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Abstract: Plants have innate immune systems or defense mechanisms that respond to the attack of
pathogenic microorganisms. Unlike mammals, they lack mobile defense cells, so defense processes
depend on autonomous cellular events with a broad repertoire of recognition to detect pathogens,
which compensates for the lack of an adaptive immune system. These defense mechanisms remain
inactive or latent until they are activated after exposure or contact with inducing agents, or after
the application of the inductor; they remain inactive only until they are affected by a pathogen
or challenged by an elicitor from the same. Resistance induction represents a focus of interest,
as it promotes the activation of plant defense mechanisms, reducing the use of chemical synthesis
pesticides, an alternative that has even led to the generation of new commercial products with high
efficiency, stability and lower environmental impact, which increase productivity by reducing not
only losses but also increasing plant growth. Considering the above, the objective of this review is to
address the issue of resistance induction with a focus on the potential of the use of oligosaccharides
in agriculture, how they are recognized by plants, how they can be used for commercial products
and perspectives.
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1. Introduction

The phenomenon of resistance induction as a strategy that seeks to improve the natural defenses
of plants was described for the first time in 1901 in the work of Beauverie, “Essais d’immunisation
des vegetaux contre les maladies cryptogamiques” [1], followed by several studies in the early 1900s,
as mentioned by Alexandersson, et al. [2], and many more recent studies, showing that it is an
alternative strategy of interest [3–9]. However, in agriculture, its use is not common, the traditional,
is genetic improvement where plant varieties have been domesticated based on fruit quality and yield,
but this has resulted in reduced resistance to pathogens compared with wild varieties, so most crops are
susceptible to numerous diseases [10]. In this sense, diseases continue to be responsible for considerable
losses in crop production around the world [11], which is traditionally controlled by the use of chemical
pesticides that today have been rejected by society for the damage it generates in crops, the environment
and even to the health of farmers and consumers, thus generating a need for agriculture that seeks
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sustainable and environmentally friendly practices [10,12]. Therefore, a regulation has been generated
in Europe, the (EC) 1107/209, complemented by directive 2009/128/EC, which forces members of the
state to generate policies that contemplate plans based on an integrated management of the disease
with less dependence on chemicals.

As a result of the aforementioned, resistance induction represents a focus of interest, as it is an
alternative that promotes the activation of plant defense mechanisms, reducing the use of chemical
synthesis pesticides, [13], an alternative that has even led to the generation of new commercial products
with high efficiency, stability and lower environmental impact [14] that increases productivity by
reducing not only losses but also by increasing plant growth [15].

Considering the above, the objective of this review is to address the issue of resistance induction
with a focus on the potential of the use of oligosaccharides in agriculture, how they are recognized by
plants, how they can be used for commercial products and perspectives.

2. Plant Defense Responses and Resistance Induction

Plants have an innate immune system or defense mechanisms that respond to the attack of pathogenic
microorganisms [16,17]. Unlike mammals, they lack mobile defense cells, so defense processes depend on
autonomous cellular events with a broad repertoire of recognition to detect pathogens that compensates
for the lack of an adaptive immune system [18]. These defense mechanisms remain inactive or latent
until they are activated after exposure or contact with inducing agents [19], or after the application of
the inductor. The defense mechanisms remain inactive only until they are affected by a pathogen or
challenged by an elicitor from the same, in which case a response has been observed that is faster or
stronger with respect to the plants that did not have contact with the inductor [20].

Among the varied defense responses that the plant has, there are changes in the ion flow that lead to
depolarization of the plasma membrane, production of reactive oxygen species (ROS), nitric oxide (NO),
activation of calcium-dependent protein kinases or mitogen-activated protein kinases (CDPKs and
MAPKs) [13,21–23] and activation of the octadecanoid pathway, one of the best known defense
mechanisms, whose end product, jasmonic acid (JA), induces the expression of several genes [24].
In fact, together, these signaling events modulate the expression of transcription factors (TFs), activities
that lead to massive transcriptional reprogramming related to defense, which in turn results in
the activation of various genes that modulate various antioxidant enzymes [25,26] and metabolites
specifically related to stress. These include, for example, pathogenesis-related (PR) proteins that
include β-1,3-glucanases and chitinases, compounds with antimicrobial activity such as phytoalexins
and deposition of callose and lignin for cell wall strengthening [10,27,28].

All of the aforementioned defense mechanisms are generated because the plant recognizes
“nonnative” signals related to microbe-associated molecular patterns or pathogen-associated molecular
patterns (MAMPs/PAMPs), which are constituents of the cell wall of bacteria, such as flagellin,
of fungi, chitin or fragments of pathogens oomycetes (Phytophthora) in the case of β-(1,3)-(1,6)-glucan.
Many MAMPs have been described and can be (glyco) type proteins, carbohydrates or lipids. In addition
to the signals that come from microorganisms, there are also those associated with the plant, from the
host itself, the damage-associated molecular patterns (DAMPs), which are very structurally diverse
and include, for example, pectin-derived oligogalacturonides. Once MAMPs/PAMPs are recognized
by pattern-recognition receptors (PRRs), located in the plasma membrane or in the cytoplasm, a wide
variety of responses related to MAMP/PAMP-triggered immunity (MTI/PTI) are triggered [13,18,29,30].

In addition to the innate immune system, plants can also acquire immunity against the perception
of specific biotic and abiotic stimuli, a process mediated by the priming of inducible defenses,
which causes plants to show an activation of various rapid or strong cellular defense responses or
both [20]. In this sense, two types of induced resistance have been identified and widely studied:
systemic acquired resistance (SAR) and induced systemic resistance (ISR). The first is a state of defense
induced by a local infection with pathogens or by the application of a chemical substance that confers
resistance to a broad spectrum of pathogens and is dependent on salicylic acid (SA) [31] Therefore,
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when this process occurs, greater resistance is observed in the distal parts as a consequence of mobile
signals in the plant belonging to the SA, which is biologically active in tissues far from the point of
origin from where the response began [32], which is related to localized necrosis, can present as a
hypersensitive response or local necrotic lesion caused by a virulent pathogen [33,34]. The induction
of SAR requires the accumulation of endogenous salicylic acid signals, which mediate the activation of
a wide set of pathogenesis-related (PR) genes. It has also been known that SA can have a dual role
in signaling: activation of PR genes or low doses of SA that do not activate defense genes directly
can prepare the tissue for an enhanced expression of defense genes in a subsequent infection of the
pathogen. In fact, in some cases, it has been found that there is no response to induction with SA until
the plant is inoculated with the pathogen or its components [35].

Regarding induced systemic resistance (ISR), this appears when there is a beneficial interaction
between plants and microorganisms, the latter helping plant nutrition but also overcoming biotic or
abiotic stress in addition to improving the defense capacity of the plant and effectively preventing
a broad spectrum of pathogens [36]. This type of induced resistance is considered independent of
SA and is not associated with major changes in the expression of defense genes, probably because
this would lead to a strong investment in resources and reduction of host fitness, as has been shown
in previous research [20,37,38]. In this sense, it is widely known that ISR is governed by jasmonic
acid (JA) and ethylene (ET) [34], although it may not alter the production of JA or ET, as mentioned
by Pieterse, et al. [39], in which case the effect could be more related to improved sensitivity to these
plant hormones.

Thus far, the defense mechanisms of plants and the types of resistance induction have been
mentioned, but what inducers are has not been conceptualized. Plant resistance inducers (PRIs)
of exogenous application are interesting because they can be incorporated into integrated disease
management programs. These inducers are also called elicitors, although sometimes the terms are
confused. Elicitors, in a broad sense, are chemicals or biofactors from various sources that can induce
physiological and morphological changes in the target organism. These include abiotic elicitors, such as
metal ions and inorganic compounds, and biotic elicitors from fungi, bacteria, viruses (or fragments of
these), components of the plant cell wall as well as chemicals that are released at the site of attack by
plants after the emergence of pathogens or herbivores [40]. In the same way, other authors define that
an elicitor or inducer is a molecule, or molecules, present in an organism or produced by the plant
itself, whose function includes the generation of defense responses [19]. β-1,3-glucan of Septoria tritici
triggered wheat defense responses related to the production of β-1,3-glucanases and callose deposition
to strengthen the cell wall [41] or the effect that the extract from Phaseolus vulgaris leaves had on
the same plant, generating a strong defense response related to the production of reactive oxygen
species [42]. However, it is important to note that in the field of crop protection, they offer many
advantages, because they do not attack the pathogen as such (they are not directly toxic to pathogens,
which is the basis of pesticides, so they do not generate resistance); however, they are recognized by
the receptors of the plant membrane and induce innate immunity [13]. They can potentially protect
against multiple pathogens [43], mainly because they do not have a specific mechanism of action [14].

In general, it should be noted that the results of resistance induction will depend on the genotypes
of both pathogens and hosts, which results in variable responses where the relationship between the
level of resistance and the level of resistance induction is not clear, although in most cases, it has
a direct relationship [44,45]. Likewise, an important issue regarding the induction of resistance is
the influence of the environment and genotype on the plant’s response capacity to defense inducers,
which was shown by Bruce [46], where the attack of herbivores could promote the phenotypes of
defense induction through generations and epigenetic change may be the basis of its lasting effect.

3. Oligosaccharides as Defense Inducers

Some molecules that are used as elicitors are therefore PAMPs/MAMPs that, as mentioned above,
can be of different types, such as oligosaccharides (OGAs), on which research has focused in recent
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times, given that a large amount of these mediate the pathogenesis [47]. In this context, the knowledge
of different glucans that are part of fungi, oomycetes or bacteria presents a new perspective to not only
analyze and understand plant-pathogen interactions but also to determine the potential of these as
defense-inducing agents for the protection of plants.

In this sense, it has been shown that some oligosaccharides can act as elicitors and consequently
activate the defense responses of plants. This has been studied in different plants, and for this review,
studies that have used oligosaccharides, as well as the use of some chemical elicitors, are referenced
(Table 1) in order to show evidence that the responses shown by the plants with any of the elicitors
are similar; therefore, it is possible to consider the oligosaccharides as elicitors that can be used
in agriculture.

Regarding the origin, the oligosaccharides involved in plant-pathogen interactions are produced
by enzymatic degradation of polysaccharides that are structural constituents of the cell wall of fungi
or plants or pathogenicity factors of pathogens [48]. The activity of these compounds is dependent
on the dose but also on the degree of polymerization (DP) [49,50], without consensus in this regard.
In the case of tobacco cells, laminarin (MW: 504.4 g/mol), a storage β-glucan composed of glucose,
and mannitol (Figure 1A), from brown algae, which has an average of 25–33 DP and up to three
β-glucose branches in position 6, induces defense responses slower than other β-1,3-glucans with
low DP (2–10) [5]. Given that other studies showed contradiction with these results, as in the case
of chitin (MW: 203.1925 g/mol), a linear polymer of N-acetylglucosamine (Figure 1B), with higher
activity reported for DP 7–8 and low or none for DP < 5 [51], or curdlan a linear polymer of glucose
(Figure 1C), which showed a marked effect with DP 5–7 with respect to those of DP3 [52]. We sought
to have greater clarity in this regard andwe found that it is important to also take into account other
factors, such as the type of polymer used and the pathosystem (on which the activity of one molecule
or another depends highly), namely, for a lower OGA size, a better response of the plant is generated,
while with chitosan, DP between 7–10 is usually more active [50].

Molecules 2020, 25, x FOR PEER REVIEW 4 of 15 

 

recent times, given that a large amount of these mediate the pathogenesis [47]. In this context, the 

knowledge of different glucans that are part of fungi, oomycetes or bacteria presents a new 

perspective to not only analyze and understand plant-pathogen interactions but also to determine 

the potential of these as defense-inducing agents for the protection of plants. 

In this sense, it has been shown that some oligosaccharides can act as elicitors and consequently 

activate the defense responses of plants. This has been studied in different plants, and for this review, 

studies that have used oligosaccharides, as well as the use of some chemical elicitors, are referenced 

(Table 1) in order to show evidence that the responses shown by the plants with any of the elicitors 

are similar; therefore, it is possible to consider the oligosaccharides as elicitors that can be used in 

agriculture. 

Regarding the origin, the oligosaccharides involved in plant-pathogen interactions are produced 

by enzymatic degradation of polysaccharides that are structural constituents of the cell wall of fungi 

or plants or pathogenicity factors of pathogens [48]. The activity of these compounds is dependent 

on the dose but also on the degree of polymerization (DP) [49,50], without consensus in this regard. 

In the case of tobacco cells, laminarin (MW: 504.4 g/mol), a storage β-glucan composed of glucose, 

and mannitol (Figure 1A), from brown algae, which has an average of 25–33 DP and up to three β-

glucose branches in position 6, induces defense responses slower than other β-1,3-glucans with low 

DP (2–10) [5]. Given that other studies showed contradiction with these results, as in the case of chitin 

(MW: 203.1925 g/mol), a linear polymer of N-acetylglucosamine (Figure 1B), with higher activity 

reported for DP 7–8 and low or none for DP < 5 [51], or curdlan a linear polymer of glucose (Figure 

1C), which showed a marked effect with DP 5–7 with respect to those of DP3 [52]. We sought to have 

greater clarity in this regard andwe found that it is important to also take into account other factors, 

such as the type of polymer used and the pathosystem (on which the activity of one molecule or 

another depends highly), namely, for a lower OGA size, a better response of the plant is generated, 

while with chitosan, DP between 7–10 is usually more active [50]. 

 

(A) 

  

(B) (C) 

Figure 1. Oligosaccharides used in resistance induction: (A) Laminarin, (B) Chitin, (C) Curdlan. Figure 1. Oligosaccharides used in resistance induction: (A) Laminarin, (B) Chitin, (C) Curdlan.



Molecules 2020, 25, 5972 5 of 15

Table 1. Inductors of chemical synthesis and oligosaccharides that generate resistance in different cultures against their respective pathogens.

Inductor Plant Disease Pathogen Application Response Quote

Chemical synthesis

Acibenzolar-S-methyl
(ASM) Cape gooseberry Vascular wilt Fusarium oxysporum Foliar

Greater accumulation of defense
proteins and signal molecules in

the root.
[53]

Acibenzolar-S-methyl
(ASM)

Jimson weed
Nicotiana benthamiana Yellow spot Iris yellow spot virus

(IYSV) Sprayed
Expression of PR proteins, fewer

lesions and reduction in virus levels
quantified by PCR.

[54]

B-aminobutyric acid
(BABA) Tomato Gray mold disease Botrytis cinerea

Application to the
soil of the
compound

Upregulation of defense-associated
compounds such as
phenylpropanoids.

[9]

Hexanoic acid Orange Canker Xanthomonas citri
subsp. citri

Sprayed and
soaked soil

Reduction of lesions, improved
expression of PR proteins and

callus deposition.
[55]

Salicylic acid Green soybeans Virosis
Mungbean yellow
mosaic India virus

(MYMIV)
Sprayed

Stimulation of SOD and GPX
enzymes. Activation of

defense-related proteins, increased
phenolic and H2O2 content.

[6]

Salicylic acid Rice Blight of rice Magnaporthe oryzae Sprayed

Activation of proteins involved in
functions such as defense,

antioxidant enzymes and signal
transduction. Increase in the levels

of reactive oxygen species.

[7]

Salicylic acid Avocado Root rot Phytophthora
cinnamomi Submerged root

Production of the phenol-2,4-bis
(1,1-dimethylethyl) compound,

with antifungal activity and against
P. cinnamomi.

[56]

Salicylic acid (SA)
and Methyl jasmonate

(MeJA)
Tomato Wilt Fusarium oxysporum f.

sp. lycopersici
Daily spray for

three days

Increased activity of antioxidant
enzymes, decreased lipid

peroxidation.
[8]
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Table 1. Cont.

Inductor Plant Disease Pathogen Application Response Quote

Riboflavin Rice Rice pod blight Rhizoctonia solani Sprayed

Priming of the expression of
lipoxygenase, key in the

octadecanoid pathway, upregulation
of the PAL enzyme, and therefore,

an improved lignification.

[57]

Silicon (Yes) Paprika Phytophthora capsici Soil It reduced the severity and improved
the development of the plant. [58]

Copper sulfate
pentahydrate (Phy) Cotton Fusarium oxysporum

sp. Vasinfectum Foliar and seeds Low severity index. [59]

Oligosaccharides

Oligosaccharides
isolated from Ulva

lactuca
Tomato Wilt Fusarium oxysporum f.

sp. lycopersici

Internodal
injection in the
middle part of

seedlings

Stimulation of PAL activity
accompanied by increased phenolic

compounds and the induction of
salicylic acid.

[4]

Curdlan
oligosaccharide

(CurdO)
Potato Late blight Phytophthora infestans Infiltration

Expression of defense-related
proteins, reduction of leaf lesions,
higher concentrations of salicylic
acid, higher PAL, GLU and CTN

activity and better yields.

[52]

Oligogalacturonides Arabidopsis
Pectobacterium
carotovorum sp.

Carotovorum SCC1
Foliar

Activation of defense-related genes
among which are groups associated

with phytohormones, oxylipin
biosynthesis, programmed cell death

and other signaling.

[60]

Laminarin
(β-1,3-glucan) Tobacco Bacteriosis Erwinia carotovora

subsp. carotovora

Addition of
elicitor to cell

culture

Accumulation of PR proteins, release
of H2O2, stimulation of PAL and

LOX activity and
accumulation of SA.

[61]

Chito-oligosaccharides
(COS) Blackberry Biotic and

abiotic stress Foliar spray

Higher phenolic content and greater
free radical trapping capacity
(ABTS), as well as increased

succinate dehydrogenase activity.

[62]
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Table 1. Cont.

Inductor Plant Disease Pathogen Application Response Quote

Curdlan-oligosaccharides
(β-1,3-glucan
(CRDO)) and

Laminarin

Tobacco Tobacco mosaic Tobacco mosaic virus
(TMV)

Addition of
elicitor to cell

culture

Production of nitric oxide, greater
movement of stomata with CRDO
and greater protection against the

virus in the case of laminarin.

[5]

Tramesan Durum wheat Nodorum blotch Parastagonospora
nodorum Sprayed

Pro antioxidant molecule, induced
the expression of oxidative stress

defense-related genes.
[63]

Tramesan Durum wheat Septoria Leaf Blotch
complex (SLBC)

Parastagonospora
nodorum

Zymoseptoria tritici
Sprayed

Increased the levels of jasmonic acid
and the early expression of plant

defense genes.
[64]
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Regarding the aforementioned pathosystem towards which the process of induction of resistance
with oligosaccharides is directed, it is precisely this that seems to determine the way in which the
plant responds to structurally different β-glucans, a response that must have evolved in these plants
and that makes them react against one or another molecule [50]. In the case of rice, the recognized
β-glucans are branched [48], while tobacco reacts to linear β-1,3-glucans [5,61], and soybeans that
were initially thought to only recognize branched oligosaccharides have actually been shown to also
recognize DP 3 linearly [60,65,66].

In addition, acetylations, methylations and degrees of sulphation influence the biological activity
of these biomolecules. For example, the CERK1 receptor, which is a chitin receptor [29] and triggers
defense responses, recognizes partially deacetylated chitin but not fully deacetylated chitin [67].
Regarding the degree of methyl esterification of oligosaccharides modulated by the enzyme pectin
methyl esterase (PME), this is crucial for the activity, that is, the overexpression of the enzyme reduces
the degree of methyl esterification of OGA and with it, a reduction of symptoms caused by Botrytis cinerea
in Arabidopsis and strawberries [68,69]. For sulfate groups, when they are substituents in biomolecules,
which generally implies greater biological functionality, these substituents modify the three-dimensional
structure of the molecule, making it more resistant to degradation by β-1,3-endoglucanases and
exoglucanases [50]. Its ability to improve defense responses has been evaluated in vine plants [49] and
tobacco [61], to cite some examples.

4. Recognition of Polysaccharides in Plants

Protein glycosylation is generally recognized as one of the major co- and post-translational
modifications. This interaction between carbohydrates and their associated protein mediates important
biological events. These proteins of nonimmune origin, which bind to specific carbohydrate structures,
are classified as lectins. The location of these abundant proteins in the extracellular space or vacuoles
suggests a role in plant defense [70]. They are found at a basal level but are inducible; that is, they are
overregulated in response to biotic or abiotic stress [71].

In this sense, the first inducible line of defense common to plants and animals is MAMP-triggered
immunity and PAMP-triggered immunity (MTI/PTI) [16]. MTI or PTI is based on the recognition
of highly conserved structures for microorganisms that are not present in the host organism.
In plants, these MAMPs/PAMPs are detected on the surface by pattern recognition receptors (PRRs)
and as many carbohydrate structures, such as peptidoglycans (PGN), have been established as
MAMPs/PAMPs [18,72,73] Thus, lectins seem to play an important role as PRRs. These PRR lectins are
highly variable in structure and may be soluble but also associated with the membrane [70] (Figure 2).
It seems that they recognize long fragments of the PGN sugar skeleton. Although the specific size that
this fragment must have to trigger immunity has yet to be established [73], what has been evidenced is
its effect on primers of defenses, for example, in tomato plants, which acquired a greater resistance to
the infection caused by P. syringae pv. tomato [74]. Regarding soluble receptors, it is important to clarify
that these receptors recognize the presence of cytoplasmic effectors; these receptors are named for their
conserved nucleotide-binding and leucine-rich repeats (NB-LRR) domains [75] (Figure 2).

Many of the lectin-type receptors described so far in plants belong to the lysine motif protein family
(LysM) (Figure 2); among the first identified are the LysM domain protein (LYM 1) in Arabidopsis and
AtLYM3, two PGN-binding proteins bound to glycosylphosphatidylinositol (GPI) and the chitin receptor
(AtCERK1), which does not bind to PGN but is required for signal transduction in Arabidopsis [76,77].
In the same way, many other families have been identified, such as Hevein (Hevea brasilensis), Jacalin
(jackfruit) and from legumes that recognize chitin, mannose/galactose and mannose, respectively [70].
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Figure 2. Recognition of effectors in plants by pattern-recognition receptor (PRR) lectins. Once the plant
perceives the peptidoglycans (MAMPs) through PRRs with a lectin domain (LecRK and lectin-type
lectin-kinase receptor), an intracellular signaling cascade is generated downstream, which leads to
protein phosphorylation, generation of reactive oxygen species (ROS), regulation of phytohormones,
activation of transcription factors due to what is known as microorganism-/pathogen-triggered
immunity (M/PTI) or, when soluble receptors recognize effectors from the pathogen, the generation of
effector-triggered immunity (ETI).

PRRs translate one or more extracellular lectin domains, which are frequently coupled to an
intracellular Ser/Thr kinase domain. Therefore, lectin receptor kinases (LecRK) can be classified into
four types: G-, C-, L- and LysM. The G-type LecRKs have a lectin domain that resembles agglutinin,
the C-type LecRKs are calcium-dependent, the L-type LecRKs (legumes) are the most numerous group
of kinase receptors, and LysM is the most studied. One of its domains contains a lysine that binds to
several bacterial peptidoglycans and fungal chitin, as previously mentioned [78].

Similarly, for the specific case of oomycete pathogens, there are effectors (Avr avirulence factors)
that activate R genes according to the gene-by-gene model; this effector is recognized by specific
receptors (R proteins), a process that leads to a hypersensitive response (HR) [16]. To delve a little
further, reference will be made to research on Phytophthora infestans, because it is one of the most studied
pathogens in reference to this recognition process. In this way, R genes typically encode immune
receptor proteins, called supercoiled helix proteins of the coiled coil, nucleotide binding, leucine rich
repeat (CC-NB-LRR) [79,80]; these proteins have important biological functions, such as the regulation
of gene expression. In this case, as a molecular trap, it detects effectors directly or by manipulation of
target proteins performed by the effector that are monitored by the receptor as such [81,82]. In contrast,
all the oomycete effector proteins known so far contain an RXLR motif (Arg-Xaa-Leu-Arg) that is
believed to mediate the delivery of the effector to the host cell, although the mechanism by which this
occurs continues to be a matter of discussion [83]. These effectors perform various functions, mainly
promoting the virulence of the pathogen by suppressing plant immunity [75,84].



Molecules 2020, 25, 5972 10 of 15

5. Oligosaccharides as a Disease Management Strategy: Commercial Use

Alternatives to commercial fungicides have emerged over the past few years. In 2014, a group of
scientists with knowledge on the possible advantages of working with oligosaccharides as resistance
inducers set out to create the company FytoFend SA, which works with two main approaches. The first
is the optimization of the production of elicitors, and the other is the study of their mechanisms of
action. Their efforts can be seen today in various products that are successfully marketed for crop
protection; one product is FytoSave®, composed of a complex of oligochitosans and oligopectates as an
active substance, which was tested in a growing crop against downy mildew of grapes and cucumber.
It was found that when it was applied by spraying in an interval between 7–14 days, it reduced the
severity of the disease. Additionally, the product persisted and showed a cumulative effect. On the
other hand, it could be perfectly combined with traditional chemical management without problems
and with some interesting advantages, such as not having a preharvest interval (for some chemicals,
such as bitertanol applied in cucumber, it can be three days and three weeks for the triadimenol),
reducing application risks for the operator and the environment, increasing their market valuation
and, most importantly, reducing the risk of increasing fungicide resistance [85].

In later developments, COS-OGA was tested against potato late blight caused by Phytophthora infestans,
resulting in increased resistance to the disease due to leaf spray, which could be corroborated with
the analysis of gene expression, where an increase of two pathogenesis-related proteins, PR-1 and
PR-2, was observed. The first is a protein known to be linked to partial resistance to P. infestans in
species of the genus Solanum, and the second encodes a β-glucosidase with the ability to hydrolyze
β-1,3-glucan, the largest component of the cell wall of oomycetes but also a protein that appears to be
linked to the pathway of salicylic acid (SA), a compound required in the defense of plants [3]. In fact,
in a previous study, it was reported that the induction of immunity in plants due to the COS-OGA
elicitor is a cumulative process involving SA. The plant had no modification of JA and ET but did show
an upregulation of PR proteins, proteases and increased peroxidase activity, suggesting a mechanism
of action of the systemic acquired resistance (SAR) of the elicitor [86].

On the other hand, the Spanish Lida Plant Research SL sells what they have called “phytovaccines,”
among which is FytoSave® and Stemicol®. About the first product, some things were mentioned
above, while about the second one, it should be noted that it is a chito-oligosaccharide that has an effect
on the reduction of fruits with rot, in the case of tomato, strawberries and grapes, and benefits such
as increased production of paprika, onion and potato [87]. In general, Lida defines phytovaccines as
“substances capable of optimizing the expression potential of genes related to defense to the maximum,”
and they have a blog where they record different reports from many farmers who have had good
results in the control of powdery mildew in zucchini and pepper and mildew in table grapes. Recently,
an alliance between Lida Plant Research and FytoFend SA managed to make the FytoSave® product the
first plant phytovaccine with phytosanitary registration admitted by the European Commission for use
in organic agriculture in 2018, and its active component COS-OGA, is listed by the same commission as
low risk [88], all of which allows us to see that the interest in oligosaccharides for resistance induction
is a topic of interest that has a promising future, since the current world is moving towards ecological
agriculture that uses fewer chemicals in its production.

6. Perspectives

The induction of resistance is, therefore, an alternative that seeks to restrict or eliminate chemically
synthesized pesticides, which currently requires a considerable investment per hectare with respect
to the total production cost of each crop. In addition, it is clear that the trend of consumers today is
inclined towards foods that are produced in a way that is environmentally sustainable, using fewer
pesticides in a way that balances the economic, environmental and quality of life benefits not only
for farmers but also for consumers [89]. This type of agriculture is, therefore, a differential factor in
the market that is well valued in economic terms, so that a product that in its chain has required a
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lower use of pesticides will have a higher price, which ultimately translates into a more competitive
producer, with a product with less traceability and better acceptance on international markets.

On the other hand, as mentioned, plants have various ways of recognizing a pathogen; namely,
structural changes caused by a pathogen or effectors of the pathogen that disturb or modify proteins of
the plant. This information has become relevant and could be a very useful tool in crop protection.
For the construction of new molecules or assays with B-glucans or other oligosaccharides from different
sources, a plant, when recognized by its defense mechanism, improves its defense responses. In turn,
this increases the possibility to isolate and transfer receptors between species, paths that have a great
potential to generate durable resistance, showing good results.
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