
Introduction 

Acute kidney injury (AKI) is a common complication, 

affecting almost one-third of critically sick children and 

also noncritically ill children admitted to wards [1,2]. In 

the last decade, there has been a better understanding 
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of outcomes in the field of pediatric AKI, which include 

higher morbidity, increased length of stay, duration of 

ventilation, and mortality [3,4]. There are newer studies on 

pediatric AKI epidemiology, clearly delineated definitions, 

newer biomarkers, and new criteria for risk stratification of 

children admitted in emergency situations. Additionally, 
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definitions and the understanding of neonatal AKI have 

undergone a drastic change due to recent studies [5]. There 

is now novel research on machines made especially for 

smaller children with smaller extracorporeal volume [6–8]. 

This review includes the major advances in the field of 

pediatric AKI in the last decade that have made a significant 

impact on learning and practice in this field (Fig. 1). This is a 

particularly important area of nephrology, where the clinical 

and translational advances have been performed first in 

pediatrics, much before the adult nephrology field. 

Changing epidemiology of pediatric acute kidney 
injury 

There is increasing evidence that the incidence and 

awareness of pediatric AKI is rising. In infants and children 

undergoing cardiac surgery, the incidence varies from 

30% to 50% [9–12]. Additionally, it is common in pediatric 

intensive care units (ICUs) and has an incidence of 10% 

to 35% [13–15]. The rate is higher in children who are 

ventilated and are on inotropes [16]. AKI is also common in 

wards, especially in children receiving aminoglycosides and 

multiple nephrotoxins during their hospital stay [17,18]. 

The first prospective study on pediatric AKI, the 

Assessment of Worldwide Acute Kidney Injury, Renal Angina 

and Epidemiology (AWARE ) study, was done over a 3-month 

observational period and included 4,683 children [19]. This 

study showed that AKI was seen in 26.9% of children, and 

severe AKI was seen in 11.6% of children within 7 days of ICU 

admission. This increase in AKI severity was associated with 

a stepwise increase in mortality. Additionally, cardiovascular 

and respiratory disorders had a higher association with 

severe AKI. 

Among the neonate subgroup, the largest retrospective 

study in the neonatal population, known as Assessment of 

Worldwide Acute Kidney Injury Epidemiology in Neonates 

(AWAKEN), was performed in 2017. This study included 

more than 2,000 newborns in four different countries 

admitted to the neonatal ICU before 14 days of life, who 

received intravenous fluids for at least 48 hours. AKI was 
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Figure. 1. Timeline of landmark studies in pediatric acute kidney injury (AKI). 
AKIN, Acute Kidney Injury Network; AWAKEN, Assessment of Worldwide Acute Kidney Injury Epidemiology in Neonates; AWARE, 
Assessment of Worldwide Acute Kidney Injury, Renal Angina and Epidemiology; CARPEDIEM, CARdiorenal PEDIatric Emergency 
Machine; KDIGO, Kidney Disease: Improving Global Outcomes; NIDDK, National Institute of Diabetes and Digestive and Kidney 
Diseases; NIDUS, Newcastle Infant Dialysis and Ultrafiltration System; NINJA, Nephrotoxic Injury Negated by Just-in-time Action; NKC, 
Neonatal Kidney Collaborative; PCRRT, Pediatric Continuous Renal Replacement Therapy; pRIFLE, pediatric Risk, Injury, Failure, Loss 
of kidney function, and End-stage kidney disease; SLED, sustained low-efficiency dialysis; SLED-F, sustained low-efficiency diafiltration.
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seen in 30% of all newborns and was differently stratified per 

gestational age, with a higher incidence in extreme preterm 

birth infants. AKI was also associated with mortality and 

increased length of stay after adjusting for confounding 

variables [5]. 

Additionally, the etiology of AKI varies based on the 

geographic setting. In the developed world, the setting of AKI 

has shifted from primary glomerular disorders to hospital-

acquired AKI, with common causes being nephrotoxins, 

critically ill status, postsurgical, posttransplantation, and 

malignancy [20,21]. In the developing world, especially in 

rural regions, the etiological factors remain as dehydration, 

sepsis, and hemolytic uremic syndrome [22]. 

Newer definitions of pediatric acute kidney injury 

The ability of serum creatinine (SCr) to accurately estimate 

kidney function in a sick child has been problematic. This 

has resulted in the use of more than 35 definitions of AKI 

in clinical studies, ranging from changes in SCr to dialysis 

requirement. Earlier studies employed nonstandard 

AKI definitions without any grading (defining AKI as the 

doubling of SCr), thereby excluding early-stage AKI. Since 

there was no consensus in definitions, comparisons among 

studies were difficult, resulting in a wide range of quoted 

epidemiology, morbidity, and mortality rates within the 

pediatric AKI literature [23]. 

The Kidney Disease: Improving Global Outcomes (KDIGO) 

definition and staging system is the most recent and 

preferred definition even in pediatric AKI literature [24]. 

Other classification systems include pRIFLE (pediatric 

Risk, Injury, Failure, Loss of kidney function, and End-

stage kidney disease) and a subsequent modification 

proposed by the Acute Kidney Injury Network (AKIN) 

[25,26] (Table 1). Each definition confers its own set of 

advantages and disadvantages. For example, pRIFLE can 

diagnose a greater number of mild AKI cases that are usually 

missed by the other two systems but requires patient height 

and baseline SCr value, which might not be readily available. 

In pRIFLE, the estimated creatinine clearance (CCl) is based 

on the original Schwartz formula to quantitate the change in 

glomerular filtration rate (GFR) rather than absolute changes 

in SCr used in the adult RIFLE criteria. Furthermore, 

the pRIFLE classification has outperformed the AKIN, 

KDIGO, and conventional grading criteria in predicting 

AKI in several pediatric patient populations. Zapitelli et al. 

[27] found that AKI prevalence increased when changes 

in estimated GFR (eGFR) (pRIFLE) were accounted for 

rather than changes in SCr (AKIN) in pediatric inpatients. 

Additionally, Sutherland et al. [23] recently demonstrated 

notable differences in incidences and substantial disparities 

in staging resulting from the use of these three definitions 

on the same cohort of hospitalized children. The AKIN 

definition appears more specific and does not require height 

and baseline SCr values; however, it has the most restrictive 

diagnostic timeframe. The AKIN system, which defines AKI 

Table 1. Pediatric acute kidney injury definitions
Classification Staging Creatinine criteria Urine output criteria
pRIFLE Risk eGFR decreased by ≥25% 0.5 mL/kg/hr for 8 hr

Injury eGFR decreased by ≥50% 0.5 mL/kg/hr for 16 hr
Failure eGFR decreased by ≥75% (or <35 mL/min/1.73 m2) 0.3 mL/kg/hr for 24 hr or anuria for 12 hr
Loss Persistent failure >4 wk
ESRD Persistent failure >3 mo

AKIN 1 Increase in creatinine of ≥50% or an absolute increase in creatinine 
of 0.3 mg/dL over 48-hr period

2 Increase in creatinine of ≥100%
3 Increase in creatinine of ≥200%

KDIGO 1 SCr rise ≥0.3 mg/dL within 48 hr or an increase in creatinine of 
≥50% within 7 day

>0.5 and ≤ 1 mL/kg/hr

2 Increase in creatinine of ≥100% >0.3 and ≤ 0.5 mL/kg/hr
3 Increase in creatinine of ≥200% or SCr ≥4 mg/dL or receipt of 

dialysis or eGFR<35 mL/min/1.73 m2
≤ 0.3 mL/kg/hr

(neonatal cut-off, SCr >2.5 mg/dL)
AKIN, Acute Kidney Injury Network; eGFR, estimated glomerular filtration rate; ESRD, end-stage renal disease; KDIGO, Kidney Disease: Improving Global 
Outcomes; pRIFLE, pediatric Risk, Injury, Failure, Loss of kidney function, and End-stage kidney disease; SCr, serum creatinine.
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as a ≥0.3-mg/dL increase in SCr within a restrictive 48-hour 

period, eliminates the need to estimate CCl. However, the 

AKIN criteria have not been adequately validated for use in 

children and the restricted diagnostic timeframe of 48 hours 

for a rise in SCr may limit its utility.  

Although pRIFLE shows a greater sensitivity in detecting 

AKI than AKIN and KDIGO, all three definitions correlate 

highly with outcomes (mortality, length of stay in ICU) and 

enable outstanding inter-stage differentiation [23]. The 

KDIGO classification is the only one that applies to both 

children and adults and has a less restrictive diagnostic 

timeframe than AKIN. Although it does require patient 

height data (eGFR calculation) for a complete assessment, it 

is still the preferred definition. The KDIGO AKI criteria have 

been validated in hospitalized children with both critical 

and noncritical illness [23,28]. 

Emerging biomarkers 

SCr is an indirect and unreliable marker of GFR that can be 

confounded by renal tubular secretion and numerous other 

factors such as fluid balance, muscle mass, and medications. 

Moreover, changes in SCr lag behind the changes in GFR, 

which can even take several days. In acute settings, it is 

estimated that SCr rises after a >50% decline in GFR [29]. 

Given the inherent shortcomings of the SCr method, 

alternative functional and damage biomarkers of AKI have 

been evaluated. 

The use of serum cystatin C in children as an endogenous 

marker is well established. Cystatin C is a cysteine protease 

inhibitor protein, which is produced by all nucleated 

cells of the body at a constant rate, is freely filtered by the 

glomerulus, and is catabolized by the proximal tubule. 

The plasma cells are not affected by sex, age, diet, or 

muscle mass, and are identical in adults and children over 

12 months of age [30]. It outperforms SCr in children for 

estimation of GFR. Moreover, there is now pediatric data to 

show that it is an early predictor biomarker of AKI [31]. 

Genomic and proteomic technologies have revealed 

novel biomarkers that appear in urine or plasma well before 

changes in SCr are detected [29]. The most widely studied 

and validated early biomarker in children is neutrophil 

gelatinase-associated lipocalin (NGAL) [32]. Most studies 

of NGAL have been done in children post cardiac surgery, 

showing that the urine and plasma levels are significantly 

high in children within 2 hours of cardiac bypass surgery in 

patients who subsequently develop AKI [33]. Another study 

done in infants and children undergoing cardiopulmonary 

bypass established cut-off thresholds and showed strong 

associations between early NGAL levels and length of 

hospital stay, duration, and severity of AKI [11,34]. A recent 

study done on 220 children undergoing cardiac surgery 

showed that urine NGAL increased in patients within 2 

hours, while urine interleukin-18 (IL-18) and urine liver-

type-fatty acid binding protein levels were elevated within 

6 hours, and urine kidney injury molecule-1 increased at 

12 hours. All markers correlated well with severity, clinical 

outcomes, and, additionally, improved risk prediction 

[35]. Thus, a panel of biomarkers may help to establish 

injury timely and plan appropriate timely interventions. 

Standardized clinical platforms for measurement of plasma 

and urine NGAL are now available globally. 

Recent clinical data in children and adults support 

the utility and superiority of a new AKI biomarker test, 

NephroCheck (bioMérieux, Marcy-l’Étoile, France), which 

detects urinary tissue inhibitor of metalloproteinase 2 

(TIMP2) and insulin-like growth factor binding protein 7 

(IGFBP7) concentrations and uses their arithmetic product 

[36,37]. AKI-induced urinary TIMP2/IGFBP7 elevations 

are not due to stress-induced gene transcription. Rather, 

increased filtration, decreased tubule reabsorption, and 

proximal tubule cell TIMP2/IGFBP7 urinary leakage seem to 

be the most likely mechanisms [38]. 

There is recent interest in patients who are ‘biomarker 

positive; creatinine negative’ which means their urinary 

or serum early biomarkers are high while SCr is normal. 

Two recent studies enrolled more than 4,000 cardiac 

surgical, critically ill and emergency patients [39,40]. Both 

studies showed almost >20% of patients had only elevated 

NGAL in urine. These ‘subclinical AKI’ patients in fact had 

two- to three-fold higher risk of death and need for renal 

replacement therapy (RRT). Even in patients with very high 

creatinine, markedly high tubular markers in urine had a 

worse prognosis. 

Hence, NGAL and a panel of urinary or serum biomarkers 

may help clinicians make an early diagnosis of AKI and 

plan supportive care early. Moreover, structural biomarkers 

may further help in reliably classifying AKI in a mechanistic 

manner. The various functional and structural markers are 

illustrated in Table 2.  
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While fluid overload in children itself is not a direct marker 

of mortality, the adverse effects lead patients to become 

vulnerable to an increased risk of morbidity and mortality. It 

also puts patients at risk of being underdiagnosed with AKI 

and delays treatment, raises odds for mortality associated 

with complications, can lead to increased hospital and ICU 

stays, and can prolong ventilator support in the critically ill 

population [52]. 

Furosemide stress test to risk stratify patients 
Clinicians have access to limited tools that predict which 

patients with early AKI will progress to more severe stages. 

In early AKI, urine output after a furosemide stress test (FST), 

which involves intravenous administration of furosemide 

(1.0 or 1.5 mg/kg), can predict the development of stage-3 

AKI [53]. There are recent studies which suggest use of this 

test alone or in combination with biomarkers may predict 

progression to a severe stage of AKI in sick patients. Using 

an FST in patients with increased biomarker levels may 

improve risk stratification [53]. 

Newer laboratory tests in acute kidney injury differentiation 

Automated urine technology and centralized laboratory 

testing are becoming the standard for providing urinalysis 

data to clinicians. It is critical to remember that urine 

sediment examination remains a time-honored test that 

provides a wealth of information about the patient’s 

underlying kidney disease. This test performs very favorably 

as a urinary “biomarker” for a number of acute kidney 

diseases. Prerenal AKI from true or effective volume 

depletion is generally not associated with tubular injury/

necrosis. In this setting, urine sediment is usually bland 

with no/few cells and casts. On the other hand, urine 

examination is one of the most useful tests in the diagnosis 

of acute interstitial nephritis and acute nephritic syndrome 

[54].  

In addition to the tests that are commonly used in 

diagnosing etiology and complications of AKI, urinary 

indices, especially the fraction excretion of urea (FeUrea), 

 

Risk stratification at admission: application of 
‘Renal Angina Index’ 

Renal Angina Index (RAI) combines objective parameters 

of kidney dysfunction (change in SCr and percent change in 

fluid overload [%FO]) and patient characteristics (AKI risk 

factors) to ascertain renal angina and has been successfully 

validated as a functional risk stratification tool in critically 

ill patients with AKI. An RAI of ≥8 within the first 12 hours of 

ICU admission has shown to entail very high sensitivity and 

negative predictive value for AKI development or persistence 

at 72 hours of ICU admission in children [41,42]. RAI is a risk 

discrimination model that enhances the pretest probability 

of AKI. It renders context to biomarker measurement 

and significantly optimizes their predictive performance, 

akin to the cardiac angina-troponin relationship. RAI has 

been shown to correlate with an increased need for RRT, 

prolonged mechanical ventilation, higher oxygenation index, 

and a higher risk of mortality when compared to children 

with a negative index score [43,44]. RAI entails moderate 

discrimination for predicting severe AKI prediction, but it 

improves after incorporation of biomarkers [45]. 

Clinical examination 

Watch for fluid overload 
Over the last decade, there have been studies in the adult 

population [46,47] and pediatric population (composed 

of neonates [48], post cardiac surgery [49], children with 

multiple organ dysfunction [50], and those on dialysis 

[51]) that have shown that fluid overload is common and is 

detrimental in sick patients. It is now well practiced in the 

intensive care to look at the percent fluid overload in sick 

children. 

Table 2. Acute kidney injury (AKI) biomarker-based mechanistic 
definition
Functional marker Structural marker Classification

– – Normal
+ – Prerenal AKI
– + Subclinical AKI
+ + Intrinsic AKI

Functional markers include serum creatinine, cystatin C, and other 
markers of glomerular filtration rate. Structural markers include neutrophil 
gelatinase associated lipocalin, interleukin-18, and others described in the 
text above.

A common formula used is:  

Daily fluid intake (L) – total output (L)

44 www.krcp-ksn.org

Kidney Res Clin Pract   2021;40(1):40-51



have recently been studied. It is well known that the 

fractional excretion of sodium (FeNa) is >2% in children 

and >2.5% in neonates with a higher urine sodium >30 

meq/L, which suggests tubular damage, e.g., acute tubular 

necrosis in the AKI setting. However, in certain situations 

of diuretic therapy or where the patient is on intravenous 

saline or presents with chronic kidney disease, FeNa may 

not be reliable. FeNa can then be substituted by FeUrea 

[55]. A FeUrea <35% implies prerenal AKI and FeUrea >50% 

suggests intrinsic AKI. A high FeNa and FeUrea >35% have a 

95% negative predictive value for intrinsic AKI [56]. 

Neonatal acute kidney injury: newer advances 

The major challenges confronted by clinicians involved in 

the care of neonates with AKI stem from numerous factors; 

unique renal physiology in term and preterm neonates, lack 

of a standardized AKI definition, and weight- and gestational 

age-dependent baseline SCr value in the neonates. 

Moreover, neonates usually have nonoliguric renal failure, 

making oliguria an insensitive marker of AKI in this cohort 

[57]. Neonatal AKI is further confounded by the reflection of 

maternal SCr levels in neonates for the first 3 days postbirth 

and the variable decline over days to weeks depending on 

gestational age [58]. 

The formation of the Neonatal Kidney Collaborative (NKC) 

was a giant leap forward which accomplished the heretofore 

unmet need of neonatal AKI quantification at a global 

level. The AWAKEN study retrospectively evaluated 2,022 

neonates from 24 centers across the globe, which formed the 

NKC. The group concluded that neonatal AKI is common, 

with an incidence of 29.9%, and is an independent risk factor 

for mortality and prolonged hospital stay, independent of 

demographics, severity of illness, and existing comorbidities. 

The incidence of AKI was 43% in patients <29 weeks 

gestation, 18% in those between 29 and 36 weeks gestation, 

and 37% in those >36 weeks gestation [5]. 

Since maternal SCr is transmitted across the placental 

barrier and its clearance is dependent upon the infant’s 

gestational age, the KDIGO definition was modified in such 

a manner that baseline SCr was assumed to be the lowest 

SCr level noted in each infant. Also, the SCr threshold for 

stage-3 AKI was reduced to 2.5 mg/dL rather than usual 

KDIGO threshold of 4 mg/dL [59]. 

A recent secondary analysis from AWAKEN also showed 

that caffeine administration in preterm neonates is 

associated with reduced incidence and severity of AKI. 

Further studies should focus on the timing and dosage 

of caffeine to optimize the prevention of AKI [60]. Other 

ancillary studies from the same group include a report on the 

association of AKI and hypertension [61], a study showing 

the association between AKI and mortality in those with 

severe neonatal encephalopathy [62], the association of AKI 

and intraventricular hemorrhage [63], and the association of 

AKI and chronic lung disease in premature and near term/

term infants [64,65]. 

Newer machinery for smaller children 

In the last decade, major innovations have been made in 

designing dedicated machinery with less error for dialysis of 

newborns and children. The most notable are the Prismaflex 

HF20 filter (Gambro, Méyzieu, France), the CARdiorenal 

PEDIatric Emergency Machine (CARPEDIEM; Bellco-

Medtronic, Mirandola, Italy), the Newcastle Infant Dialysis 

and Ultrafiltration System (NIDUS); and the Aquadex system 

(Baxter Corp., Minneapolis, MN, USA). 

Prismaflex HF20 filters 
Continuous RRT (CRRT) with Prisma or Prismaflex dialysis 

machines and M10 (50 mL) or HF20 (55 mL) filters with 

access via the internal jugular; 6.5 French hemodialysis (HD) 

catheters may be used. The Prismaflex HF20 set has recently 

been developed with relatively low circuit volume (60 mL) 

and is made of a polyarylethersulfone membrane, which 

is not associated with bradykinin release syndrome. There 

have been recent reports of successful use of HF20 filters in 

unstable infants [66,67]. 

CARPEDIEM 
The challenge to design RRT equipment specifically 

intended for newborns and small infants weighing in the 

range of 1.5 to 10 kg led to development of the CARPEDIEM 

system. It received European certification in 2012 after 

thorough testing. It is a combination of hardware, software, 

and disposable circuits miniaturized and designed 

specifically for newborns and small infants with a reduced 

priming volume (27 mL including filter) with the roller 

pumps finely regulated by two precision scales accurate 

to 1 g. It was used for the first time on a neonate in 2013 
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and can be used in situations when adequate convective 

clearance is insufficient due to limited blood supply like in 

hypercatabolic states, where there is a need for increased 

dialysis efficiency [68,69]. 

NIDUS 
NIDUS evolved as a novel HD circuit driven by syringes and 

uncouples the baby’s blood flow capacity from requirements 

of the dialysis filter. The syringe driven machine repeatedly 

withdraws 5 to 12.5 mL aliquots of blood from a single lumen 

central venous line, passes and returns it across a dialysis 

filter, and then returns it back to the baby. At a blood flow 

rate of 20 mL/min, this processes 5 mL of blood each minute 

[8]. A multicenter trial on the use of NIDUS is recruiting 

babies in the pediatric ICU with a body weight of 0.8 to 7.99 

kg, who require continuous dialysis as part of their standard 

clinical care. The recruitment started in January 2015 and is 

proposed to continue till December 2020 in the UK [70]. 

Aquadex 
In order to mitigate the concerns regarding use of large 

extracorporeal circuits, the Aquadex circuit was adapted 

to provide prefilter replacement fluid for continuous 

venovenous hemofiltration (CVVH). The filter is 0.12 m2 and 

composed of a polysulfone membrane. Ultrafiltration rates 

of up to 500 mL/hr can be achieved for clearance of waste 

products. A recent pediatric experience of Aquadex has been 

published on ultrafiltration to provide a range of therapies, 

including CVVH, prolonged intermittent RRT, and slow 

continuous ultrafiltration. The group was able to initiate 

RRT with minimal complications, particularly in critically ill 

neonates [6]. 

Better understanding in prevention of pediatric 
acute kidney injury 

Drugs to prevent acute kidney injury 

Furosemide and bumetanide 
In order to improve urine output in critically ill patients, 

furosemide has been used to maintain fluid balance. 

However, studies in adults have not provided any evidence 

that diuretics improve survival or help in recovery of AKI [71]. 

Studies in infants undergoing cardiac surgery have shown 

that furosemide infusion may be used instead of boluses to 

improve urine output [72]. Recently, bumetanide, a newer 

loop diuretic, has been used in preterm infants with oliguric 

AKI. While increasing urine output, there was a rise in SCr, 

highlighting the potential that loop diuretics can cause 

nephrotoxicity in this vulnerable population [73]. 

Low-dose dopamine 
Low-dose dopamine in neonates and pediatric ICU patients 

failed to demonstrate an improvement in kidney function 

and urine output [74]. Moreover, there is recent evidence of 

worsening renal perfusion with this dose itself [75].  

Fenoldopam 
A recent study on fenoldopam, a selective dopamine 

A1 receptor agonist that decreases vascular resistance 

and increases renal blood flow, improved urine output 

in neonates requiring cardiac surgery with positive fluid 

balance despite diuretics [76]. Another recent study showed 

that a higher dose of 1 μg/kg/min during cardiac surgery 

may reduce the urinary NGAL and serum cystatin C levels, 

even without any changes in SCr [77]. However, the data is 

sparse on this drug. 

Theophylline 
During perinatal hypoxia in neonates, adenosine is released, 

which may cause vasoconstriction in the kidney causing a 

reduction in GFR [78]. Thus, nonspecific adenosine receptor 

antagonists, such as aminophylline and theophylline, 

may help in this specific setting. Three recent randomized 

trials showed a reduction in SCr and better urine output in 

severely asphyxiated neonates who were given a single dose 

of theophylline [78–81]. Based on these trials, KDIGO also 

recommends a single dose of theophylline for asphyxiated 

neonates since they are at risk of AKI [82]. However, there 

are concerns about neurological side effects, and more so 

the relevance of these drugs in the era where hypothermia is 

a standard of care in these neonates. 

Rasburicase 
There is a recent interest in rasburicase (a recombinant 

urate oxidase enzyme) with a retrospective study in seven 

neonates with AKI. A single bolus of rasburicase reduced 

SCr, blood urea, and urine output [83]. However, more 

evidence is needed for the use of this drug in the treatment 

of AKI in neonates and children. 
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Electronic hospital software alerts to help clinicians 
prevent acute kidney injury 

Recently, electronic software integrated within hospital 

management servers has been successfully used to prevent 

AKI by alerting clinicians well in time. Nephrotoxic Injury 

Negated by Just-in-time Action (NINJA) is a prospective AKI 

monitoring program used in Cincinnati Children’s Hospital. 

It uses an automated program to extract data in real time 

and flags noncritically ill children who are admitted and 

are receiving three or more nephrotoxins. These children 

undergo a daily surveillance of SCr, and the center noted 

a 38% reduction in the rate of nephrotoxin exposure and a 

concomitant 64% reduction in AKI rates [84]. Recently, a 

Baby-NINJA initiative in multiple neonatal ICUs reported a 

reduction in high nephrotoxic medication exposures from 

16.4 to 9.6 per 1,000 patient-days (p = 0.03) and a reduction 

in percentage of nephrotoxic medication-AKI from 30.9% to 

11.0% (p < 0.001) [85]. 

Newer advances in dialysis for children 

RRT modalities for pediatric AKI have expanded from 

peritoneal dialysis (PD), HD to CRRT and sustained low-

efficiency dialysis (SLED). Advancements in use of RRT 

in children have led to a higher standard of care for young 

and critically ill patients [86]. Since no difference in survival 

outcomes has been seen with any dialysis method, the 

optimal RRT modality to be chosen for children with AKI 

is based on the patient’s size, overall clinical status, on the 

performance of the dialytic modality, and the availability of 

resources and expertise [87]. 

PD is the most common and simple method of providing 

solute and water removal in the ICU. It is easy to perform, 

can be easily learned, and does not require vascular 

access or anticoagulation. In a recent worldwide survey by 

Raina et al., 68.5% of respondents in developing countries 

preferred PD for treating infant AKI while only 29.1% of 

physicians in developing countries and 22.2% in developed 

countries favored PD to treat AKI [88]. Additionally, certain 

modifications to PD have been made recently to improve 

ultrafiltration, namely continuous equilibration PD, high 

volume PD, tidal PD, and continuous flow PD [89].  

HD is the most efficient method of dialysis with rapid 

solute and fluid removal. It is ideal for managing pulmonary 

edema, hyperkalemia, intoxications, hyperammonemia, 

and acute tumor lysis syndrome [90]. However, patient 

hemodynamic stability is a must for a child to be put on 

HD. It does require a vascular access, careful evaluation 

of the extracorporeal blood volume (in the circuit and the 

dialyzer), and the need for anticoagulation [90]. Recently, 

the Pediatric Continuous Renal Replacement Therapy 

Foundation (PCRRT) gave recommendations on how to 

avoid intradialytic hypotension in children [91]. 

CRRT is the preferred modality for the management of 

AKI and fluid overload in critically ill children. It can be used 

with both or one of the diffusion or convection strategies. It 

is a complex dialysis modality that requires expertise and 

systemic heparin or regional citrate anticoagulation. The 

Prospective Pediatric CRRT Registry Group has published 

guidelines for dialyzing children with sepsis and multiorgan 

dysfunction in the last decade [51,92,93]. 

SLED is an alternative to CRRT in hemodynamically 

unstable pediatric patients with AKI. It utilizes conventional 

dialysis machines with low blood pump and dialysate 

flow rates for ≥6 hours daily. Recently, Sethi et al. [94,95] 

published a retrospective and prospective experience of 

SLED in unstable pediatric patients utilizing heparin-free 

dialysis and prefilter convective replacement fluid. 

Conclusion 

Management of AKI is challenging in critical infants and 

children. Over the past decade, revolutionary landmark 

studies and machineries have evolved, greatly improving the 

diagnosis, early detection, and management of renal support 

in this population. The pediatric nephrology community is 

working together closely to provide more scientific data to 

improve renal support in smaller critically sick children. 
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