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Abstract
Prior	to	1900,	coyotes	(Canis latrans)	were	restricted	to	the	western	and	central	re-
gions	of	North	America,	but	by	the	early	2000s,	coyotes	became	ubiquitous	through-
out	 the	 eastern	 United	 States.	 Information	 regarding	 morphological	 and	 genetic	
structure	 of	 coyote	 populations	 in	 the	 southeastern	 United	 States	 is	 limited,	 and	
where	data	 exist,	 they	 are	 rarely	 compared	 to	 those	 from	other	 regions	of	North	
America.	We	assessed	geographic	patterns	in	morphology	and	genetics	of	coyotes	
with	special	consideration	of	coyotes	in	the	southeastern	United	States.	Mean	body	
mass	of	coyote	populations	increased	along	a	west‐to‐east	gradient,	with	southeast-
ern	coyotes	being	intermediate	to	western	and	northeastern	coyotes.	Similarly,	prin-
cipal	 component	 analysis	 of	 body	mass	 and	 linear	 body	measurements	 suggested	
that	southeastern	coyotes	were	intermediate	to	western	and	northeastern	coyotes	in	
body	size	but	exhibited	shorter	tails	and	ears	from	other	populations.	Genetic	analy-
ses	 indicated	that	southeastern	coyotes	represented	a	distinct	genetic	cluster	that	
differentiated	strongly	from	western	and	northeastern	coyotes.	We	postulate	that	
southeastern	coyotes	experienced	lower	immigration	from	western	populations	than	
did	northeastern	coyotes,	and	over	time,	genetically	diverged	from	both	western	and	
northeastern	 populations.	Coyotes	 colonizing	 eastern	North	America	 experienced	
different	selective	pressures	than	did	stable	populations	in	the	core	range,	and	we	
offer	 that	 the	 larger	 body	 size	 of	 eastern	 coyotes	 reflects	 an	 adaptation	 that	 im-
proved	dispersal	capabilities	of	individuals	in	the	expanding	range.
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1  | INTRODUC TION

Species	 commonly	 respond	 to	 shifting	 selective	 pressures	 caused	
by	 environmental	 heterogeneity	 by	 exhibiting	 morphological	 and	
genetic	variability	across	their	geographic	ranges	(Fine,	2015;	Gould	
&	 Johnston,	 1972;	Mayr,	 1970;	 Sexton,	McIntyre,	 Angert,	 &	 Rice,	
2009).	In	return,	morphological,	genetic,	and	behavioral	divergence	
among	populations	may	reduce	gene	flow	and	facilitate	speciation.	
Therefore,	 understanding	 how	 geographic	 variation,	 the	 basis	 of	
genetic	variation,	originates	and	which	species	traits	are	subject	to	
geographic	variation	can	be	of	great	scientific	importance.	This	un-
derstanding	requires	investigating	how	geographic	variation	results	
from	the	fit	between	phenotype	and	environment	and	how	spatial	
differences	 in	 genetics	 and	morphology	 translate	 into	population‐
level	differences	(Sexton	et	al.,	2009).

Species	ideal	for	studying	geographic	variation	should	occur	over	
broad	geographic	areas	encompassing	a	range	of	climates	and	exhibit	

substantial	 variation	 in	 morphological	 and	 genetic	 traits.	 Coyotes	
(Canis latrans)	have	existed	in	North	America	since	the	Pleistocene	
(Nowak,	1979,	2002;	Tedford,	Wang,	&	Taylor,	2009),	currently	oc-
cupy	most	biomes	of	North	America	(Hody	&	Kays,	2018),	and	are	
considered	 to	 be	 one	 of	 the	more	 phenotypically	 and	 genetically	
variable	 canids	 (Nowak,	 1979;	 vonHoldt,	 Cahill	 et	 al.,	 2016;	Way,	
2007).	Although	their	pre‐Columbian	Holocene	range	included	the	
central	 and	 western	 regions	 of	 North	 America	 from	 55°	 to	 20°N	
(Hody	&	Kays,	2018;	Jackson,	1951;	Nowak,	1979,	2002),	the	pres-
ence	 of	 coyotes	 in	 eastern	North	America	 during	 the	 Pleistocene	
(Nowak,	2002;	Tedford	et	 al.,	 2009)	 indicates	 that	 coyotes	have	a	
history	of	range	expansions	and	contractions	that	may	be	attributed	
to	 emergence	 and	 loss	 of	 other	 Canis	 competitors	 (Meachen	 &	
Samuels,	 2012;	 Nowak,	 2002),	 and	 changes	 in	 climate	 and	 land-
scapes	 (Koblmüller,	 Wayne,	 &	 Leonard,	 2012;	 Van	 Valkenburgh,	
1999).	The	arrival	of	coyotes	 in	eastern	North	America	during	 the	
20th	 century	 has	 generated	much	 interest	 because	 it	 occurred	 in	

F I G U R E  1  Map	of	the	progressive	
expansion	of	the	coyote's	present	
distribution	from	1685	to	2018
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multiple	 colonization	 routes	 and	 resulted	 in	 noticeable	 changes	 in	
phenotype	and	hybridization	with	remnant	wolf	(C. lupus, C. lycaon, 
and	C. rufus)	populations	(Heppenheimer,	Cosio	et	al.,	2018;	Hody	&	
Kays,	2018;	Kays,	Curtis,	&	Kirchman,	2010;	Nowak,	2002;	Way	&	
Lynn,	2016).	Much	of	this	interest	has	been	driven	to	understand	the	
coyote's	ability	to	adapt	to	large‐scale,	anthropogenic	alterations	to	
the	landscape,	accurately	describe	their	ecological	niche,	and	under-
stand	how	hybridization	with	wolves	facilitated	coyote	adaptation	to	
novel	habitats	in	eastern	North	America	(Ellington	&	Murray,	2015;	
Kays	et	al.,	2010;	Otis,	Thornton,	Rutledge,	&	Murray,	2017).

1.1 | Colonization of eastern North America

The	 recent	 range	expansion	by	coyotes	 in	North	America	appears	
to	have	occurred	across	three	independent	expansion	events	after	
European	colonization	 (Hody	&	Kays,	2018;	Nowak,	2002;	Young,	
1951;	Figure	1).	The	initial	post‐Columbian	coyote	range	expansion	
event	occurred	when	coyotes	expanded	their	southern	range	from	
central	Mexico	 into	 Central	 America	 during	 the	 16th	 century	 fol-
lowing	the	introduction	of	cattle	to	the	region	by	the	Spanish	(but	
see	 Hidalgo‐Mihart,	 Cantú‐Salazar,	 González‐Romero,	 &	 López‐	
González,	2004).	The	second	event	was	a	northward	expansion	by	
coyotes	from	western	and	central	Canada	into	the	Yukon	and	Alaska	
that	coincided	with	the	gold	rushes	of	the	late	19th	century.	The	final	
and	last	expansion	event	occurred	in	eastern	North	America	during	
the	20th	century	in	two	spatially	isolated	fronts	that	began	simulta-
neously	during	the	early	1900s.

Unlike	 the	 coyote's	 previous	 range	 expansions,	 its	 spread	 into	
eastern	North	 America	 during	 the	 20th	 century	 is	well	 described	
because	 coyote	 occurrence	 was	 commonly	 documented	 at	 local	
scales	 (Hody	&	Kays,	2018;	Nowak,	1979,	2002).	The	easternmost	
range	 of	 coyotes	 during	 the	 pre‐Columbian	 Holocene	 until	 about	
1900	 followed	 the	 Prairie	 Peninsula	 east	 of	 the	Mississippi	 River	
through	 Illinois,	 southern	Wisconsin,	 and	 northern	 Indiana	 (Cory,	
1912;	Hody	&	Kays,	2018;	Jackson,	1961;	Mumford,	1969;	Nowak,	

2002;	 Young,	 1951).	 After	 1900,	 coyotes	 from	 that	 region	moved	
eastward	 across	 the	Great	 Lakes	Region	 into	 eastern	Canada	 and	
New	England.	There	is	no	evidence	that	coyotes	occurred	east	of	the	
prairies	farther	south,	as	Bailey	(1905)	reported	that	coyotes	were	
rare	east	of	the	semiarid	mesquite	region	that	extended	eastward	as	
far	as	north‐central	Texas.	After	1900,	coyotes	from	the	western	and	
central	 regions	of	Oklahoma	and	Texas,	and	others	 from	northern	
Missouri,	moved	 into	 the	 eastern	 regions	 of	Oklahoma	 and	 Texas	
and	 into	Alabama,	Arkansas,	Louisiana,	Mississippi,	and	Tennessee	
before	 colonizing	 the	 Gulf	 and	 Atlantic	 regions	 of	 the	 Southeast	
(Nowak,	 1979,	 2002).	 Both	 eastern	 fronts	 later	 converged	 in	 the	
mid‐Atlantic	 region	during	 the	 later	20th	 century	 (Bozarth,	Hailer,	
Rockwood,	Edwards,	&	Maldonado,	2011;	Heppenheimer,	Cosio	et	
al.,	2018;	Hody	&	Kays,	2018).

1.2 | Regional designations

Although	 eastern	 coyote	 populations	 are	morphologically	 and	 ge-
netically	 distinct	 from	 their	western	 counterparts	 (Heppenheimer,	
Brzeski,	Hinton	et	al.,	2018;	Kays	et	al.,	2010;	Nowak,	1979;	Way,	
2007),	 there	 is	 no	 clear	delineation	between	eastern	 and	western	
populations.	Recently,	Hody	and	Kays	(2018)	confirmed	that	earlier	
range	descriptions	by	Young	(1951)	and	Nowak	(1979)	were	correct	
in	stating	that	coyote	distribution	during	the	1800s	did	not	extend	
into	 forested	 ecoregions	 of	 the	 eastern	 United	 States.	 Transition	
zones	between	the	Great	Plains	and	the	eastern	temperate	forests	
region	occur	 in	at	 least	seven	American	states	and,	 if	these	transi-
tion	 zones	potentially	 represent	boundaries	between	western	and	
eastern	 coyote	 populations,	 natural	 resources	 agencies	 for	 these	
states	are	managing	two	variants	of	coyotes.	Nevertheless,	studies	
typically	delimit	intraspecific	boundaries	among	coyote	populations	
(e.g.,	 Sacks,	Bannasch,	Chomel,	&	Ernest,	2008;	Kays	et	 al.,	 2010;	
Stronen	et	al.,	2012;	Way,	2013;	Way	&	Lynn,	2016)	and	populations	
are	 routinely	 classified	 arbitrarily	 by	 researchers	 as	western,	mid‐
Atlantic,	midwestern,	southwestern,	southeastern,	or	northeastern	
with	little	consistency	among	studies.

Herein,	we	recognize	verified	distributional	limits	of	coyotes	circa	
1900	to	separate	western	and	eastern	coyote	populations	along	the	
Great	Plains	and	eastern	temperate	forests	ecoregions	(Hody	&	Kays,	
2018;	Nowak,	1979;	Young,	1951).	Recently,	Heppenheimer,	Brzeski,	
Hinton	et	al.	(2018)	conducted	a	comprehensive	genomewide	survey	
of	coyote	populations	across	much	of	the	contiguous	United	States	
and	southeastern	Canada	and	reported	three	distinct	genetic	clus-
ters	with	one	cluster	corresponding	to	the	pre‐Columbian	Holocene	
range,	 a	 second	cluster	 corresponding	 to	 the	northeastern	expan-
sion	 range,	 and	 a	 third	 cluster	 corresponding	 to	 the	 southeastern	
expansion	range.	They	also	observed	moderately	high	 frequencies	
of	intermediate	ancestry	assignments	in	the	mid‐Atlantic	region	(e.g.,	
North	 Carolina,	 Kentucky,	 Virginia,	 Pennsylvania),	 consistent	 with	
previous	studies	 that	 reported	a	secondary	contact	zone	between	
northeastern	and	southeastern	populations	existed	 in	mid‐Atlantic	
(Bozarth	et	al.,	2011;	Heppenheimer,	Cosio	et	al.,	2018).	 In	agree-
ment	with	previous	research	(Nowak,	1979,	2002),	Heppenheimer,	

F I G U R E  2  Mean	body	mass	of	coyote	populations	of	the	
continental	United	States.	Letters	above	the	bars	represent	
statistical	differences	among	regions	within	male,	female,	and	
maximum	weight	categories	(p	<	0.05,	Tukey's	test)
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Brzeski,	 Hinton	 et	 al.	 (2018)	 also	 suggested	 that	 western	 coyote	
populations	in	Missouri,	Oklahoma,	Nebraska,	and	Texas	served	as	
source	 populations	 for	 southeastern	 coyotes.	 Therefore,	 we	 used	
36°30′N,	 the	 northern	 extent	 of	 Arkansas,	 Tennessee,	 and	North	
Carolina,	to	separate	southeastern	and	northeastern	coyotes	in	this	
study,	as	this	likely	represents	the	secondary	contact	zone	reported	
by	previous	research.

1.3 | Coyotes in the southeastern United States

During	the	mid‐20th	century,	research	on	Canis	ecology	in	the	south-
eastern	United	States	focused	on	discriminating	among	coyote,	red	
wolf,	 and	 hybrid	 populations	 in	 Texas,	 Oklahoma,	 Arkansas,	 and	
Louisiana	because	 it	was	 feared	that	 the	 last	 red	wolf	populations	
were	going	extinct	through	introgressive	swamping	of	coyote	genes	
(McCarly,	 1962;	 Nowak,	 1970;	 Paradiso,	 1965;	 Pimlott	 &	 Joslin,	
1968).	Once	red	wolves	were	declared	extinct	in	the	wild	(USFWS,	
1989),	 research	 focused	 on	 describing	 the	morphological	 and	 ge-
netic	structure	of	coyotes	in	the	western	regions	of	the	Southeast	
(Hamilton	 &	 Kennedy,	 1986;	 Lydeard	 &	 Kennedy,	 1988;	 Lydeard,	
Leberg,	&	Baumgardner,	1986;	Peppers,	Kennedy,	&	Kennedy,	1996).	
As	coyotes	had	not	established	populations	along	the	Atlantic	Coast	
until	the	turn	of	the	21st	century,	there	has	been	a	limited	amount	
of	research	on	morphological	and	genetic	characteristics	of	south-
eastern	coyotes,	making	it	difficult	to	accurately	compare	southeast-
ern	coyotes	to	western	and	northeastern	coyotes.	Regardless,	it	has	
been	argued	 that	 coyotes	 in	 the	 southeastern	United	States	are	a	
more	typical	variant	of	western	coyotes	comprising	small	amounts	
of	wolf	and	dog	introgression	(Adams,	Leonard,	&	Waits,	2003;	von-
Holdt,	 Kays,	 Kays,	 Pollinger,	 &	Wayne,	 2016;	Way	 &	 Lynn,	 2016;	
Wheeldon	&	Patterson,	2017).

There	 continues	 to	 be	 reports	 of	 large	 canids	 in	 rural	 areas	 of	
the	Southeast	where	coyotes	 replaced	 red	wolves,	 suggesting	 that	
coyotes	 in	 the	 region	were	morphologically	 and	genetically	 altered	
through	 hybridization	with	wolves	 (Giordano	&	 Pace,	 2000;	Mech	
&	Nowak,	 2010).	Genetic	 influence	 of	 red	wolves,	 as	 expressed	 in	
the	morphology	of	coyotes,	has	remained	in	some	areas	of	the	region	
(Heppenheimer,	Brzeski,	Wooten	et	al.,	2018;	Murphy,	Adams,	Cox,	&	
Waits	2018).	For	example,	Giordano	and	Pace	(2000)	assessed	mor-
phometrics	of	coyote‐like	canids	at	Sabine	National	Wildlife	Refuge,	
Louisiana,	 and	 found	 that	 coyotes	 on	 the	 refuge	were	 larger	 than	
other	Louisiana	coyotes,	but	smaller	than	red	wolves.	Indeed,	mean	
body	mass	of	male	(20.2	kg)	and	female	(17.6	kg)	coyotes	reported	in	
Giordano	and	Pace	(2000)	was	similar	to	those	reported	by	Hinton	
and	Chamberlain	(2014)	for	genetically	identified	male	(17.8	kg)	and	
female	(16.3	kg)	red	wolf–coyote	hybrids.

In	theory,	genetic	introgression	may	provide	novel	genotypes	se-
lected	for	 in	response	to	new	environments	and	niches	 (Anderson	
&	Stebbins,	1954;	Arnold,	1992;	Arnold	&	Kunte,	2017;	Hamilton	&	
Miller,	2016).	A	widely	accepted	explanation	for	the	regional	shift	in	
coyote	body	size	is	that	hybridization	with	wolves	introduced	adap-
tive	variation	that	contributed	to	larger	size,	which	allowed	eastern	
coyotes	greater	use	of	white‐tailed	deer	(Odocoileus virginianus;	Kays	

et	al.,	2010;	Power	et	al.,	2015;	Way	&	Lynn,	2016;	vonHoldt,	Kays	
et	 al.,	 2016).	 Although	 hybridization	 can	 provide	 adaptive	 varia-
tion	to	coyotes,	deer	populations	were	mostly	extirpated	from	the	
southeastern	 United	 States	 when	 coyotes	 began	 colonizing	 the	
region	 during	 the	 mid‐20th	 century	 (McCabe	 &	 McCabe,	 1984;	
VerCauteren,	 2003).	 Indeed,	 approximately	 50,000	 white‐tailed	
deer	 from	Wisconsin	 and	 Texas	 were	 introduced	 throughout	 the	
Southeast	during	1930–1960	to	restore	deer	populations	in	the	re-
gion	(Adams	&	Hamilton,	2011;	McDonald	&	Miller,	2004).	If	pheno-
typic	 characteristics	 in	 coyote	 populations	 resulted	 from	 adaptive	
genetic	introgression	closely	reflecting	local	adaptations,	then	char-
acteristics	 of	 southeastern	 coyotes	 should	 reflect	 adaptations	 to	
landscapes	with	 low	prey	availability	 (e.g.,	 low	deer	densities)	 and	
low	interspecific	competition	(e.g.,	 lower	coyote	densities)	that	ex-
isted	during	the	mid‐20th	century.

1.4 | Study objectives

Our	objective	was	 to	describe	patterns	 in	morphology	and	genetics	
of	southeastern	coyotes	and	compare	morphometrics	and	genetics	of	
these	coyotes	to	those	from	other	regions.	We	believe	that	examining	
the	whole	pattern	of	geographical	variation	in	a	suite	of	morphological	
and	genetic	traits	may	provide	interesting	insight	into	the	complexity	of	
geographic	variation	in	coyotes	and	help	develop	hypotheses	that	best	
explain	differences	observed	between	western	 and	eastern	popula-
tions.	For	example,	body	mass	has	not	traditionally	been	used	to	delin-
eate	subspecific	boundaries	of	coyotes	(Jackson,	1951;	Nowak,	1979),	
but	mass	is	the	most	common	phenotypic	trait	observed	and	reported	
by	recent	studies	assessing	differences	between	western	and	eastern	
coyotes	(Thurber	&	Peterson,	1991;	Gompper,	2002;	Way,	2007,	2013;	
but	see	Kays	et	al.,	2010).	Also,	 recent	genomic	research	 (vonHoldt,	
Cahill	et	al.,	2016;	vonHoldt	et	al.,	2011)	suggested	that	hybridization	
with	dogs	may	have	affected	eastern	coyote	morphology,	as	evident	
by	black	coat	color	variants	in	eastern	coyotes.	Therefore,	concomitant	
with	morphometrics,	microsatellite	data	allow	us	to	explore	the	contri-
bution	of	dog	introgression	to	eastern	coyote	morphology.	Regardless,	
variation	in	morphological	and	genetic	traits	resulting	from	the	inter-
play	of	geographic	and	ecological	factors	has	important	consequences	
for	key	population	characteristics,	such	as	reproduction,	density,	and	
dispersal.	Such	differences	between	eastern	and	western	coyotes	have	
played	an	important	role	in	stimulating	debates	regarding	ecology,	evo-
lution,	and	conservation	of	North	American	Canis	species	(Hohenlohe	
et	al.,	2017;	Kyle	et	al.,	2006;	Rutledge,	Devillard,	Boone,	Hohenlohe,	
&	White,	2015;	Rutledge,	Wilson,	Klütsch,	Patterson,	&	White,	2012;	
vonHoldt,	Cahill	et	al.,	2016;	vonHoldt	et	al.,	2017;	Way	&	Lynn,	2016;	
Wilson	et	al.,	2000).

2  | MATERIAL S AND METHODS

2.1 | Morphometric analysis

We	 compiled	 body	 mass	 and	 linear	 body	 measurements	 of	 coy-
otes	 from	 two	 sources.	 From	 our	 first	 source,	 we	 compiled	 body	
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measurements	from	ongoing	and	past	projects	in	the	southeastern	
United	States	(Alabama,	Georgia,	Mississippi,	North	Carolina,	South	
Carolina,	 and	 Tennessee)	 conducted	 by	 the	 authors.	 Coyotes	 for	
these	projects	were	captured	using	foothold	traps	(Victor	#1.5	and	
#3	Softcatch,	Woodstream	Corporation,	Lititz,	Pennsylvania,	USA)	
with	 offset	 jaws.	 Animals	were	 typically	 restrained	 using	 a	 catch-
pole,	muzzle,	 and	hobbles,	 but	 some	were	 chemically	 immobilized	
with	an	intramuscular	injection	of	ketamine	HCl	and	xylazine	HCl	to	
inspect	inside	the	mouth	for	injuries.	We	determined	sex	and	weight,	
and	 estimated	 age	 by	 tooth	 wear	 (Gier,	 1968;	 Gipson,	 Ballard,	
Nowak,	 &	 Mech,	 2000).	 We	 categorized	 coyotes	 ≥2	years	 old	 as	
adults,	1–2	years	old	as	 juveniles,	 and	<1	year	old	as	pups.	Animal	
handling	 methods	 followed	 guidelines	 approved	 by	 the	 American	
Society	 of	Mammalogists	 (Sikes,	 Gannon,	 &	 the	 Animal	 Care	 and	
Use	 Committee	 of	 the	 American	 Society	 of	 Mammalogists	 2016)	
and	were	approved	by	the	University	of	Georgia	Institutional	Animal	
Care	and	Use	Committee	(A2014	08‐025‐R2).

Postcranial	measurements	included	body	length	(anterior	tip	of	
the	nose	pad	 to	 the	 tail	base),	 tail	 length	 (tip	of	 the	 fleshy	part	of	
the	tail	to	the	tail	base),	hind	foot	length	(hock	to	the	tip	of	the	dig-
ital	pads),	and	shoulder	height	 (tip	of	the	scapula	to	tip	of	the	dig-
ital	 pads).	Cranial	measurements	 included	 length	of	 head	 (edge	of	
the	premaxillary	to	the	most	posterior	point	of	the	occipital	bone),	
width	of	head	(most	widely	separated	points),	and	ear	length	(edge	
of	the	external	auditory	canal	to	the	tip	of	the	ear).	Although	these	
projects	 used	 similar	 anatomical	 reference	 points,	 measurements	
were	recorded	from	live	coyotes	by	multiple	biologists	and	trappers	
under	varying	field	conditions	that	undoubtedly	 introduced	 incon-
sistencies	to	our	dataset.	The	most	obvious	inconsistencies	involved	
the	length	of	head	and	width	of	head	measurements.	For	example,	
some	projects	recorded	length	of	head	by	measuring	the	length	from	
the	premaxillary	to	the	most	posterior	point	of	 the	occipital	bone,	
whereas	others	recorded	the	length	from	the	edge	of	the	nose	pad	
to	the	most	posterior	of	the	occipital	bone.	To	address	this	problem,	
we	replaced	the	linear	measurements	of	length	of	head	and	width	of	
head	in	our	analyses	with	a	head	length	to	width	ratio	(length	divided	
by	width).	Geometric	shape	expressed	by	ratios	is	invariant	for	a	par-
ticular	measure	of	size	and	provides	important	descriptions	of	traits	
without	loss	of	information	(Klingenberg,	2016;	Mosimann,	1970).

From	our	second	source,	we	obtained	body	mass	and	linear	body	
measurements	for	coyotes	throughout	the	entire	distribution	range,	
using	 several	 literature	databases	 (ISI,	Google	Scholar,	 JSTOR),	 lit-
erature	cited	in	papers	already	reviewed	(“snowball”	sampling),	and	
drawing	from	our	own	archives	of	publications,	books,	theses,	dis-
sertations,	and	technical	 reports	 (Table	S1).	Because	there	was	no	
selection	 bias	 in	 our	 criteria,	we	 believe	 this	 approach	 did	 not	 in-
troduce	any	systematic	bias.	We	included	studies	in	our	analyses	if	
they	provided,	at	minimum,	body	mass	of	≥15	coyotes	and	presented	
within‐group	 (e.g.,	 sex,	age)	means.	Because	body	traits	and	refer-
ence	points	used	 to	measure	 them	 in	 studies	varied,	we	compiled	
linear	body	measurements	from	other	studies	if	they	corresponded	
with	traits	measured	from	the	authors’	past	and	ongoing	projects,	as	
noted	above.

We	then	combined	mean	body	mass	and	linear	body	measure-
ments	for	individual	coyotes	obtained	from	the	literature	(2nd	data	
source)	with	averages	calculated	from	our	ongoing	and	past	proj-
ects	(1st	data	source),	to	create	a	dataset	of	mean	morphometric	
values	for	coyote	populations	sampled	across	their	current	range.	
To	 evaluate	 regional	 differences,	 we	 fit	 a	 linear	 mixed‐effects	
model	 (LMER)	 using	 the	 statistical	 software	 R	 (R	 Development	
Core	Team	2014)	for	comparing	mean	body	mass	and	linear	body	
measurements	among	the	3	populations.	The	LMER	included	mean	
body	mass	 and	 linear	 body	measurements	 as	 the	 response	 vari-
able,	 and	 regions	 as	 the	 explanatory	 variable	with	 random	error	
structures	to	account	for	repeated	sampling	within	U.S.	states	and	
Canadian	provinces.	We	then	used	a	type	III	analysis	of	variance	
(ANOVA)	 to	 provide	 inference	 on	 the	 parameters	 of	 our	 LMER.	
When	 differences	 were	 significant,	 pairwise	 comparisons	 were	
made	using	Tukey's	range	tests.

We	combined	body	mass	and	linear	body	measurements	for	 in-
dividual	coyotes	obtained	from	the	literature	(2nd	data	source)	with	
measurements	 collected	 from	 our	 ongoing	 and	 past	 projects	 (1st	
data	source),	to	create	a	multivariate	morphometric	dataset.	Because	
multivariate	morphometric	datasets	typically	contain	a	great	deal	of	
redundancy,	we	used	a	principal	component	analysis	(PCA;	JMP	soft-
ware;	SAS	Institute)	to	compress	this	highly	dimensional	dataset	into	
a	 lower	dimensional	one	to	extract	the	dominant,	underlying	gradi-
ents	of	variation	(principal	components;	Gotelli	&	Ellison,	2004).	The	
principal	components	(PCs)	are	weighted	linear	combinations	of	the	
original	variables	ordered	according	to	the	amount	of	variation	each	
PC	explained.	We	logarithmically	transformed	our	data,	as	body	mass	
was	measured	on	a	different	scale	than	linear	body	measurements.

For	our	PCA,	we	addressed	the	issue	of	missing	values	within	our	
morphometrical	dataset	by	using	the	restricted	maximum‐likelihood	
(REML)	method	to	create	a	completed	dataset	to	perform	the	PCA	
(Peng	 &	 Paul,	 2009).	 The	 REML	method	 uses	 a	 single	 imputation	
model	to	replace	missing	values	with	unbiased	estimators	within	the	
bounds	of	the	existing	data.	In	doing	so,	REML	allowed	for	missing	
value	 uncertainty	 to	 be	 incorporated	 into	 our	 PCA	 (Peng	 &	 Paul,	
2009).	We	used	the	latent	root	criterion	(PCs	with	eigenvalues	>1)	
as	a	stopping	rule	to	determine	the	number	of	significant	PCs	to	re-
tain	and	interpret	(McGarigal,	Cushman,	&	Stanford,	2000).	We	then	
based	our	interpretation	of	each	PC	on	those	variables	with	loadings	
≥0.40	or	≤	−0.40	and	placed	most	emphasis	on	those	with	loadings	
≥0.60	or	≤	−0.60	(McGarigal	et	al.,	2000).	We	used	variables	with	the	
strongest	loadings	to	interpret	the	ecological	meaning	of	each	PC.

2.2 | Genetic analysis

We	obtained	genetic	samples	for	analyses	from	tissue	(e.g.,	blood,	
ear,	liver,	tongue)	of	coyotes	(n	=	283)	collected	from	18	states	dur-
ing	2001–2015	 that	were	within	 the	 current	 coyote	 range	 in	 the	
United	States	(Table	S2).	In	a	minority	of	cases,	sampling	year	was	
unknown	but	presumed	to	fall	within	this	approximate	period.	We	
collected	ear	tissue	and	blood	samples	from	animals	captured	during	
some	research	projects	responsible	for	our	first	dataset,	whereas	
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other	 tissue	 was	 contributions	 opportunistically	 collected	 from	
hunters	and	trappers,	including	202	previously	published	samples	
(Heppenheimer,	Cosio	et	al.,	2018;	Table	S3).	Government	organiza-
tions,	such	as	Florida	Fish	and	Wildlife	Conservation	Commission,	
Ohio	Department	of	Natural	Resources,	United	States	Department	
of	 Agriculture,	 and	 United	 States	 Fish	 and	 Wildlife	 Service,	 ar-
chived	 most	 samples	 (Princeton	 University	 IACUC	 #1961A‐13).	
The	 remaining	 samples	 were	 obtained	 from	 the	 New	 York	 State	
Museum	 (NYSM‐zm14641;	 NYSM‐zm15534;	 NYSM_13643)	 and	
the	 Museum	 of	 Southwestern	 Biology	 (MSB:Mamm:142883;	
NK103336,	MSB:Mamm:156770;	NK154356,	MSB:Mamm:230707,	
MSB:Mamm:231525,	 MSB:Mamm:265339,	 MSB:Mamm:265659,	
MSB:Mamm:273966).	 In	addition	to	coyote	samples,	40	domestic	
dog	samples	(blood	or	buccal	swabs)	comprising	12	distinct	breeds	
were	donated	by	dog	owners	(Table	S3).

To	conduct	microsatellite	genotyping	on	all	283	canid	samples,	
DNA	was	extracted	using	the	DNeasy	Blood	and	Tissue	kit	(Qiagen,	
Louisville,	KY,	USA).	DNA	was	quantified	by	Qubit	2.0	Fluorometer	
(Thermo	Fisher	Scientific,	Carlsbad,	CA,	USA)	and	standardized	be-
tween	2	and	5	ng/µl.	Each	sample	was	genotyped	at	10	microsatel-
lite	 loci:	FH2001,	FH2004,	FH2010,	FH2137	 (Francisco,	Langston,	
Mellersh,	 Neal,	 &	 Ostrander,	 1996),	 FH2611,	 FH2658,	 FH3399	
(Guyon	 et	 al.,	 2003),	 Pez11,	 Pez16,	 and	 Pez17	 (Neff	 et	 al.,	 1999).	
Similar	 to	 Heppenheimer,	 Cosio	 et	 al.	 (2018),	 PCRs	 were	 a	 total	
volume	of	10	µl	 and	contained	1.5	µl	 (3–10	ng)	DNA,	5.0	µl	Type‐
It	 master	 mix	 (Qiagen),	 2.1	µl	 ddH2O,	 0.4	µl	 10	mg/ml	 BSA	 (New	
England	 Biolabs,	 Ipswich,	 MA),	 and	 1.0	µL	 of	 primer	 mix,	 which	
included	 a	 forward	 primer	 with	 a	 5′	 16	bp‐M13F	 sequence	 tag,	
a	 6‐FAM‐labeled	 complement	 to	 the	 M13F	 tag	 (Boutin‐Ganache,	
Raposo,	Raymond,	&	Deschepper,	2001)	and	an	unlabeled	reverse	
primer.	Cycling	 conditions	 included	an	 initial	 denaturation	at	95°C	
for	15	min,	 followed	by	25	cycles	 at	94°C	 for	30	s,	 59°C	 for	90	s,	
and	72°C	for	60	s,	 then	15	cycles	at	94°C	for	30	s,	53°C	for	90	s,	
and	 72°C	 for	 60	s,	with	 a	 final	 extension	 at	 60°C	 for	 30	min.	We	
included	22	 randomly	 selected	positive	 controls	 that	 amplified	≥3	
times	to	confirm	consistent	genotyping	across	PCRs.	To	ensure	our	
reagents	were	not	contaminated,	we	 included	water	controls	with	
each	reaction.	We	denatured	PCR	products	with	Hi‐Di	 formamide	
(Applied	Biosystems,	Foster	City,	CA,	USA)	and	LIZ	GeneScan	500	
size	standard	(Applied	Biosystems),	and	the	resulting	PCR	fragments	
were	 analyzed	 on	 an	ABI	 3730XL	 capillary	 sequencer.	Genotypes	
were	manually	called	in	GENEIOUS	v6.1.6	(Kearse	et	al.,	2012).	We	
removed	samples	with	more	than	30%	missing	data	prior	to	analysis.

We	calculated	standard	summary	statistics,	including	observed	
and	expected	heterozygosity,	linkage	disequilibrium	(LD),	and	de-
viations	 from	 Hardy–Weinberg	 equilibrium	 (HWE)	 at	 all	 coyote	
sampling	 locations	 (i.e.,	 states)	and	within	dogs,	with	ARLEQUIN	
v3.5.2.2	(Excoffier	&	Lischer,	2010).	Pairwise	FST	between	all	sam-
pling	 locations	and	geographic	regions	were	also	calculated	with	
ARLEQUIN.	Additionally,	we	calculated	average	number	of	alleles	
per	 locus	with	GenAlEx	 v6.503	 (Peakall	&	Smouse,	 2006,	 2012)	
and	 allelic	 richness	 (AR)	 using	 the	 R	 package	 hierfstat	 (Goudet,	
2005).

We	 conducted	 analyses	 of	 population	 structure	 of	 the	 243	
coyotes	 and	 40	 domestic	 dogs	 in	 STRUCTURE	 v2.3.4	 (Pritchard,	
Stephens,	&	Donnelly,	2000).	Using	the	admixture	model	and	no	prior	
population	assumptions,	we	conducted	10	runs	for	each	K (1–10)	with	
500,000	 repetitions	after	a	burn‐in	of	250,000.	We	combined	 re-
sults	from	each	independent	run	with	CLUMPP	v64.1.1.2	(Jakobsson	
&	Rosenberg,	2007).	We	evaluated	optimal	number	of	genetic	clus-
ters	represented	by	the	data	by	considering	both	the	log‐likelihood	
(LnProbability)	 values	 calculated	 via	 STRUCTURE	 (Pritchard	 et	 al.,	
2000)	 and	 the	Evanno	Method	 (ΔK)	 (Evanno,	Regnaut,	&	Goudet,	
2005),	 which	 was	 implemented	 with	 STRUCTURE	 HARVESTER	
v0.6.94	(Earl	&	vonHoldt,	2012).	We	considered	individuals	admixed	
if	 ancestry	proportions	 (i.e.,	Q	 values)	were	<0.8	 for	 any	given	 in-
ferred	cluster	(Heppenheimer,	Cosio	et	al.,	2018).

We	 evaluated	 the	 association	 of	 pairwise	 and	 geographic	 dis-
tances	to	assess	the	extent	of	isolation	by	distance	among	our	sam-
ple	populations	with	a	series	of	Mantel	tests	implemented	in	the	R	
package	 ade4	 (Dray	 &	 Dufour,	 2007).	 Pairwise	 genetic	 distances	
were	 calculated	 as	 normalized	 FST	 (Rousset,	 1997).	We	 calculated	
pairwise	 geographic	 distances	 between	 sampling	 locations	 as	 the	
shortest	 straight‐line	 distance	 between	 state	 centroids	 using	 the	
Advanced	Google	Maps	Distance	Calculator	(Daft	Logic	2017).

3  | RESULTS

As	few	measurements	of	 linear	body	dimensions	were	reported	 in	
studies,	we	only	 compared	mean	body	mass	 among	 coyote	popu-
lations	 (Table	 S1).	 The	 LMER	 model	 ANOVA	 indicated	 a	 statisti-
cally	 significant	 difference	 among	 coyote	 populations	 for	 male	
(F2,32 = 20.652,	 p	<	0.001)	 and	 female	 (F2,32 = 28.332,	 p < 0.001) 
body	mass.	Mean	(±SD)	body	mass	reported	for	male	northeastern	
coyotes	was	16.2	kg	(±1.2)	and	was	greater	than	those	reported	for	
southeastern	 (14.7	kg	±	2.1)	 and	 western	 (12.7	kg	±	1.2)	 coyotes	
(Figure	2).	Similarly,	mean	body	mass	reported	for	female	northeast-
ern	coyotes	was	14.3	kg	(±1.1)	and	was	greater	than	those	reported	
for	southeastern	(12.6	kg	±	1.8)	and	western	(11.0	kg	±	0.9)	coyotes	
(Figure	2).	The	LMER	model	ANOVA	indicated	that	maximum	body	
mass	 reported	 for	 northeastern	 coyotes	 averaged	 23.0	kg	 (±2.0)	
and	 was	 greater	 than	 southeastern	 (19.5	kg	±	1.2)	 and	 western	
(17.3	kg	±	3.2)	 coyotes	 (F2,23 = 13.551,	 p	<	0.001),	 whereas	 no	 dif-
ference	was	observed	between	western	and	southeastern	coyotes	
(Figure	2).

For	 our	 PCA,	 we	 assessed	 the	 measurements	 of	 481	 coyotes	
from	 northeastern	 (12.1%),	 southeastern	 (70.6%),	 and	 western	
(17.3%)	 populations.	 The	 first	 three	 principal	 components	 (PC1,	
PC2,	 and	 PC3),	 which	 explained	 43.1%,	 17.7%,	 and	 16.1%	 of	 the	
cumulative	variation,	respectively,	were	the	only	PC	scores	with	ei-
genvalues	>1	(Table	1).	The	eigenvalues	of	PC1	comprised	positive	
loadings	 for	body	mass,	 body	 length,	 hind	 foot	 length,	 and	 shoul-
der	height,	whereas	eigenvalues	for	PC2	comprised	negative	 load-
ings	 for	body	 length	and	positive	 loadings	 for	ear	 and	 tail	 lengths	
(Table	 1).	 The	 eigenvalues	 of	 PC3	 comprised	 positive	 loadings	 for	



     |  3395HINTON eT al.

ear	 length	 and	 head	 length	 to	 width	 ratio.	 Collectively,	 these	 PC	
scores	indicate	that	once	PC1	accounted	for	body	size,	PC2	and	PC3	
accounted	for	variation	in	appendage	lengths	and	head	dimensions,	
respectively.	Mean	PC1	(body	size)	scores	for	southeastern	coyotes	
were	 intermediate	 to	 those	 for	western	and	northeastern	coyotes	
(F2,478 = 41.795,	p	<	0.001;	Figure	3).	Mean	PC2	(appendage	lengths)	
scores	 for	 southeastern	coyotes	were	 less	 than	 those	 for	western	
and	 northeastern	 coyotes	 (F2,478 = 54.770,	 p	<	0.001;	 Figure	 3).	
Mean	PC3	(head	dimensions)	scores	for	coyotes	were	similar	for	all	
regions	(F2,478 = 0.512,	p	=	0.600;	Figure	3).

We	 observed	 high	 genetic	 diversity	 across	 all	 coyote	 pop-
ulations	 (average	 He	=	0.84)	 and	 slightly	 lower	 diversity	 within	
dogs	 (He	=	0.80).	 Following	 Bonferroni	 correction,	 we	 observed	
no	 significant	 deviations	 from	 HWE	 across	 coyote	 populations	
(α	=	0.05,	 p	>	2.6	×	10−4),	 but	 we	 did	 observe	 significant	 devia-
tions	 from	 HWE	 at	 two	 loci	 within	 dogs	 (FH2004,	 p	=	7.0	×	10−5; 
Pez16,	p	=	6.0	×	10−5).	Further,	 following	Bonferroni	correction	we	
observed	 significant	 LD	 between	 two	 additional	 loci	 in	 Louisiana	

coyotes	(FH2001	&	FH3399;	p	<	5.85	×	10−5).	Removal	of	these	loci	
from	Louisiana	coyotes	produced	similar	results	in	downstream	anal-
yses	(data	not	shown).	We	also	observed	significant	linkage	between	
nine	 loci	 pairs	within	 dogs.	However,	 these	 deviations	 from	HWE	
and	LD	within	dogs	are	attributable	to	selective	breeding	processes	
associated	with	domestication	and	unlikely	to	have	significantly	bi-
ased	results.	As	such,	removal	of	dogs	did	not	impact	coyote	cluster	
assignments	in	the	population	structure	analysis	(data	not	shown).

When	 coyotes	 were	 analyzed	 by	 region,	 the	 greatest	 genetic	
differentiation	was	observed	between	the	northeastern	and	south-
eastern	populations	(FST	=	0.022,	p	<	1	×	10

−5).	Furthermore,	south-
eastern	coyotes	were	more	genetically	differentiated	from	western	
coyotes	 (FST = 0.018; p	<	1	×	10−5)	 than	northeastern	coyotes	were	
(FST = 0.013; p	<	1	×	10−5).	Coyotes	sampled	 from	the	eastern	con-
tact	 zone	 (North	 Carolina,	 Virginia)	 were	 not	 included	 in	 these	
calculations.

In	 our	 analysis	 of	 population	 structure,	when	 two	 populations	
were	assumed	(K = 2),	assignments	to	inferred	clusters	corresponded	
to	species	designations.	Despite	this	clear	separation	of	coyotes	and	
dogs,	a	minority	of	coyotes	were	considered	admixed,	with	ancestry	
proportions	<0.8	for	either	inferred	cluster,	and	two	coyote	samples	
from	Florida	and	North	Carolina	clustered	strongly	with	the	dog	pop-
ulation	(QDog	>	0.8).	When	three	populations	were	assumed	(K = 3),	
which	was	the	optimal	number	of	clusters,	coyote	populations	were	
further	 separated	 by	 geographic	 location	 (Supporting	 Information	
Figure	 S1;	 Table	 S4).	One	major	 cluster	 consisted	of	 southeastern	
coyotes,	and	the	other	cluster	consisted	of	western	and	northeast-
ern	coyotes	(Figure	4).	Similar	to	clustering	patterns	at	K = 2,	a	mi-
nority	of	coyote	samples	had	 intermediate	assignments	to	the	dog	
cluster	(QDog	>	0.2).	Of	these	admixed	samples,	one	originated	from	
western	coyotes	 (New	Mexico),	 four	originated	 from	southeastern	
coyotes	(Alabama,	Florida,	Georgia),	one	originated	from	northeast-
ern	coyotes	(Pennsylvania),	and	five	originated	from	coyotes	in	the	
eastern	contact	zone	 (Heppenheimer,	Cosio	et	al.,	2018).	At	K = 4,	
36	coyotes	exhibited	a	high	assignment	to	the	new	cluster	(Figure	4).	

TA B L E  1  Eigenvalues,	share	of	total	variance	along	with	eigenvectors,	and	factor	loadings	of	body	measurements	recorded	from	coyotes	
in	western,	northeastern,	and	southeastern	regions	of	the	United	States

Body measurements

Principal component 1 Principal component 2 Principal component 3

Eigenvector Loading Eigenvector Loading Eigenvector Loading

Body	mass 0.51 0.88 −0.09 −0.10 −0.09 −0.10

Ear	length 0.21 0.37 0.62 0.69 0.47 0.50

Tail	length 0.32 0.56 0.40 0.45 −0.30 −0.31

Body	length 0.37 0.66 −0.53 −0.59 −0.01 −0.01

Hind	foot	length 0.47 0.81 0.20 0.22 0.10 0.10

Shoulder	height 0.48 0.83 −0.18 −0.20 −0.17 −0.18

Head	length:	head	width	
ratio

0.11 0.19 −0.30 −0.33 0.80 0.85

Eigenvalue 3.02 1.24 1.13

%	of	total	variance 43.07 17.74 16.13

Description Body	size Appendage	lengths Head	dimensions

F I G U R E  3  Mean	principal	components	scores	for	PC1	(body	
size),	PC2	(appendage	lengths),	and	PC3	(head	dimensions)	of	
western,	southeastern,	and	northeastern	coyotes
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Most	(n	=	24)	of	these	samples	were	northeastern	coyotes.	The	re-
maining	 samples	 were	 western	 coyotes	 (n	=	5),	 southeastern	 coy-
otes	(n	=	2),	and	coyotes	in	the	eastern	contact	zone	(n	=	5).	Despite	
this	weak	large‐scale	population	structure,	we	observed	a	weak	but	
nonsignificant	correlation	between	genetic	and	geographic	distance	
among	 southeastern	 coyote	 populations	 (Mantel	 test:	 r	=	0.465,	
p	=	0.159;	 Supporting	 Information	 Figure	 S2).	 However,	 there	 did	
appear	 to	 be	 significant	 isolation	 by	 distance	 among	western	 and	
northeastern	coyote	populations	 (Mantel	 test:	 r	=	0.267,	p = 0.019; 
Supporting	Information	Figure	S2).

4  | DISCUSSION

Phenotypic	 responses	 to	 the	 environment	 are	 common	 and	 can	
be	observed	through	patterns	of	geographic	variation	 (Fine,	2015;	
Gould	&	Johnston,	1972;	Mayr,	1970).	Coyotes	historically	occupied	
a	 large	 geographic	 range	 across	North	America	 prior	 to	European	
colonization,	 and	 their	 recent	 range	 expansion	 may	 have	 facili-
tated	 population	 divergence	 in	 peripheral	 populations	 established	
in	 eastern	North	America	 (see	 discussion	 among	Kays	&	Monzón,	
2017;	Way	&	Lynn,	2016;	Wheeldon	&	Patterson,	2017).	Our	results	
showed	that	mean	body	mass	of	coyote	populations	increased	across	
a	west‐to‐east	gradient,	a	trend	reported	in	other	studies	(Kays	et	al.,	
2010;	Thurber	&	Peterson,	1991;	Way,	2007).	Furthermore,	our	PCA	
suggested	 that	 southeastern	 coyotes	 were	 intermediate	 in	 body	
size	to	western	and	northeastern	coyotes,	exhibited	shorter	ear	and	
tail	lengths,	but	did	not	have	narrower	or	shorter	heads.	Finally,	our	
genetic	 analysis	 indicated	 that	 southeastern	 coyotes	 represent	 a	

unique	genetic	 cluster,	 suggesting	 these	 coyotes	 are	more	 geneti-
cally	distinct	 from	western	coyotes	 than	northeastern	coyotes	are	
from	western	coyotes.

When	we	removed	the	effect	of	body	size	(PC1),	we	found	that	
appendage	lengths	(PC2)	and	head	dimensions	(PC3)	were	important	
traits	accounting	for	the	remaining	variation	explained	by	our	PCA.	
This	is	not	surprising	because	ear,	tail,	and	skull	morphologies	do	not	
exhibit	 the	 same	allometric	 relationship	observed	 for	 the	axial	 and	
appendicular	 skeleton	 that	 are	more	 influenced	 by	weight	 bearing	
(Carter,	 1987;	 Reynolds,	 2002;	Wang	 &	 Tedford,	 2010).	We	 inter-
preted	our	PCA	results	to	mean	that	southeastern	coyotes	typically	
have	smaller	ears	and	shorter	tails	than	do	northeastern	and	western	
coyotes	but,	in	all	three	regions,	head	dimensions	did	not	appear	to	
be	proportionally	different	(Figures	5	and	6).	Ear	and	tail	morpholo-
gies	vary	among	canid	species	and	can	be	used	to	differentiate	canid	
taxa	 (Cavallini,	 1995;	 Hinton	 &	 Chamberlain,	 2014;	 Sillero‐Zubiri,	
Hoffmann,	&	Macdonald,	 2004).	Although	both	 are	 known	 to	play	
important	 roles	 in	 canid	 communication	 (Lehner,	 1978),	 ear	 length	
is	associated	with	thermoregulation	(Feldhamer,	Drickamer,	Vessey,	
Merritt,	&	Krajewski,	2015;	Geffen	&	Girard,	2003;	Maloiy,	Kamau,	
Shkolnik,	Meir,	&	Arieli,	1982;	Sillero‐Zubiri	et	al.,	2004)	and	enlarged	
ears	in	canids	can	enhance	low‐frequency	hearing	in	open	environ-
ments	(Wang	&	Tedford,	2010).	Similar	to	previous	studies	(Jackson,	
1951;	Nowak,	1979),	we	observed	that	ear	and	rostrum	lengths	were	
variable	 among	 regions	 and	 suggest	 that	 variable	 hearing	 and	 ol-
factory	 adaptations	 are	 plausible	 for	 coyote	populations	 inhabiting	
a	wide	continuum	of	habitats	 from	open	deserts	and	grasslands	 to	
heavily	 forested	 regions	 of	 North	 America	 and	 should	 be	 further	
investigated.	 Additionally,	 tail	 morphology	 is	 understudied	 and	

F I G U R E  4  Genetic	structure	inferred	by	Bayesian	clustering	in	STRUCTURE	at	K	=	2,	K	=	3,	and	K	=	4	with	sampling	locations	indicated	
on	the	x‐axis
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underappreciated	in	ecological	studies	of	canids	but	has	an	import-
ant	influence	on	locomotion	qualities	(e.g.,	bursting,	running,	jumping,	
balance;	Hickman,	1979)	and,	similar	to	ear	length,	may	be	an	adapta-
tion	to	changes	in	habitat	structure	and	other	environmental	factors.

Skull	morphology	 is	strongly	associated	with	 feeding	adapta-
tions,	 and	 craniodental	 characters	 (e.g.,	 shape,	 dentition,	 biting	

force)	 can	 influence	 resource	 use	 and	 structure	 carnivore	 com-
munities	(Davies,	Meiri,	Barraclough,	&	Gittleman,	2007;	Donadio	
&	 Buskirk,	 2006;	 Rosenzweig,	 1966;	 Van	 Valkenburgh,	 1988).	
Although	our	measurement	of	head	dimensions	could	not	detect	
finer	 structural	 differences	 (e.g.,	 dentition,	 dome	 of	 head,	 fron-
tal	sinus),	we	believe	similarity	in	head	dimensions	among	regions	

F I G U R E  5  Scatter	plots	of	3	between‐group	principal	components	of	the	principal	component	analysis
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F I G U R E  6  Photographic	comparison	of	western	and	southeastern	coyotes.	Photograph	credit	and	location	as	follows:	(a)	Western	
coyotes,	Santa	Barbara	County,	California,	credit:	J.	Hinton.	(b)	Southeastern	coyote,	Hyde	County,	North	Carolina,	credit:	J.	Hinton.	
Southeastern	coyote,	Washington	County,	North	Carolina,	credit:	J.	Hinton.	Melanistic	southeastern	coyote,	Saluda	County,	South	Carolina,	
credit:	J.	Hinton
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likely	reflects	a	general	similarity	in	diet	among	coyote	populations	
in	all	three	regions,	as	changes	in	shape	(i.e.,	short	vs.	long)	would	
indicate	adaptation	to	differing	stresses	related	to	feeding	ecology	
(Curtis,	 Orke,	 Tetradis,	 &	 Valkenburgh,	 2018;	 Van	 Valkenburgh,	
1991;	Wang	 &	 Tedford,	 2010).	 Regardless	 of	 region,	 studies	 of	
coyote	diets	typically	report	consistent	use	of	 lagomorphs,	small	
mammals	and,	to	a	lesser	extent,	ungulates	while	exhibiting	vari-
able	 use	 of	 fruit	 (Carrera	 et	 al.,	 2006;	 Clark,	 1972;	 Hernández,	
Parmenter,	 Dewitt,	 Lightfoot,	 &	 Laundré.,	 2002;	 Hinton,	 Ashley	
et	al.,	2017;	Lingle	&	Pellis,	2002;	Patterson,	Benjamin,	&	Messier,	
1998;	 Todd	 &	 Keith,	 1983;	 Ward	 et	 al.,	 2018).	 Therefore,	 we	
suggest	 that	 a	 broader	 inclusion	of	 craniodental	 and	postcranial	
measurements,	 and	 when	 possible	 genetic	 markers,	 be	 used	 to	
sufficiently	investigate	to	what	extent	differences	exist	geograph-
ically	among	coyote	populations	and	what	selection	pressures	may	
influence	variation	 in	coyote	morphology	 (e.g.,	Murray	&	Boutin,	
1991;	Kays	et	al.,	2010;	Curtis	et	al.,	2018).

Our	 microsatellite	 analysis	 reported	 low	 levels	 of	 population	
differentiation	for	coyotes	within	the	three	geographic	regions,	but	
a	notable	differentiation	among	 regions.	Specifically,	we	observed	
two	major	genetic	clusters	that	separated	southeastern	coyotes	into	
one	 population	 whereas	 northeastern	 and	 western	 coyotes	 were	
separated	into	the	second	population.	This	finding	contradicts	pre-
vious	studies	suggesting	that	southeastern	coyotes	were	genetically	
more	representative	of	western	coyotes	than	northeastern	coyotes	
were	 (Adams	 et	 al.,	 2003;	 Kays	 et	 al.,	 2010;	Way	 &	 Lynn,	 2016).	
Although	our	analysis	of	population	structure	only	loosely	resolved	
northeastern	and	western	coyotes,	we	did	observe	a	weak	but	sig-
nificant	 correlation	 between	 genetic	 distance	 and	 geographic	 dis-
tance	between	sampling	locations	in	these	populations,	suggesting	
measurable	genetic	differences.	Moreover,	we	observed	low	levels	
of	dog	ancestry	in	southeastern	and	northeastern	coyotes,	and	ad-
mixed	individuals	did	not	appear	to	be	more	common	in	southeast-
ern	 coyotes.	Therefore,	our	 results	do	not	 support	 the	 conclusion	
that	strong	separation	of	southeastern	coyotes	from	all	other	sam-
pled	locations	is	the	result	of	extensive	interbreeding	with	dogs.	The	
pattern	of	low	regional	differentiation	could	have	resulted	from	the	
coarse	resolution	of	our	dataset	and	weak	discrimination	power	of	
our	set	of	microsatellite	markers	to	detect	genetic	variation	at	finer	
scales.	Although	we	believe	our	 results	 to	be	 robust	and	 informa-
tive,	as	we	have	analyzed	more	coyotes	from	a	broader	geographic	
range	than	previous	studies	(e.g.,	Adams	et	al.,	2003;	Bohling	et	al.,	
2017;	Bozarth	et	al.,	2011;	Damm,	Armstrong,	Arjo,	&	Piaggio,	2015;	
Kays	 et	 al.,	 2010;	Roy,	Geffen,	 Smith,	Ostrander,	&	Wayne,	 1994;	
Way,	Rutledge,	Wheeldon,	&	White,	2010),	we	suggest	that	future	
studies	with	 small	 sample	 sizes	use	genomewide	markers,	 such	as	
restriction	site‐associated	DNA	sequencing	(RADseq),	to	document	
finer	population	structure	and	stronger	patterns	of	isolation	by	dis-
tance	 than	microsatellites	 (Vendrami	 et	 al.,	 2017).	 Regardless,	 the	
stronger	 affinity	between	western	and	northeastern	 coyotes	 than	
between	western	and	southeastern	coyotes	is	a	novel	observation	
that	may	 clarify	 the	 evolutionary	 and	demographic	 past	 of	 south-
eastern	coyotes.

The	 distribution	 of	 genetic	 variation	 can	 be	 influenced	 by	mi-
gration	 rates	between	populations	 (Bell	&	Gonzalez,	2011;	Eckert,	
Samis,	&	Lougheed,	2008;	Sexton	et	al.,	2009)	and	observed	differ-
ences	 between	 southeastern	 coyote	 populations	 and	 those	 from	
other	regions	may	have	resulted	from	founder	effects,	genetic	drift,	
and	local	adaptations	due	to	reduced	immigration	to	peripheral	pop-
ulations	that	became	established	in	the	southeastern	United	States	
during	 1900–1960.	 Clearly,	 coyote	 colonization	 of	 eastern	 North	
America	 occurred	 along	 two	distinct	 expansion	 routes	 that	 began	
simultaneously	 and	 experienced	 introgressive	 hybridization	 with	
wolves	 but	 exhibited	 different	 rates	 of	 movement	 and	 gene	 flow	
(Bozarth	et	al.,	2011;	Heppenheimer,	Cosio	et	al.,	2018;	Kays	et	al.,	
2010).	Therefore,	 it	 is	plausible	 that	colonization	of	 the	Northeast	
benefitted	from	the	presence	of	stable	western	coyote	populations	
in	the	Prairie	Peninsula	(Cory,	1912;	Jackson,	1961;	Mumford,	1969),	
which	extends	east	of	the	Mississippi	River	through	Illinois,	south-
ern	Wisconsin,	and	northern	Indiana.	However,	colonization	of	the	
Southeast	was	hampered	by	the	extirpation	of	coyotes	 in	parts	of	
central	and	eastern	Texas	via	massive	poisoning	programs	to	protect	
sheep	from	1900	to	1950	(Bailey,	1907;	Gabrielson,	1936;	Nowak,	
1979;	Russell	&	Shaw,	1971).	A	large	“canid	free”	zone	adjacent	to	the	
Southeast	 achieved	 some	 temporary	 break	 in	 coyote	 populations	
that	may	have	bottlenecked	immigration	of	western	coyotes	to	the	
Southeast	 through	Oklahoma,	Missouri,	 and	 Arkansas	 and	 forced	
coyotes	to	recolonize	large	regions	of	Texas	before	expanding	to	the	
Southeast.	With	reduced	immigration	from	western	coyote	popula-
tions,	newly	established	populations	of	southeastern	coyotes	were	
less	connected	to	their	western	counterparts	than	were	northeast-
ern	populations.

When	 species	 expand	 their	 ranges,	 populations	 along	 edges	
of	expansion	fronts	experience	new	selective	pressures	on	repro-
ductive	and	dispersal	 traits	 that	stable	populations	do	not	 (Bell	&	
Gonzalez,	 2011;	 Burton,	 Phillips,	 &	 Travis,	 2010;	 Gaston,	 2009;	
Sexton	et	 al.,	 2009).	 In	particular,	 research	 shows	 that	peripheral	
populations	on	range	edges	typically	exist	at	lower	densities	and	in-
crease	investment	for	greater	dispersal	ability	(Burton	et	al.,	2010;	
Phillips,	 Brown,	 Travis,	 &	 Shine,	 2008;	 Travis	 &	 Dytham,	 2002).	
Therefore,	we	suggest	that	increased	body	sizes	observed	in	east-
ern	coyote	populations	were	induced	by	hybridization	(Kays	et	al.,	
2010;	Nowak,	1979,	2002;	Power	et	al.,	2015)	and	 larger	coyotes	
were	 then	 favored	 over	 smaller	 coyotes	 in	 the	 expansion	 range	
because	 larger	 coyotes	had	greater	 dispersal	 capabilities	 that	 im-
proved	 immigration	 among	 peripheral	 populations.	 Coyote	 popu-
lations	 consist	 of	 a	 significant	 proportion	 of	 transient	 individuals	
(Hinton,	 Manen,	 &	 Chamberlain,	 2015;	 Kamler	 &	 Gipson,	 2000;	
Morin	&	Kelly,	2017;	Windberg	&	Knowlton,	1988),	and	recent	re-
search	suggests	that	transiency	is	an	important	life‐history	strategy	
that	facilitates	metapopulation	dynamics	(Hinton	et	al.,	2015)	and	
regulates	 population	densities	 (Morin	&	Kelly,	 2017)	 via	 compen-
satory	 immigration.	 The	 probability	 of	 surviving	 transiency	 and	
finding	suitable	habitat	and	mates	in	the	expansion	range	may	have	
been	 greater	 for	 larger‐bodied	 coyotes	 because	 they	 had	 greater	
movement	radii	and	fasting	endurances	than	did	smaller	individuals	
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(Lindstedt	&	Boyce,	1985;	McCue,	2010;	Millar	&	Hickling,	1990).	
Likewise,	 coyotes	 appear	 poorly	 adapted	 to	 hunting	 in	 forested	
habitats	 (Crête,	 Ouellet,	 Tremblay,	 &	 Arsenault,	 2001;	 Richer,	
Crête,	 Ouellet,	 Rivest,	 &	 Huot,	 2002;	 Thibault	 &	 Oullett,	 2005)	
and	 increased	 body	weights	 of	 offspring	would	 lower	 the	 risk	 of	
starvation	and	reproductive	failure	in	the	eastern	forests	of	North	
America.	For	those	reasons,	we	propose	that	the	 larger	body	size	
observed	in	eastern	coyotes	reflects	an	adaptation	to	increase	dis-
persal	and	reproductive	capabilities	on	the	expansion	range	rather	
than	greater	reliance	on	white‐tailed	deer,	a	species	that	was	extir-
pated	or	reduced	in	abundance	from	most	areas	of	the	southeastern	
United	States	when	coyotes	began	colonizing	the	region	(McCabe	&	
McCabe,	1984;	VerCauteren,	2003).

When	describing	geographical	patterns	of	intraspecific	variation	
in	 coyotes,	 understanding	 how	 selective	 forces	 act	 on	 characters	
and	 the	genetic	basis	 for	phenotypic	variation	 is	 crucial.	Although	
the	coyote	genome	and	resulting	phenotypes	are	shaped	by	natu-
ral	 forces,	 it	 is	widely	acknowledged	 that	humans	have	 influenced	
local	 and	 regional	 genotypes	 by	 altering	 landscapes,	 extirpating	
larger	 competitors,	 and	 facilitating	 hybridization	 between	 coyotes	
and	wolves	in	eastern	North	America.	 Indeed,	research	has	shown	
that	human‐mediated	mortality	of	wolves	disrupts	the	social	struc-
ture	of	wolf	packs	and	 reduces	 their	 abundance	on	 the	 landscape	
(Borg,	Brainerd,	Meier,	&	Prugh,	2015;	Milleret	et	al.,	2017)	which	
allowed	coyotes	to	colonize	regions	formerly	held	by	wolves	and	hy-
bridize	with	surviving	individuals	(Hinton,	Brzeski,	Brzeski,	Rabon,	&	
Chamberlain,	2017;	Rutledge,	Patterson	et	al.,	2010).	Introgression	
typically	 extends	 into	 the	 range	 of	 the	 receding	 species	 (Rohwer,	
Bermingham,	 &	 Wood,	 2001;	 Secondi,	 Faivre,	 &	 Bensch,	 2006;	
Steeves,	Maloney,	 Hale,	 Tylianakis,	 &	 Gemmell,	 2010),	 and	 asym-
metrical	 introgression	 from	coyotes	began	as	 they	 invaded	 ranges	
of	the	declining	eastern	wolf	and	red	wolf	(Nowak,	2002;	Rutledge,	
Loveless,	Loveless,	&	Patterson,	2010).	If	wolf	genes	were	adaptive	in	
coyotes,	they	spread	in	the	invading	coyote	population	and	became	
rapidly	fixed	in	the	gene	pool	following	demographic	growth	(Currat,	
Ruedi,	Petit,	&	Excoffier,	2008).	Although	 it	 is	 commonly	asserted	
that	increases	observed	in	body	sizes	of	eastern	coyotes	were	an	ad-
aptation	for	greater	reliance	on	white‐tailed	deer	(Kays	et	al.,	2010;	
Power	et	al.,	2015;	vonHoldt,	Kays	et	al.,	2016;	Way	&	Lynn,	2016),	
it	is	difficult	to	reconcile	how	greater	use	of	deer	would	benefit	key	
population	characteristics	(i.e.,	reproduction	and	dispersal)	more	in	
eastern	 coyote	 populations	 than	 in	 western	 populations	 because	
western	coyotes	are	also	known	to	prey	on	ungulates	(Bleich,	1999;	
Gese	&	Grothe,	1995;	Keller,	Millspaugh,	Lehman,	&	G.,	&	Mong,	T.	
W.,	2013;	Lingle	&	Pellis,	2002).	Rather,	we	suggest	that	coyotes	on	
the	expansion	front	in	eastern	North	America	experienced	different	
selective	 pressures	 than	 did	 stable	 populations	 in	 the	 core	 range,	
and	 it	 is	plausible	that	 increased	body	sizes	of	eastern	coyotes	re-
flect	 adaptations	 that	 improved	dispersal	 abilities	of	 individuals	 in	
the	expanding	range.	For	example,	Heppenheimer,	Brzeski,	Hinton	
et	al.	(2018)	reported	that	three	genes	(CACNA1C, ALK,	and	EPHA6) 
known	 to	 have	 putative	 functions	 related	 to	 dispersal	were	more	
associated	with	 eastern	 coyotes	 than	western	 coyotes.	 Therefore,	

we	suggest	that	selective	pressure	on	the	eastern	expansion	range	
favored	larger	coyotes	because	of	their	greater	dispersal	capabilities,	
rather	than	their	ability	to	kill	deer.	Clearly,	increased	dispersal	dis-
tances	would	have	 improved	connectivity	among	metapopulations	
of	coyotes	in	eastern	North	America	during	the	colonization	period	
of	the	mid‐20th	century.
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