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Purpose: Low tidal volume ventilation (LTVV) is associated with mortality in patients with acute respiratory dis-
tress syndrome. We investigated the association of LTVV with mortality in COVID-19 patients.
Methods: Secondary analysis of a national observational study in COVID-19 patients in the first wave of the pan-COVID-19
demic.We compared COVID-19patients that received LTVV, defined as controlled ventilationwith amedian tidal
volume ≤ 6 mL/kg predicted body weight over the first 4 calendar days of ventilation, with patients that did not
receive LTVV. The primary endpoint was 28-day mortality. In addition, we identified factors associated with use
of LTVV.
Results: Of 903 patients, 294 (32.5%) received LTVV. Disease severity scores and ARDS classification was not dif-
ferent between the two patient groups. The primary endpoint, 28-day mortality, was met in 68 out of 294 pa-
tients (23.1%) that received LTVV versus in 193 out of 609 patients (31.7%) that did not receive LTVV (P <
0.001). LTVV was independently associated with 28-day mortality (HR, 0.68 (0.45 to 0.95); P = 0.025). Age,
height, the initial tidal volume and continuous muscle paralysis was independently associated with use of LTVV.
Conclusions: In this cohort of invasively ventilated COVID-19 patients, approximately a third of patients received
LTVV. Use of LTVV was independently associated with reduced 28-day mortality. The initial tidal volume and
continuous muscle paralysis were potentially modifiable factors associated with use of LTVV. These findings
are important as they could help clinicians to recognize patients who are at risk of not receiving LTVV.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
Tidal volume
Mortality
1. Introduction

Patientswith coronavirus disease 2019 (COVID-19)may needhospi-
talization for supplemental oxygen [1]. A substantial number of these
patients need admission to an intensive care unit (ICU) for escalation
of respiratory care, usually invasive ventilation [2]. Morbidity and mor-
tality are high in COVID-19 patients that need invasive ventilation [3,4],
and care for these patients remains largely supportive. One approach is
to minimize additional lung injury caused by invasive ventilation.
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Ventilator-induced lung injury can be prevented by using so-called
lung-protective ventilation strategies [5], wherein use of a low tidal vol-
ume (VT) plays a central role. There is strong and convincing evidence
that low VT ventilation (LTVV) improves outcome in patients with
acute respiratory distress syndrome (ARDS) [6]. Until the COVID-19
pandemic, in patients with ARDS LTVV remained underused [7-10]. De-
spite the fact that large studies of LTVV have shown noworsening of ox-
ygenation, oxygenation can improve more rapidly with higher tidal
volumes [11]. This could be an argument for health care workers to
use LTVV less often. This could especially play a role in COVID-19 pa-
tients, since these patients frequently have severe hypoxemia due to ex-
tensive pulmonary infiltrates, and in some patients also pulmonary
embolism. Another potential reason for underuse of LTVV in COVID-19
patients could be that airway pressures in these patients can be surpris-
ingly low, indicating a high respiratory compliance [12,13]—at least in
theory this could lead to a scenario in which use of LTVV is considered
less important.
the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcrc.2022.154047&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jcrc.2022.154047
mailto:s.g.nijbroek@amsterdamumc.nl
https://doi.org/10.1016/j.jcrc.2022.154047
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/
www.journals.elsevier.com/journal-of-critical-care


S.G.L.H. Nijbroek, L. Hol, D. Ivanov et al. Journal of Critical Care 70 (2022) 154047
We hypothesized that LTVV is independently associated with mor-
tality in COVID-19 patients. To test this hypothesis, we performed a sec-
ondary analysis of a large national multicenter study, named the
‘PRactice of VENTilation in corona virus disease 2019’ (PRoVENT-
COVID) study, to compare 28-day mortality between patients that re-
ceived LTVV versus patients that did not receive LTVV in the first 4 cal-
endar days in the ICU. We also aimed to identify potentially modifiable
patient characteristics and ventilatory parameters that had an indepen-
dent association with use of LTVV.

2. Methods

2.1. Design, settings and participants

The PRoVENT-COVID study is an investigator-initiated, national,
multicenter, observational study performed in 22 hospitals during the
first 3 months of the national outbreak in the Netherlands [14]. The
study protocol was approved by the institutional review board of each
participating hospital—need for individual patient informed consent
was waived seen the observational design of the study. The study was
registered at www.clinicaltrial.gov (study identifier NCT04346342).

Consecutive patients aged 18 years or older were eligible for partic-
ipation if they were admitted to an ICU in one of the participating hos-
pitals and had received invasive ventilation because of acute
respiratory failure due to RT–PCR confirmed COVID-19. The PRoVENT-
COVID study itself had no exclusion criteria. For this current analysis,
we excluded patients in whom VT or patient height, necessary for
normalization of VT to the predicted body weight (PBW), was not
captured. We also excluded patients that were exclusively on a
spontaneous breathing mode at all the time points ventilation data
were collection, and we excluded patients for whom the primary
endpoint was missing, which could have happened due to transfer to
a non-participating hospital.

2.2. Data collected and analysis

Demographics and data regarding premorbid diseases and home
medication were collected at baseline. The current Berlin definition for
ARDS was used for severity classification [15]. In the first hour of inva-
sive ventilation in the ICU and every 8 h thereafter at fixed time points,
ventilator settings and ventilation parameters were collected up to cal-
endar day 4. Outcomes were collected up to day 90, and included intu-
bation and life status.

VT was normalized to PBW using the following equations: VT =
absolute VT / PBW [kg] (Eq. 1), and PBW = 50.0 + 0.91 * (height [cm]
– 152.4) (in males, Eq. 2a) and PBW = 45.5 + 0.91 * (height [cm] –
152.4) (in females, Eq. 2b). LTVV was defined as having received a me-
dian VT ≤ 6mL/kg PBWduring controlled ventilation in the first 4 calen-
dar days. Herein, we ignored the first VT of the first day of ventilation as
initial settings could have been set in the emergency room, and could
have rapidly decreased thereafter. We also ignored any VT when there
was evidence of spontaneous breathing activity. This meant that we
ignored a VT under any mode that requires spontaneous breathing
activity, and if the measured (total) respiratory rate (RR) exceeded the
set RR by more than 2 breaths per min.

2.3. Endpoints

The primary outcome was 28-day mortality. Secondary outcomes
included duration of ventilation, expressed in duration of ventilation
in survivors, and in the number of days free from ventilation and alive
at day 28 (VFD-28). For the later,we summed the calendar dayswithout
invasive ventilation for at least 24 h and considering the last date of suc-
cessful extubation; patients who had died by day 28were considered to
have had zero days free from ventilation [16]. Other endpoints were
2

length of stay in ICU and hospital; and ICU-, hospital- and 90-day
mortality.

2.4. Statistical analysis

The sample sizewas based on the number of available patients in the
database of the PRoVENT-COVID study.

Data are reported as numbers and relative proportions for categori-
cal variables and as median (quartile 25%–quartile 75%) for continuous
variables. Categorical variables were compared using Chi-squared test
or Fisher exact test, and continuous variables were compared using a
Mann–Whitney U test or t-test, where appropriate. For all analyses,
the group of patients that had received LTVV was used as the reference.

Cumulative distribution plots are used to present distributions of
age, height, BMI, and actual VT. Kaplan–Meier curves were used to plot
time until 28- and also 90-day mortality in patients that received
LTVV versus patients that did not receive LTVV, and groups were com-
pared with a log rank test. A mixed-effect multivariate Cox regression
model was used to assess whether LTVV had an independent associa-
tion with 28-day mortality. Centers were included as random effects
to account for unobserved heterogeneity. Confounders that were se-
lected a priori on clinical relevance were: age, gender, ARDS severity,
heart rate, pH, use of prone positioning, development of acute kidney
injury (AKI), and development of venous thromboembolism (VTE). In
addition, respiratory system compliance was selected as a confounder
based on statistical differences between groups.

Next, in a mixed-effect multivariate logistic model with centers as
random factors we identified factors independently associated with
use of LTVV. Confounders that were selected a priori were demographic
factors, including age, gender, height, weight, and ARDS severity, venti-
lation parameters in the first calendar day of ventilation, including the
initial VT, the use of neuromuscular blockers and the use of prone
positioning.

All analyses were conducted in R v.3.6.3 (R Foundation, Vienna,
Austria) and significance level was set at 0.05.

2.5. Posthoc analysis

We performed two posthoc analyses. First, we assessed and com-
pared use of LTVV between males and females. In a second posthoc
analysis we performed univariate linear and logistic regressions as
posthoc analyses to assess the relationship between VT as a
continuous value and clinical outcomes.

3. Results

3.1. Patients

From March 1 through June 1, 2020, 1122 invasively ventilated pa-
tients with COVID-19 were included in the PROVENT-COVID study
(Fig. 1). A total of 437 patientswere excluded for the purpose of the cur-
rent analysis, mainly because of spontaneous breathing activity at all
time points of data collection. Patients were predominantly male, had
a high BMI, and often had a history of hypertension or diabetes
(Table 1). In most patients, ARDS severity was moderate or severe.

3.2. Incidence of LTVV

Of 903patients, 294 (32.5%) patients received LTVV during thefirst 4
calendar days of invasive ventilation. These patients were younger and
taller than those who did not receive LTVV (Table 1 and Supplement
eFigure 1). LTVV patients received ventilation with a lower median VT

(5.7 [5.3 to 5.8] (range 2.6 to 6.0) versus 6.7 [6.3 to 7.2] (range 6.0 to
10.2) mL/kg PBW; P < 0.01), a lower median peak pressure, a lower
median mechanical power, but a higher median respiratory rate
(Table 2, Fig. 2 and Supplement eFigure 1). LTVV patients also had a

http://www.clinicaltrial.gov


31 intensive care units 

invited

9 could not participate

3 refused participation

4 IRB approval delayed

2 impossible to collect data

22 intensive care units 

included

1340 patients assessed 

for eligibility 437 excluded

188 patient with only     

spontaneous breathing 

150 never under invasive                

ventilation

62 alternate diagnosis

34 no data or insufficient data

2 <18 years

1 no permission for use of data

903 patients included in 

current analysis

294 patients who received 

LTVV during the first 4 

calendar days of invasive 

ventilation

609 patients who did not 

receive LTVV during the 

first 4 calendar days of 

invasive ventilation

Fig. 1. Consort patient flow diagram.
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lower median respiratory compliance. Other ventilator settings and
ventilation parameters were not different. LTVV patients had a lower
median PaO2 and a higher median PaCO2, but comparable median
PaO2/FiO2 ratios. LTVV patients received prone position and neuromus-
cular blockademore often, and had a lowermedian plasma lactate level
at baseline than those that did not receive LTVV. Pressure-controlled
ventilation was used more often than volume-controlled ventilation
(58 vs 26%, P< 0.01), and patients under volume-controlled ventilation
received LTVV more often (Supplement eTable 1).

3.3. 28-day mortality

LTVV patients had a lower 28-day mortality, 23.1 versus 31.7% (P <
0.001) (Table 3 and Fig. 3). In multivariate analysis, LTVV had an inde-
pendent associationwith 28-daymortality (Table 4). Other factors asso-
ciatedwith 28-daymortality included age, severity of ARDS, arterial pH,
heart rate, and development of acute kidney injury.

3.4. Secondary outcomes

LTVV patients had lower mortality rates in ICU and hospital, and at
day 90 (Table 3). LTVV patients had more VFD-28, but this difference
3

did not reach statistical significance. Duration of ventilation, length of
stay in hospital and ICU, rate of successful extubation, rate of reintuba-
tion, and rate of tracheostomy was not different between the groups.

3.5. Factors associated with LTVV use

In a multivariate analysis, age, height, the initial VT and continuous
infusion of NMBA were associated with use of LTVV (Table 5).

3.6. Posthoc analyses

Females received LTVV less frequent than males (Supplement
eTable 2). Univariate logistic regression showed that the odds ofmortal-
ity at day 28 increased by 19% (95% CI [1.02 to 1.39]) for a one unit
increase in VT per PBW (Supplement eFigure 2).

4. Discussion

The findings of this secondary analysis of a conveniently-sized study
in COVID-19 patients that needed invasive ventilation in the first wave
of the national outbreak in the Netherlands can be summarized as fol-
lows: (1) LTVV was used in approximately a third of all patients;



Table 1
Baseline characteristics of the included patients.

Overall cohort (n = 903) VT ≤ 6 mL/kg PBW (n = 294) VT > 6 mL/kg PBW (n = 609) P valuea

Male gender – no (%) 659 (73.0) 237 (80.6) 422 (69.3) <0.001
Age, years 65.00 [57.00–72.00] 62.50 [55.25–70.00] 66.00 [58.00–73.00] <0.001
Weight, kg 86.00 [77.30–96.60] 90.00 [80.00–99.00] 85.00 [75.00–95.00] <0.001
Height, cm 175.00 [170.00–183.00] 180.00 [175.00–186.00] 174.00 [168.00–180.00] <0.001
Predicted body weight, kg 70.57 [63.29–77.85] 75.12 [67.84–79.67] 68.75 [61.47–75.12] <0.001
Body mass index, kg/m2 27.76 [25.29–30.85] 27.64 [25.15–30.15] 27.76 [25.39–31.14] 0.176
Use of non-invasive ventilation, no (%) 77 (9.5) 22 (8.2) 55 (10.1) 0.453
Duration of noninvasive ventilation, hours 7.50 [2.00–18.12] 9.00 [3.75–20.50] 7.00 [2.00–16.25] 0.597

Severity of ARDSb (Berlin definition) 0.911
Mild 182 (20.4) 60 (20.7) 122 (20.3)
Moderate 612 (68.6) 200 (69.0) 412 (68.4)
Severe 98 (11.0) 30 (10.3) 68 (11.3)

Severity of illness
SOFA score 7.00 [6.00–10.00] 7.00 [6.00–10.00] 7.00 [6.00–10.00] 0.822
Available, no of patients (%) 412 (48.3) 146 (53.9) 266 (45.7) 0.032

Co-existing disorders, no (%)
None 225 (24.9) 85 (28.9) 140 (23.0) 0.065
Hypertension 303 (33.6) 92 (31.3) 211 (34.6) 0.355
Heart failure 37 (4.1) 13 (4.4) 24 (3.9) 0.871
Diabetes mellitus 208 (23.0) 70 (23.8) 138 (22.7) 0.764
Chronic kidney disease 37 (4.1) 12 (4.1) 25 (4.1) 1.000
Baseline creatinine, μmol/Lc 77.00 [62.00–98.00] 79.00 [64.00–98.00] 76.00 [61.00–99.00] 0.304
Liver cirrhosis 3 (0.3) 1 (0.3) 2 (0.3) 1.000
Chronic obstructive pulmonary disease 70 (7.8) 22 (7.5) 48 (7.9) 0.938
Active haematological neoplasia 12 (1.3) 3 (1.0) 9 (1.5) 0.801
Active solid neoplasia 26 (2.9) 9 (3.1) 17 (2.8) 0.988
Neuromuscular disease 4 (0.4) 2 (0.7) 2 (0.3) 0.833
Immunosuppression 20 (2.2) 9 (3.1) 11 (1.8) 0.337

Previous medication, no (%)
Systemic steroids 32 (3.5) 12 (4.1) 20 (3.3) 0.678
Inhalation steroids 103 (11.4) 33 (11.2) 70 (11.5) 0.994
Angiotensin converting enzyme inhibitor 153 (16.9) 50 (17.0) 103 (16.9) 1.000
Angiotensin II receptor blocker 103 (11.4) 24 (8.2) 79 (13.0) 0.044
Beta-blockers 166 (18.4) 51 (17.3) 115 (18.9) 0.641
Insulin 65 (7.2) 23 (7.8) 42 (6.9) 0.713
Metformin 144 (15.9) 58 (19.7) 86 (14.1) 0.039
Statin 277 (30.7) 87 (29.6) 190 (31.2) 0.679
Calcium channel blockers 162 (17.9) 47 (16.0) 115 (18.9) 0.332

Data are median [quartile 25% - quartile 75%] or No (%), unless stated otherwise. Percentages may not total 100 because of rounding.
Abbreviations, APACHE: Acute Physiology and Chronic Health Evaluation; CT: computed tomography; PBW: Predicted bodyweight; SAPS: Simplified Acute Physiology Score; SOFA: Se-
quential Organ Failure Assessment; VT: tidal volume.

a The P value is computed comparing patients receiving VT ≤ 6 mL/kg PBW versus VT > 6 mL/kg PBW;
b Severity of ARDSwas classified according to the Berlin definition (Severe ARDS: P/F ratio< 100mmHg;Moderate ARDS: P/F ratio between 100 and 200mmHg;Mild ARDS: P/F ratio>

300 mmHg.
c Most recent measurement in 24 h before intubation, or at ICU admission under invasive ventilation.
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(2) LTVV had an independent association with 28-day mortality; and
(3) potentiallymodifiable factors associatedwith LTVVusewere the ini-
tial VT and continuous muscle paralysis.

This study has several strengths. First, we used a dataset with gran-
ular ventilation and sufficient data that allowed us to focus our analysis
to VT under controlled ventilation and in absence of spontaneous
breathing activity. We strictly followed a predefined analysis plan, and
the study had a convenient sample size, including nearly a third of all
COVID-19 patients that needed invasive ventilation in the first wave
[14]. Second, patients were enrolled in various types of hospitals, in-
cluding university hospitals, and teaching and non-teaching hospitals,
all increasing the generalizability of our findings. Third, to deal with ef-
fects of potential differences between hospitals we accounted centers as
random effect in the statistical analysis.

VT was much lower than in previous cohorts of patients with ARDS
due to another cause than COVID-19 [10,17], but in line with VT in
cohorts of patients with COVID-19 [18-24]. The lower VT in COVID-19
patients may reflect an improved implementation of lung-protective
ventilation over the recent years [25]. Otherwise, the fact that care for
invasively ventilated COVID-19 patients had to be provided by hospital
personnel that had much less experience or confidence with setting a
4

ventilator may have resulted in a much better compliance with current
guidelines for the ventilation of patients with ARDS, which includes
measures to prevent lung-injury, i.e., ventilation with a low VT [14].
This might also be the reason that our cohort was homogenous with
respect to ventilator mechanics and the use of certain interventions
like NMBA use and prone positioning.

The definition for LTVV, however, remains a matter of debate. Previ-
ous studies used different cutoffs, e.g., 8 mL/kg PBW [21], 6.5 mL/kg
PBW [9], or 6 mL/kg PBW [20] in patients with ARDS due to COVID-
19; 8 mL/kg PBW [10] in patients with ARDS not caused by COVID-19;
or 6 mL/kg PBW [26], or 8 mL/kg PBW in patients without ARDS [17].
Even guidelines show discrepancies in recommendations [5,27,28].
We chose to use the rather ‘strict’ cutoff based on the landmark ARMA
trial [6]. Furthermore, although it may seem that the median VT does
not differ greatly, it is important to note that the distribution of VT

between these groups is different. In other words, patients in the non-
LTVV group received a larger VT. The findings of our posthoc analyses
suggest that these differences in VT may have clinical consequences,
also in patients with ARDS due to COVID-19. This supports a previous
analysis which showed that one SD increase in VT per PBW translated
into a 28% increase in 28-day mortality [14].



Table 2
Ventilation characteristics and rescue strategies.

Overall cohort (n = 903) VT ≤ 6 mL/kg PBW (n = 294) VT > 6 mL/kg PBW (n = 609) P valued

Ventilation characteristics
VT, mL 445.50 [402.50–493.50] 417.50 [372.25–449.75] 467.00 [421.00–507.50] <0.001
VT PBW, mL/kg 6.34 [5.86–6.95] 5.65 [5.33–5.84] 6.70 [6.33–7.21] <0.001
VT ABW, mL/kg 5.18 [4.50–5.85] 4.64 [4.04–5.11] 5.47 [4.84–6.06] <0.001
First set VT PBW, mL/kg 6.30 [5.7–7.1] 5.77 [5.3–6.3] 6.59 [6.0–7.4] <0.001
PEEP, cm H2O 13.00 [11.00–15.00] 12.75 [10.00–15.00] 14.00 [12.00–15.00] 0.061
Peak pressure, cm H2O 27.00 [24.50–30.00] 26.50 [24.00–29.25] 27.00 [25.00–30.00] 0.014
Driving pressure, cm H2O 14.00 [12.00–16.00] 14.00 [12.00–16.00] 14.00 [12.00–16.00] 0.144
Mechanical power, J/min 19.32 [15.81–22.96] 18.18 [15.27–21.99] 19.84 [16.18–23.89] <0.001
Respiratory compliance, mL/cm H2O 32.09 [26.36–38.57] 30.36 [25.08–36.75] 32.95 [27.34–39.17] <0.001
Total respiratory rate/min 22.00 [20.00–25.00] 24.00 [20.00–26.00] 22.00 [20.00–24.00] <0.001
FiO2 0.45 [0.40, 0.54] 0.45 [0.40–0.52] 0.45 [0.40–0.55] 0.250
PaO2/FiO2 ratio, mm Hg 170.27 [141.02–206.01] 168.36 [140.89–204.40] 170.65 [141.02–206.28] 0.707
SpO2/FiO2 ratio, mm Hg 206.67 [177.48–237.89] 210.00 [178.75–240.00] 204.61 [176.36–237.50] 0.388
etCO2, mm Hg 37.96 [33.75–42.76] 39.76 [35.25–44.63] 37.51 [33.38–42.01] <0.001

Laboratory testing
pH 7.36 [7.31–7.40] 7.36 [7.31–7.40] 7.37 [7.32–7.40] 0.173
PaO2, mm Hg 76.14 [70.88–83.64] 74.63 [69.20–80.26] 76.81 [71.26–84.76] <0.001
PaCO2, mm Hg 46.51 [42.01–52.88] 47.63 [42.76–54.38] 45.76 [41.26–51.98] <0.001
Lactate, mmol/L 1.20 [1.00–1.45] 1.10 [0.95–1.30] 1.20 [1.00–1.53] <0.001
Kreatinine, mmol/L 82.00 [64.50–121.00] 85.50 [65.50–127.50] 81.00 [64.00–119.00] 0.141

Vital signs
Mean arterial pressure, mm Hg 76.00 [72.00–80.00] 76.00 [71.38–81.00] 76.00 [72.00–80.00] 0.335
Heart rate/min 81.00 [70.00–93.00] 80.00 [71.00–91.00] 81.00 [69.00–93.50] 0.657

Rescue strategies for refractionary hypoxemia
Use of lung recruitment manoeuvres 53 (7.1) 15 (6.1) 38 (7.5) 0.601
Use of prone positioning 517 (57.6) 182 (61.9) 335 (55.5) 0.078
Duration of prone positioning per day, hours 3.00 [0.00–9.50] 4.00 [0.00–10.94] 2.25 [0.00–9.00] 0.026
Use of neuromuscular blockade 435 (48.2) 168 (57.1) 267 (43.8) <0.001
Duration of neuromuscular blockade per day, hours 0.00 [0.00–8.00] 4.00 [0.00–12.00] 0.00 [0.00–8.00] <0.001
Use of extracorporeal membrane oxygenation 11 (1.2) 7 (2.4) 4 (0.7) 0.046

Other
Continuous sedationa 897 (99.3) 291 (99.0) 606 (99.5) 0.633
Vasopressorb use 848 (93.9) 267 (90.8) 581 (95.4) 0.011
Inotropicc use 91 (10.1) 30 (10.2) 61 (10.0) 1.000
Fluid balance per day, mL 964.25 [452.75–1461.64] 846.50 [301.62–1413.00] 994.00 [500.00–1483.00] 0.014
Urine output per day, mL 1127.50 [774.38–1498.12] 1120.00 [779.50–1447.56] 1143.75 [773.75–1521.25] 0.458

These characteristics represent aggregations over the first four days of ventilation unless stated otherwise. Data are median [quartile 25% - quartile 75%] or No (%). Percentages may not
total 100 because of rounding.
Abbreviations: ABW: actual body weight; etCO2: end tidal carbon dioxide; FiO2: fraction of inspired oxygen; PaO2: arterial partial oxygen tension; PBW: predicted body weight; PEEP:
positive end-expiratory pressure; SpO2: peripheral oxygen saturation; VT: tidal volume. e Assisted modus of ventilation over the first 48 h.

a Sedatives consist of Midazolam, Propofol, Dexmedetomidine, Clonidine, Morphine, and Fentanyl.
b Vasopressors consist of Noradrenaline, Adrenaline, and Vasopressine.
c Inotropics consist of Milrinone and Dobutamine.
d P values are computed comparing patients receiving VT ≤ 6 mL/kg PBW versus VT > 6 mL/kg PBW.
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One novelty of our analysis is that we investigated the associa-
tion of LTVV in passive patients, i.e., in patients during controlled
ventilation and without evidence of spontaneous breathing activ-
ity, with outcomes. In a spontaneous breathing patient, a VT > 6
mL/kg PBW could be acceptable for several reasons. An active dia-
phragm increases the vital capacity of the lungs [29], and distribu-
tion of air in the lungs during spontaneous ventilation is more
homogeneous than during passive ventilation [30]. Under these
conditions an increase in VT size could be suitable. Also, there is
much less control over VT size during spontaneous ventilation
[31]. In other words, we focused on the effects of a low VT in a
scenario wherein it is important, and also possible, to limit the
size of a VT.

Our results confirm the findings of recent investigation in Brazil that
studied the association of LTVV with outcomes in COVID-19 patients
[21]. In that study, LTVV was also associated with a better survival
[21]. The association of LTVV with other endpoints in our study further
reinforces the idea that LTVV use could be an important target in COVID-
19 patients. In absence of randomized clinical trial evidence, the find-
ings of these two studies together could be used as a strong argument
to use LTVV, at least in patient that are passive.
5

Several factors had an association with use of LTVV. One fixed factor
that had an association with LTVV use was patient's height. Previous
studies showed that short patients are at a higher risk for not receiving
LTVV—this was found in critically ill patients that received ventilation in
the ICU [25], and also in surgery patients that received intraoperative
ventilation in the operating room [32]. VT should be titrated to the
PBW, which is a function of height. Of note, measuring patients' height
in critically ill patients, i.e., in a supine position, can be challenging
[33], and estimates of height are often inaccurate—height is often
overestimated in shorter individuals [34,35]. Another non-modifiable
factor that had an association with use of LTVV was age. Older age has
been identified as a risk factor for underuse of LTVV before [36], but
the reason for this remains unexplained.

The initial VTwas one of the potentiallymodifiable factors associated
with use of LTVV. This finding is in line with findings from a previous
study in patients with ARDS not caused by COVID-19 [37]. The VT

often remains unchanged after its initial setting, as was also found in
other settings, like in the emergency room [38-43]. This finding
emphasizes the importance of correct initial ventilator settings and if
needed, corrections later on. One other potentially modifiable factor
was continuous muscle paralysis. We are not aware of previous
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Fig. 2. Cumulative distribution fractions for the ventilator characteristics. Respiratory System Compliance and Mechanical Power were lower in LTVV patients.
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studies that investigated whether use of NMBA has an association with
use of LTVV. However, muscle paralysis may reduce oxygen consump-
tion through decreased work of breathing, eventually allowing the use
of a lower minute ventilation, and thus a lower VT.
Table 3
Clinical outcomes.

Overall cohort
(n = 903)

Mortality
Mortality at day 28 257 (28.9)
Mortality at day 90 313 (37.9)
In hospital mortality 300 (36.1)
ICU mortality 291 (33.0)

Clinical ventilator outcomes
Ventilator free days at day 28, days 2.48 [0.00–16.00]
Duration of ventilation, days 16.00 [9.04–28.02]
Length of hospital stay in survivors 29.04 [20.04–43.03]
Length of ICU stay in survivor 17.04 [11.00–29.00]
Successful extubation 528 (58.9)
Reintubation 117 (13.1)
Tracheostomy 145 (16.2)
Pneumothorax 8 (0.9)

Extrapulmonary outcomes
Thrombotic event 259 (28.7)
Acute kidney injury 403 (44.8)
Renal replacement therapy 163 (18.1)

Data are median [quartile 25% - quartile 75%] or No (%). Percentages may not total 100 becaus
a P value is computed comparing patients receiving VT ≤ 6 mL/kg PBW versus VT > 6 mL/kg

6

The finding that patients receive LTVV more often with volume-
controlled ventilationmay be explained by the fact that healthcare pro-
viders ‘directly’ set VT with this modus, while with pressure-controlled
ventilation VT is set ‘indirectly’, i.e., by adjusting the inspiratory
VT ≤ 6 mL/kg
PBW (n = 294)

VT > 6 mL/kg
PBW (n = 609)

P
valuea

67 (23.1) 190 (31.7) 0.005
93 (34.1) 220 (39.8) 0.024
84 (31.3) 216 (38.3) 0.017
80 (27.9) 211 (35.5) 0.013

4.96 [0.00–16.99] 0.96 [0.00–15.96] 0.175
15.04 [9.52–28.04] 16.00 [9.04–28.00] 0.782
30.00 [19.52–42.54] 29.04 [20.04–43.02] 0.986
16.04 [10.00–28.01] 18.00 [11.01–30.03] 0.405

181 (62.2) 347 (57.4) 0.191
37 (12.8) 80 (13.3) 0.917
47 (16.1) 98 (16.3) 1.000
2 (0.7) 6 (1.0) 0.971

97 (33.0) 162 (26.6) 0.056
131 (44.7) 272 (44.8) 1.000
59 (20.1) 104 (17.1) 0.316

e of rounding.
PBW.
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pressure. Our results that female patients receive LTVV less frequent
than male patients during invasive ventilation are in accordance with
findings from previous studies [25,44]. Furthermore, one of these
Table 4
Mixed effect cox regression analysis on 28 day mortality.

Univariate mixed effect cox regression Hazard ratio (95% CI) P value

LTVV 0.67 (0.51 to 0.88) 0.005
Age, years 1.07 (1.05 to 1.08) <0.001
Male gender 1.30 (0.97 to 1.75) 0.078
Arterial pH 0.00 (0.00 to 0.00) <0.001
Heart rate, bpm 1.02 (1.01 to 1.02) <0.001
Acute kidney injury 2.72 (2.11 to 3.52) <0.001
Respiratory compliance, mL/cm H2O 0.99 (0.98 to 1.01) 0.387
Use of prone positioning 1.14 (0.88 to 1.46) 0.317
Moderate vs Mild ARDSa 1.39 (0.98 to 1.97) 0.063
Severe vs Mild ARDSa 2.24 (1.44 to 3.49) <0.001
Thrombotic events 1.26 (0.97 to 1.63) 0.083

Multivariate mixed effect cox regression Hazard ratio (95% CI) P value

LTVV 0.68 (0.49 to 0.95) 0.025
Age, years 1.06 (1.04 to 1.07) <0.001
Male gender 1.13 (0.81 to 1.59) 0.471
Arterial pH 0.01 (0.00 to 0.06) <0.001
Heart rate, bpm 1.01 (1.00 to 1.02) 0.007
Acute kidney injury 2.00 (1.47 to 2.73) <0.001
Respiratory compliance, mL/cm H2O 1.00 (0.99 to 1.01) 0.821
Use of prone positioning 0.82 (0.60 to 1.13) 0.221
Moderate vs Mild ARDSa 1.30 (0.88 to 1.91) 0.191
Severe vs Mild ARDSa 1.72 (1.01 to 2.92) 0.047
Thrombotic events 1.05 (0.78 to 1.41) 0.746

All models were mixed-effect models with centres as frailty and considering a binomial
distribution. Continuous variables were centered. The hazard ratios show the increase in
one SD of the variable.
Abbreviations, LTVV: Low tidal volume ventilation;

a Berlin definition:MildARDSP/F ratio>200mmHg,Moderate ARDS: 101<P/F ratio<
200 mmHg, Severe ARDS: P/F ratio < 100 mmHg.
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studies illustrated that this difference is largely driven by the body
height using a mediation analysis [44].

This analysis has several limitations. First, the collection of ventila-
tion variables and adjunctive treatments was restricted to the first 4
days of ventilation due to the data available in the PRoVENT-COVID
dataset [45]. It is possible that ventilation practice and adjunctive
Table 5
Logistic regression analysis of factors associated with use of LTVV.

Univariate logistic regression Odds ratio (95% CI) P value

First set VT, mL/kg PBWa 0.49 (0.44 to 0.56) <0.001
Age, years 0.78 (0.71 to 0.85) <0.001
Male gender 1.64 (1.35 to 2.01) <0.001
Height, cm 1.81 (1.64 to 1.99) <0.001
Moderate vs Mild ARDSb 1.08 (0.88 to 1.32) 0.459
Severe vs Mild ARDSb 0.85 (0.53 to 1.37) 0.503
Use of NMBA 1.36 (1.13 to 1.63) <0.001
Use of prone positioning 1.17 (0.97 to 1.43) 0.105

Multivariate logistic regression Odds ratio (95% CI) P value

First set VT, mL/kg PBWa 0.59 (0.52 to 0.67) <0.001
Age, years 0.84 (0.76 to 0.93) <0.001
Male gender 0.78 (0.60 to 1.02) 0.068
Height, cm 1.63 (1.44 to 1.84) <0.001
Moderate vs Mild ARDSb 1.19 (0.95 to 1.48) 0.127
Severe vs Mild ARDSb 0.98 (0.58 to 1.67) 0.950
Use of NMBA 1.31 (1.07 to 1.60) 0.010
Use of prone positioning 1.15 (0.93 to 1.43) 0.204

All models were mixed-effect models with centres as random factor and considering a
binomial distribution. Continuous variables were centered. The odds ratio show the
increase in one SD of the underuse of LTVV variable.
Abbreviations, LTVV: low tidal volume ventilation; NMBA: neuromuscular blocking
agents; PBW: predicted bodyweight; VT: tidal volume.

a First set tidal volume at the first hour of invasive ventilation.
b Berlin definition Mild ARDS: P/F ratio > 200 mmHg, Moderate ARDS: 101 < P/F ratio

< 200 mmHg, Severe ARDS: P/F ratio < 100 mmHg.
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therapies beyond these days have an effect on outcomes. Second, this
data was collected during the first 3 months of the pandemic. Ventila-
tion practice may have changed thereafter, and particularly the in-
creased use of high-flow oxygen systems that may have prevented
intubation and invasive ventilation may have caused changes in patient
case mix—andwith that the association of LTVV and outcomemay have
changed. Third, this study enrolled patients in only one country, which
may hamper the generalizability of the findings. Fourth, the centers that
participated in the study may have had increased interest in invasive
ventilation, in particular use of LTVV, or bias may have been caused by
the fact that the healthcare workers were aware that ventilation data
were being collected. Fifth, in this study we did not collect data on ad-
junctive supportive therapies before and during ICU admission, such
as antiviral or steroidal drugs. These may have affect outcomes as
well. Sixth, we did not analyze how the healthcare providers titrated
VT, which could be different with the various modes used, but also be
driven by other factors, e.g., airway pressures, respiratory rate, and
minute volume, and even changes in lung compliance. Seventh, we
did neither collect how height was measured nor how PBW was calcu-
lated by the healthcare workers. Eight, the high use of vasopressor in
this cohort is challenging to interpret because we collected vasopressor
use at any time during the first four calendar days, including the mo-
ment close to tracheal intubation.

5. Conclusion

LTVV is used in approximately a third of all patients with ARDS re-
lated to COVID-19. Use of LTVV was independently associated with re-
duced 28-day mortality. Potentially modifiable factors that have an
association with use of LTVV are the initial VT and continuous infusion
of NMBA.
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