30 160–226 15 0.87 0.92

R: TGA​CTC​CTG​TAC​AAA​ATT​AGA​TCC​TTCC​

TUVU-45 B VIC F: AAT​AAT​CCA​TGA​GCA​CCA​GGC​ GTTT​(14) 30 131–158 7 0.50 0.45

R: CCC​ATA​AAC​TCA​AGC​ATT​GGC​

TUVU-03 B PET F: AGG​TTC​ATT​AGC​AGA​GGC​GG AAAG​(9) AAAG​(18) 30 261–375 30 1.00 0.96

R: GTG​GCA​GAA​AGA​AGC​TGA​AGG​

TUVU-01 C 6-FAM F: TCA​TAC​ACT​GGT​CGT​TCG​CC TC(6) CTTT​(24) CTTT​(12) 30 290–640 47 1.00 0.99

R: ATT​GAA​ATG​CCC​TAC​AGA​CGG​

TUVU-18 C VIC F: GGT​TCT​GCT​GAT​TTC​AAC​TTTGC​ TAA​(11) TGA​(9) 30 240–249 4 0.50 0.47

R: TTC​ACC​ACA​GGA​AAC​CAA​AGC​

TUVU-37 C NED F: GCT​GGT​TTT​GAA​CAG​TGA​GGG​ AAAG​(27) AAAG​(8) 30 263–415 34 0.93 0.97

R: TTA​CAG​GTG​GGG​AAT​CTC​AGG​

TUVU-33 C PET F: GCA​AAT​CAG​CCT​CTG​GTG​G TA(13) TA(6) 30 330–339 9 0.77 0.83

R: TTA​ACT​TGG​AGG​CCA​GGA​GG

TUVU-36a,b C PET F: CAC​ACG​CAC​ACA​ATG​CAC​C GC(8) 30 169–173 3 0.07 0.45

R: CAC​TGC​GCG​AGT​GTG​AGG​

Table 3  Multiplex PCR characteristics for  the  three optimized black vulture (Coragyps atratus) microsatellite panels 
(BLVU) and the three optimized from the turkey vulture (Cathartes aura) microsatellite panels (TUVU)

Ta is the annealing temperature and no. of cycles is the number of amplification cycles in the thermal cycler protocol

Panel Reaction volume 
(µL)

Ta (°C) No. of cycles Panel Reaction volume 
(µL)

Ta (°C) No. of cycles

BLVU-A 10.0 58 32 TUVU-A 13.0 58 34

BLVU-B 9.0 58 32 TUVU-B 16.0 58 37

BLVU-C 9.0 58 32 TUVU-C 15.0 58 44
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the meantime, we have provided a set of markers that are 
polymorphic, perform reliably, and thus can be used for 
population genetics studies of these two New World vul-
ture species.

Limitations

•	 Many of the black vulture loci have only a few alleles 
so more loci might be needed for some research 
questions.

•	 Microsatellites are neutral markers, so they are not 
useful when investigating adaptation/selection.

•	 We did not spend much time optimizing loci; we only 
used ones that worked in initial screenings. There-
fore, we may have excluded loci that would work and 
be polymorphic with more effort.

Additional files

Additional file 1: Table S1. Summary of cross-species PCR amplification 
of black vulture (Coragyps atratus) microsatellite primers tested on turkey 
vulture (Cathartes aura) samples under optimized PCR conditions. Table 
heading abbreviations are n is the sample size and NA is the number of 
alleles. Table S2. Summary of cross-species PCR amplification of turkey 
vulture (Cathartes aura) microsatellite primers tested on black vulture 
(Coragyps atratus) samples under optimized PCR conditions. Table heading 
abbreviations are n is the sample size and NA is the number of alleles. 
Table S3. A potential panel of markers that can provide species identifica‑
tion between BLVU and TUVU. NA is the number of alleles and TA is the 
annealing temperature for the primer pair. Dye is the fluorophore for the 
marker pair to be visualized on an ABI3500 genetic analyzer. 

Additional file 2. PAL_FINDER results for black vulture (Coragyps atratus) 
next-generation sequencing run on Illumina MiSeq. MiSeq run files 
were submitted to the National Center for Biotechnology Information 
Sequence Read Archive (accession number PRJNA498072). 

Additional file 3. PAL_FINDER results for turkey vulture (Cathartes aura) 
next-generation sequencing run on Illumina MiSeq. MiSeq run files 
were submitted to the National Center for Biotechnology Information 
Sequence Read Archive (accession number PRJNA498072).

Abbreviations
PCR: polymerase chain reaction; bp: base pair; PE: paired end; BLVU: black 
vulture; TUVU: turkey vulture; HWE: Hardy–Weinberg equilibrium; NA: number 
of alleles; HO: observed heterozygosity; HE: expected heterozygosity; Ta: 
annealing temperature.
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