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Introduction: The incidence of postoperative sepsis is continually increased, while few

studies have specifically focused on the risk factors and clinical outcomes associated

with the development of sepsis after surgical procedures. The present study aimed to

develop a mathematical model for predicting the in-hospital mortality among patients

with postoperative sepsis.

Materials and Methods: Surgical patients in Medical Information Mart for Intensive

Care (MIMIC-III) database who simultaneously fulfilled Sepsis 3.0 and Agency for

Healthcare Research and Quality (AHRQ) criteria at ICU admission were incorporated.

We employed both extreme gradient boosting (XGBoost) and stepwise logistic regression

model to predict the in-hospital mortality among patients with postoperative sepsis.

Consequently, the model performance was assessed from the angles of discrimination

and calibration.

Results: We included 3,713 patients who fulfilled our inclusion criteria, in which 397

(10.7%) patients died during hospitalization, and 3,316 (89.3%) patients survived through

discharge. Fluid-electrolyte disturbance, coagulopathy, renal replacement therapy (RRT),

urine output, and cardiovascular surgery were important features related to the in-hospital

mortality. The XGBoost model had a better performance in both discriminatory ability

(c-statistics, 0.835 vs. 0.737 and 0.621, respectively; AUPRC, 0.418 vs. 0.280 and

0.237, respectively) and goodness of fit (visualized by calibration curve) compared to

the stepwise logistic regression model and baseline model.

Conclusion: XGBoost model has a better performance in predicting hospital mortality

among patients with postoperative sepsis in comparison to the stepwise logistic

regression model. Machine learning-based algorithmmight have significant application in

the development of early warning system for septic patients following major operations.
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INTRODUCTION

Sepsis is a severe complication following major surgery and
responsible for poor outcomes of postoperative patients by
inducing multiple organ dysfunction and increasing in-hospital
mortality. Although great progress has been made in the
early recognition and therapeutic strategies, the incidence and
mortality of septic complications remain unacceptably high (1–
3). It has been documented that there are∼30% of septic patients
after surgical procedures, and the number of patients who
developed postoperative sepsis increases annually (4–6). Given
the high incidence and poor prognosis, the Agency forHealthcare
Research and Quality (AHRQ) defined the “postoperative sepsis”
as a critical indicator for patients’ safety, which mainly focused
on preventable surgical complications and iatrogenic events after
surgical procedures (7, 8).

Various evidences have demonstrated that
immunocompromised state is strongly associated with the
pathogenesis of postoperative sepsis (9). For example, impaired
antigen presenting capacity of monocytes and dominant
differentiation of type 2 helper T cells were all characterized in
the animal models of postoperative sepsis (10–12). Meanwhile,
researchers identified disparate gene expression profiles of whole
blood cells from surgical patients with or without postoperative
sepsis, and found that the expression patterns of interleukin (IL)
1β (IL-1β), tumor necrosis factor (TNF) superfamily, member
2, and CD3D were significantly different (13). However, the
“Surviving Sepsis Campaign” (SSC) guidelines didn’t provide
distinctive treatments for postoperative sepsis (14). Moreover,
there were insufficient clinical trials that specifically testified the
guidelines in the postoperative sepsis cohort. Most of the studies
examined the short-term mortality in septic patients admitted to
emergency department or intensive care unit (ICU) that covered
multiple types of sepsis (8, 15, 16). On the contrary, few studies
specifically characterized the clinical outcomes of patients with
postoperative sepsis.

In the present study, we aimed to establish a predictive model
on in-hospital mortality among patients with postoperative
sepsis. Given the limitation of conventional statistical methods
in processing retrospective data that contained covariates of
high correlation and inevitable missing values, we enrolled
advanced machine learning algorithm, called extreme gradient
boosting (XGBoost), to identify the important clinical features
for predicting in-hospital mortality.

MATERIALS AND METHODS

Database
Medical Information Mart for Intensive Care-III (MIMIC-III),
a large online critical care database, was applied for the current
study (17). Of note, MIMIC-III was a comprehensive dataset
which contained clinical data of all the patients admitted to
ICU of Beth Israel Deaconess Medical Center (BIDMC) in
Boston, Massachusetts, from 2001 to 2012. In brief, it included
more than fifty thousand distinct adult (aged >16 years) ICU
patients and approximately eight thousand neonate cases. We
had obtained the permission for accessing the database after

the completion of “Protecting Human Research Participants,”
an online training course launched by National Institutes of
Health (NIH) (certification number: 32450965). We conducted
this study in accordance with the Transparent Reporting of
a multivariable prediction model for Individual Prognosis or
Diagnosis (TRIPOD) recommendation (18).

Study Population
The selection of patients was based on “postoperative sepsis”
criteria proposed by AHRQ combining with Sepsis 3.0 criteria,
in which sepsis was diagnosed by sequential organ failure
assessment (SOFA) score ≥2 plus documented or suspected
infection (7, 19). Additionally, infection was confirmed in
accordance with ICD-9 code in the MIMIC-III database. In this
study, we included all patients (aged >18 years) who underwent
surgical procedures prior to ICU admission and fulfilled Sepsis
3.0 criteria within 24 h post ICU admission. Patients were
excluded even if they were in line with AHRQ selection criteria:
(1) who had a principal or secondary diagnosis of sepsis or
infection on admission; (2) who were diagnosed with cancer and
had other immunocompromised state, including hematologic
malignancies, HIV, prolonged usage of corticosteroids, and organ
transplantation; (3) who were admitted to ICU with pregnancy,
childbirth, or puerperium; (4) who stayed in hospital <4 days;
(5) who had incomplete or unobtainable medical data records
on admission.

Variables Extraction and Outcome
Measurement
Clinical and laboratory variables were collected within the first
24 h after ICU admission. Demographic data was obtained,
including age, gender, body mass index (BMI), and elective
surgical type. Laboratory findings, including white blood
cell (WBC) counts, hematocrit, platelet counts, glucose,
lactate, creatinine, blood urea nitrogen (BUN), coagulation
profile, chloride, potassium, sodium, bicarbonate, albumin,
bilirubin, partial pressure of arterial oxygen (PaO2), partial
pressure of arterial carbon dioxide (PaCO2), total CO2, and
pH were incorporated. In addition, vital signs, including blood
pressure, respiratory rates, heart rates, and body temperature
were included. Comorbidities, such as congestive heart
failure, cardiac arrhythmia, neurological disorders, diabetes,
anemia, and obesity, were also recorded. Prognostic scoring
systems, including SOFA score, Oxford Acute Severity of
Illness Score (OASIS), Simplified Acute Physiology Score II
(SAPSII), and Glasgow Coma Scale (GCS) were calculated
and analyzed by using variables obtained in the first 24 h
during admission. Notably, both the maximum and minimum
values of some indicators were collected and analyzed for
multiple measurements.

As severe datamissingmight render bias, all eligible predictors
were screened, and variables with more than 30% missing
values were not taken into subsequent model establishment.
Correspondingly, we conducted multivariate imputation for
variables with <30% missing values.

We chose in-hospital mortality as our primary endpoint,
which was defined as survival status at hospital discharge.
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Patients without outcome information were excluded from the
final cohort.

Statistical Analysis
Baseline characteristics of enrolled participants were presented
and compared between survivors and non-survivors by applying
either Student t-test, Chi-square test and Mann-Whitney U-test
as appropriate. Continuous variables were characterized as mean
(standardized differences [SD]) or median (interquartile range
[IQR]), while categorical or ranked data were reported as count
and proportion.

We employed stepwise logistic regression model to select
predictors of in-hospital mortality. Both forward and backward
directions were used in variable selection processes, in which
Akaike Information Criterion (AIC) was applied as the selection
criteria of the optimal model.

Furthermore, we applied Extreme Gradient Boosting
(XGBoost) model to predict in-hospital death among patients
with postoperative sepsis. XGBoost was a machine learning
algorithm, which mainly functioned as iterative refit of weak
classifier to residuals of previous models, meaning that the
current weak classifier was generated based on previous one
in order to optimize the predictive efficiency (20, 21). In each
round of iteration, it focused more on misclassified observations.
As eligible variables were included into the model, it outputted
the importance score of each variable. Meanwhile, XGBoost
could automatically process missing data through assigning
a default direction to the null values. To reach the optimal
model performance of XGBoost, we assessed and tuned the
hyperparameters, including learning rates, maximum depth
of a tree, number of estimators, alpha, and lambda. In this
study, the original dataset was randomly divided into 5 subsets.
One-fold was used as testing subset, while the other four-fold
were processed to tune the hyperparameters, in which 25%
were applied for calibration, and four-fold cross validation
with grid search was conducted in remaining 75% of data.
The hyperparameters with the highest area under the receiver
operator characteristic curve (AUROC) were selected. The
sufficiently tuned XGBoost hyperparameters were subsequently
added back for training and calibrating the model, which
was further validated in one held-out testing subset (22).
Detailed process for tuning hyperparameters was provided in
Supplemental Figure S1.

Model performance of both models was assessed in multiple
dimensions. To test discriminatory ability, we used receiver
operating characteristic (ROC) curve and c-statistic. Meanwhile,
calibration plot revealed the correlation between observed and
predicted risk, which was applied to evaluate the goodness of fit.
The area under the precision-recall curve (AUPRC) provides a
robust metric for unbalanced datasets, which has been a critical
measure in assessing model performance. Given that, precision-
recall curve with AUPRC, accuracy and recall were also applied
to evaluate the performance of models. Of note, SOFA score that
was commonly used for evaluating the severity of septic patients
was assigned as a baseline model, and compared with stepwise
logistic regression and XGBoost models as well. Aforementioned
statistical analyses were performed by using IBM SPSS Statistics

software (version 23.0), Python software (version 3.4.3), and R
software (version 3.6.1). Two tailed P < 0.05 was deemed as
statistical significance.

RESULTS

Participants
Among 46,520 patients in the MIMIC-III database, 15,302 of
them met with Sepsis 3.0 criteria. There were 4,653 potentially
eligible adult patients (aged ≥18 years) who underwent surgical
procedures prior to ICU admission. After excluded 940 patients
in accordance with the AHRQ exclusion criteria, 3,713 patients
were deemed to develop postoperative sepsis and were eventually
incorporated into the study cohort, in which 397 (10.7%) patients
died during hospitalization and 3,316 (89.3%) of them survived
through discharge. The detailed information with regard to the
enrollment and selection process was presented in Figure 1.

The comparison of baseline characteristics between survivors
and non-survivors was summarized in Table 1. Notably, patients
of the non-survivor group were much older than those of the
survivor group (86.6 ± 59.2 vs. 74.6 ± 48.0; P = 0.001). As for
the comorbidities, patients with postoperative sepsis who died
during hospitalization had higher incidence of congestive heart
failure (40.6 vs. 31.2%; P < 0.001), cardiac arrhythmias (48.1
vs. 39.4%; P = 0.001), renal failure (24.7 vs. 15.8%; P < 0.001),
coagulopathy (30.5 vs. 13.0%; P < 0.001), and digestive disorders
(16.9 vs. 7.8%; P < 0.001). The maximum respiratory rates
(29.0 ± 8.1 vs. 27.7 ± 6.7; P = 0.002) were significantly higher
in patients from the non-survivor group, while the minimum
systolic blood pressure (BP) (84.1 ± 18.3 vs. 89.0 ± 16.2; P <

0.001), minimum diastolic BP (55.6 ± 9.7 vs. 58.3 ± 9.4; P <

0.001), and minimum mean BP (52.7 ± 14.1 vs. 56.5 ± 12.5;
P < 0.001) were lower than those from the survivor group.
Compared to survivors, non-survivors had higher levels in blood
lactate (2.9 [IQR: 1.8, 5.8] vs. 2.3 [IQR: 1.5, 3.8]; P < 0.001),
BUN (30 [IQR: 20, 46] vs. 21 [IQR: 15, 32]; P < 0.001), and
creatinine (1.4 [IQR: 0.9, 2.4] vs. 1.1 [IQR: 0.8, 1.6]; P < 0.001).
Additionally, higher international normalized ratio (INR) (1.9
± 1.8 vs. 1.6 ± 1.1; P = 0.001), longer prothrombin time (PT)
(16.1 [IQR: 14.1, 20.0] vs. 15.2 [IQR: 13.7, 17.3]; P < 0.001), and
activated partial thromboplastin time (APTT) (39.5 [IQR: 30.6,
71.0] vs. 35.2 [IQR: 29, 48.2]; P < 0.001) were noted among
patients in the non-survivor group when compared to those in
the survivor group.

Stepwise Logistic Regression Model
We performed stepwise logistic regression analysis with both
forward and backward methods, in which the classifier
incorporated 36 variables into the final model. As shown in
Table 2, it was found that female (odds ratio (OR), 0.65 [95%
confidence interval [CI, 30.6–71.0]), patients with lower BMI
(OR, 0.97 [95% CI, 0.95–0.99]), patients with higher PO2 (OR
for with every 10% increment, 0.98 [95% CI, 0.96–0.99]), and
oxygen saturation (SpO2) (OR, 0.78 [95% CI, 0.66–0.91]) had
higher possibility to survive through discharge. Conversely,
neurosurgery (OR, 2.53 [95% CI, 1.57–4.04]), the complication
of multiple comorbidities, especially for coagulopathy (OR, 2.36
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FIGURE 1 | Flow diagram of patient inclusion.
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TABLE 1 | Baseline characteristics between survivors and non-survivors.

Characteristics Survivors Non-survivors P-value

(n = 3,316) (n = 397)

Demographic characteristics

Age, mean (SD) 74.6 (48.0) 86.6 (59.2) <0.001

Gender female, n (%) 1,511 (45.6) 170 (42.8) 0.299

BMI, mean (SD) 29 (7.6) 28.1 (7.4) 0.055

Elective surgical type, n (%) 0.029

Cardiovascular surgery 1,421 (42.9) 140 (35.3)

Neurosurgery 462 (13.9) 67 (16.9)

Orthopedic surgery 178 (5.4) 16 (4.0)

Thoracic surgery 155 (4.7) 19 (4.8)

Plastic surgery 23 (0.7) 2 (0.5)

Others 1,077 (32.5) 153 (38.5)

Comorbidities, n (%)

Congestive heart failure 1,034 (31.2) 161 (40.6) <0.001

Cardiac arrhythmias 1,306 (39.4) 191 (48.1) 0.001

Diabetes 1,018 (30.7) 112 (28.2) 0.309

Renal failure 525 (15.8) 98 (24.7) <0.001

Coagulopathy 430 (13.0) 121 (30.5) <0.001

Digestive disorders 258 (7.8) 67 (16.9) <0.001

Mechanical ventilation, n (%) 2,259 (68.1) 284 (71.5) 0.167

Renal replacement therapy, n (%) 153 (4.6) 49 (12.3) <0.001

Prognostic scoring system, median (IQR)

SOFA 5 (3, 7) 6 (4, 10) <0.001

SAPS II 37 (30, 45) 47 (40, 57) <0.001

OASIS 33 (27, 39) 39 (33, 44) <0.001

Vital signs, mean (SD)

Maximum heart rates (/min) 105.4 (19.4) 107.6 (23.4) 0.074

Minimum systolic BP (mmHg) 89.0 (16.2) 84.1 (18.3) <0.001

Minimum diastolic BP (mmHg) 58.3 (9.4) 55.6 (9.7) <0.001

Minimum mean BP (mmHg) 56.5 (12.5) 52.7 (14.1) <0.001

Maximum respiratory rates (/min) 27.7 (6.7) 29.0 (8.1) 0.002

Maximum temperature (◦C) 37.7 (0.8) 37.6 (0.8) 0.024

Laboratory findings

Minimum WBC (×109/L, median

[IQR])

10.2 (7.2, 13.9) 11.1 (7.8, 15.6) 0.005

Minimum platelet (×109/L,

median [IQR])

177 (119, 253) 149 (89, 234) <0.001

Maximum hematocrit (%, mean

[SD])

35.1 (5.2) 34.8 (5.5) 0.360

Minimum hematocrit (%, mean

[SD])

27.2 (5.7) 27.4 (5.6) 0.522

Maximum lactate (mmol/L,

median [IQR])

2.3 (1.5, 3.8) 2.9 (1.8, 5.8) <0.001

Maximum BUN (median [IQR]) 21 (15, 32) 30 (20, 46) <0.001

Maximum creatinine (µmol/L,

median [IQR])

1.1 (0.8, 1.6) 1.4 (0.9, 2.4) <0.001

Maximum INR (mean [SD]) 1.6 (1.1) 1.9 (1.8) 0.001

Maximum APTT (median [IQR]) 35.2 (29, 48.2) 39.5 (30.6, 71.0) <0.001

Maximum PT (median [IQR]) 15.2 (13.7, 17.3) 16.1 (14.1, 20.0) <0.001

Maximum glucose (mg/dL,

median [IQR])

172 (142, 207) 175 (140, 222) 0.194

Minimum glucose (mg/dL,

median [IQR])

97 (80, 117) 101 (78, 121) 0.271

SD, standard deviation; IQR, interquartile range; BMI, body mass index; SOFA, sequential

organ failure assessment; SAPS II, Simplified Acute Physiology Score II; OASIS, Oxford

Acute Severity of Illness Score; BP, blood pressure; WBC, white blood cell count;

BUN, blood urea nitrogen; INR, international normalized ratio; APTT, activated partial

thromboplastin time; PT, prothrombin time.

TABLE 2 | Variable selection of stepwise logistic regression model.

Variables OR [95% CI] P-value

Demographic characteristics

Gender female 0.65 [0.48, 0.88] 0.006

BMI 0.97 [0.95, 0.99] 0.012

Elective surgical types

Neurosurgery 2.53 [1.57, 4.04] <0.001

Thoracic surgery 1.91 [0.93, 3.71] 0.065

Comorbidities

Cardiac arrhythmias 1.31 [0.97, 1.78] 0.079

Peripheral vascular diseases 1.61 [1.14, 2.25] 0.006

Coagulopathy 2.36 [1.49, 3.68] <0.001

Digestive disorders 2.36 [1.66, 3.34] <0.001

Anemia 0.68 [0.46, 0.98] 0.044

Mechanical ventilation 0.71 [0.46, 1.11] 0.133

Prognostic scoring system

SOFA 1.08 [1.01, 1.16] 0.027

SAPS II 1.04 [1.02, 1.06] <0.001

OASIS 1.05 [1.03, 1.08] <0.001

GCS 1.10 [1.04, 1.17] <0.001

Vital signs

Maximum systolic BP 0.99 [0.99, 1.00] 0.12

Mean diastolic BP 0.94 [0.91, 0.98] 0.001

Mean BP 1.04 [1.00, 1.08] 0.027

Mean respiratory rate 1.03 [1.00, 1.07] 0.076

Laboratory findings

Maximum WBC 0.97 [0.93, 1.00] 0.067

Minimum WBC 1.06 [1.01, 1.11] 0.015

Minimum BUN 1.01 [1.00, 1.02] 0.097

Maximum creatinine 0.63 [0.39, 0.98] 0.052

Minimum creatinine 1.50 [0.90, 2.57] 0.127

Maximum INR 1.16 [0.97, 1.40] 0.085

Minimum INR 1.75 [1.15, 2.70] 0.009

Maximum APTT 1.01 [1.00, 1.01] 0.008

Maximum PT 0.96 [0.92, 1.00] 0.043

Maximum sodium 1.08 [1.03, 1.13] 0.002

Minimum potassium 0.78 [0.58, 1.06] 0.115

Maximum chloride 0.96 [0.92, 0.99] 0.025

Maximum PO2 (with every 10% increment) 0.98 [0.96, 0.99] <0.001

Mean PCO2 0.93 [0.90, 0.97] <0.001

Maximum SpO2 0.78 [0.66, 0.91] 0.002

Minimum SpO2 1.02 [1.00, 1.03] 0.001

Minimum pH (with every 0.1 increment) 0.51 [0.35, 0.75] 0.001

Minimum BE 1.10 [1.02, 1.18] 0.015

OR, odds ratio; BMI, body mass index; SOFA, sequential organ failure assessment;

SAPS II, Simplified Acute Physiology Score II; OASIS, Oxford Acute Severity of Illness

Score; GCS, Glasgow Coma Scale; BP, blood pressure; WBC, white blood cell count;

BUN, blood urea nitrogen; INR, international normalized ratio; APTT, activated partial

thromboplastin time; PT, prothrombin time; PO2, partial pressure of arterial oxygen;

PCO2, partial pressure of arterial carbon dioxide; SpO2, Oxygen saturation; pH, potential

hydrogen; BE, base excess.

[95% CI, 1.49–3.68]), greater values of INR (OR, 1.75 [95% CI,
1.15–2.70]), and sodium (OR, 1.08 [95% CI, 1.03–1.13]) were
responsible for increased risk of in-hospital death among ICU
patients with postoperative sepsis. Furthermore, higher scores in
several prognostic scoring systems, including SOFA (OR, 1.08
[95%CI, 1.01–1.16]), SAPS II (OR, 1.04 [95%CI, 1.02–1.06]), and
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FIGURE 2 | Feature importance derived from XGBoost model.

OASIS (OR, 1.05 [95% CI, 1.03–1.08]), were linked to increased
in-hospital mortality.

XGBoost Model
After tuning and grid search, the hyperparameters applied in
the current XGBoost model were as follows: learning rates
= 0.01, number of estimators = 1,000, maximum depth of
a tree = 5, alpha = 0, and lambda = 0. The importance
of feature was assigned by weight which was calculated

by the number of times that a feature was used to split
the data across all trees. Feature importance revealed the
relative contribution of each variable on predicting the in-
hospital mortality. As shown in Figure 2, the fluid-electrolyte
disturbance and coagulopathy were the top ranked variables
that were correlated with in-hospital death among patients
with postoperative sepsis, followed by renal replacement
therapy (RRT), urine output, cardiovascular surgery, and
digestive disorders.

Frontiers in Medicine | www.frontiersin.org 6 August 2020 | Volume 7 | Article 445

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Yao et al. Death Prediction for Postoperative Sepsis

Evaluation of Model Performance
The discriminatory power of both stepwise logistic and XGBoost
models was evaluated by using ROC analysis and c-statistics
(calculated by AUROC) in the testing subset. The XGBoost had
a significantly higher c-statistics compared to that of the stepwise
logistic regression and baseline models (c-statistics, 0.835 vs.
0.737 and 0.621, respectively), suggesting a better discriminative
capacity of XGBoost model (Figure 3A). As presented in
Figure 3B, the XGBoost model also performed better in terms
of precision-recall curve when compared to stepwise logistic
regression and baseline models (AUPRC, 0.418 vs. 0.280 and
0.237, respectively). Besides, the accuracy for XGBoost and
stepwise logistic models were 0.88 and 0.76, respectively. The
recall for XGBoost and stepwise logistic models were 0.10
and 0.75, respectively. Meanwhile, as shown in Figure 4, the
calibration curve of models showed that XGBoost presented
a greater goodness of fit than logistic regression model and
SOFA score.

DISCUSSION

Major Findings
In the current study, we identified various clinical indicators
that were associated with increased in-hospital mortality
among ICU patients with postoperative sepsis. By applying
sophisticated machine learning algorithm, we found that
fluid-electrolyte disturbance, coagulopathy, RRT, urine
output, and cardiovascular surgery were significant features
for predicting in-hospital death. In addition, XGBoost
model revealed a better performance in discrimination and
calibration than that of the conventional stepwise logistic
regression model.

Relation to Other Works
Plenty of evidence have indicated that the development of sepsis
is critically involved in short-term and long-term mortality
of postsurgical patients (8, 15, 23, 24). A large nationwide
epidemiology of patients with elective surgery revealed an
increased incidence of postoperative sepsis, ranging from 0.3%
in 1997 to 0.9% in 2006, while they found that the in-
hospital morality significantly decreased from 1997 to 2006
(44.4–30%) (23). Recently, Ou et al. conducted a population-
based analysis in patients who underwent coronary artery bypass
grafting (CABG) surgery, and they noticed that the incidence
of postoperative sepsis was ∼2%, and the mortality of those
patients admitted to public hospital and private were 11.9%
and 18.3%, respectively (15). In a retrospective analysis by
Mørch et al., researchers focused on the clinical outcomes of
patients who developed postoperative sepsis after hip fracture
surgery. They documented a 30-day mortality of 15.8% among
those patients, which was significantly higher than patients
without postoperative sepsis (24). In our study, we identified
an in-hospital mortality of 10.7% among ICU patients who
developed postoperative sepsis. We observed an evident decline
in mortality rates among surgical patients with sepsis over
the past decades, while the morbidity rates showed sustained
increase. The reduction of overall mortality rates might be

attributed to the progress in perioperative care and extensive
use of antibiotics. Meanwhile, the mortality of patients with
postoperative sepsis was disparate from that of the other types
of septic patients, which could be explained by different clinical
settings and co-morbidities state.

Clinical Implications
The XGBoost model is capable of accurately predicting in-
hospital death among patients with postoperative sepsis.
Although several studies have identified the risk factors for the
short-term or long-term mortality of septic patients following
major operations, few of them establish feasible models to predict
clinical outcomes of those patients. Unlike other types of sepsis,
postoperative sepsis had some unique characteristics in both
etiology and pathophysiology, which made it a specific subset
(5). Therefore, it is of great importance to early recognize
patients with postoperative sepsis who are at high risk of
death and to identify preventable indicators. Since the recent
advancements in machine learning techniques, the magnitude of
variables and indicators that can be processed is largely enriched.
Taken together, advanced machine learning algorithm allows
us to establish a more optimal model that performed better
in comparison to the conventional generalized linear models.
By applying such models, physicians, and care givers could be
alerted by the time when ICU patients are complicated with
postoperative sepsis, thereby employing efficient yet personalized
therapeutic strategies. Although the effectiveness of the XGBoost
model had been validated in our study, the model was based on
a single center retrospective database. Thus, further prospective
cohort studies are required to evaluate the uniformity of
this model.

Our results revealed that complication of coagulopathy
and coagulation profile at ICU admission, including platelet
counts, PT, APTT, and INR, were associated with increased
in-hospital death among patients with postoperative sepsis.
The occurrence of coagulopathy was commonly seen in septic
patients, which was closely related to organ dysfunction and
poor outcomes (25, 26). The activation of monocytes and
endothelial cells was mainly characterized in the early phase
of sepsis and resulted in massive exposure to tissue factors,
thereby contributing to the over activation of coagulation
and subsequent thrombin generation (27). Concomitantly,
anticoagulant pathways, such as protein C system, were impaired
by overexpression of proinflammatory cytokines (27). The
imbalance between coagulation and anticoagulant pathways
can be further augmented by surgical insults, and it leads
to the upregulation of plasminogen activator inhibitor and
subsequent hyperfibrinolysis (28, 29). Coagulation abnormalities
have been reported to induce formation of microvascular
clots and disseminated intravascular coagulation (DIC), further
resulting in tissue ischemia and organ dysfunction (30, 31).
Of note, majority of patients in our study had been exposed
with cardiovascular surgery. Some of those patients might
frequently receive anticoagulant agents, which could add to
coagulation abnormalities. Early implementation of rotational
thromboelastometry (ROTEM) and thrombelastography (TEG)
appears to be beneficial for patients with postoperative sepsis
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FIGURE 3 | Receiver operating characteristic curve (A), and precision- recall curve (B) for evaluating the discriminatory ability of SOFA score (baseline model),

stepwise logistic regression model as well as XGBoost model. AUROC, area under the receiver operator characteristic curve; AUPRC, area under the precision-recall

curve.
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FIGURE 4 | Calibration curve for assessing the goodness of fit for SOFA score (baseline model), stepwise logistic regression model, and XGBoost model.

who are at high risk of death (32, 33). As documented in
large randomized controlled trials (RCTs), the administration of
either antithrombin III or human recombinant thrombomodulin
could improve short-term mortality among septic patients,
but no trails specifically targeted patients with postoperative
sepsis (34, 35). The results of our study suggested that
secondary analyses of previously published RCTs and future
large trails were both favorable for better recognition and
treatment of septic patients following major operations. In
addition, our models identified that fluid-electrolyte disturbance,
sodium and chloride levels were associated with the in-
hospital mortality, which could be explained by the deteriorative
effects of acidosis on fibrin polymerization and clot integrity
(28, 36).

From the present observation, we noticed that ICU
patients underwent neurosurgery showed the highest in-
hospital mortality compared to those with other types of
surgery. Meanwhile, it revealed that neurosurgery was a
robust predictor of in-hospital death among patients with
postoperative sepsis. Neurosurgical procedures might bring
about severe complications, including intracerebral hemorrhage,
brain edema, and cerebral ischemia, which showed serious
impacts on clinical outcomes of neurosurgical patients (37).
Furthermore, neurosurgical insults could affect hypothalamic-
pituitary-adrenal axis and hormonal generation, resulting in
intractable immunosuppression (38). Therefore, well-performed
neurocritical care is warranted for neurosurgical patients,
especially for those with postoperative sepsis (39).

Limitations
There are some limitations to our study. Firstly, the current
study was a single center retrospective analysis using publicly
available database, which restricted us from identifying the causal
relationship between variables and endpoints. Thus, prospective
cohorts are needed for further validation. Secondly, there were
several potential confounding variables that were unable to be
assessed due to severe data missing and other reasons. However,
some of the excluded variables might have predictive value
for clinical outcomes. Thirdly, we employed XGBoost model, a
machine learning-based algorithm that was not widely applied
in clinical research. Although XGBoost had a significantly higher
accuracy in predicting outcomes compared to generalized linear
models, overfitting problem was inevitable. Given that, external
validation was required to test its utility. Meanwhile, algorithm
used other boosting strategy like Adaptive boosting (AdaBoost)
were not tested in the current study, whichmight prevent us from
developing more efficient model for predicting our endpoint.
Finally, our study merely focused on the in-hospital mortality of
patients with postoperative sepsis, while other outcomes, such as
long-term mortality and readmission rates, were also important
and needed further investigation.

CONCLUSIONS

In summary, these results suggest that some important features
are potentially related to the in-hospital mortality among ICU
patients with postoperative sepsis. The XGBoost model is capable
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of processing large amount of variables and further capturing
these complicated relationships, which indeed performs better
in mortality prediction compared to stepwise logistic model.
Further validation of our model in external datasets can prompt
us to early recognize patients with postoperative sepsis who are
at high risk of death during hospitalization, and to implement
timely yet efficient treatments.
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