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Background: Necroptosis plays a crucial role in the progression of multiple types of
cancer. However, the role of necroptosis in gastric cancer (GC) remains unclear. The aim of
this study is to establish a necroptosis-related prediction model, which could provide
information for treatment monitoring.

Methods: The TCGA-STAD cohort was employed to establish a prognostic prediction
signature and the GEO dataset was employed for external validation. The correlation
between the risk score and the immune landscape, tumor mutational burden (TMB),
microsatellite instability (MSI), as well as therapeutic responses of different therapies were
analyzed.

Results: We constructed a prognostic model based on necroptosis-associated
genes (NAGs), and its favorable predictive ability was confirmed in an external
cohort. The risk score was confirmed as an independent determinant, and a
nomogram was further established for prognosis. A high score implies higher
tumor immune microenvironment (TIME) scores and more significant TIME cell
infiltration. High-risk patients presented with lower TMB, and low-TMB patients
had worse overall survival (OS). Meanwhile, Low-risk scores are characterized by
MSI-high (MSI-H), lower Tumor Immune Dysfunction and Exclusion (TIDE) score, and
higher immunogenicity in immunophenoscore (IPS) analysis.

Conclusion: The developed NAG score provides a novel and effective method for
predicting the outcome of GC as well as potential targets for further research.
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INTRODUCTION

Gastric carcinoma (GC) remains a major public health problem
worldwide [1]. It is the fourth most common cancer and the
third frequent cancer-related mortality globally [2]. Currently,
the main treatment methods for GC include a combination of
surgical resection, chemotherapy, targeted therapy, and
immunotherapy [3]. Due to various treatment modalities that
have been developed, the 5-year survival rate for surgically
treated stage IA and IB tumors is between 60% and 80%.
However, the 5-year survival rate for patients with stage III
tumors who undergo surgery is as low as 18%–50% [1].
Furthermore, due to the high degree of inter- and intra-
tumor heterogeneity, and the fact that most diagnoses occur
during advanced disease, most patients die quickly from their
disease [1, 4]. Hence, it calls for innovative approaches to find
critical prognostic biomarkers and elucidate the underlying
mechanisms for the progression of GC.

Necroptosis is a type of programmed cell death (PCD) that
differs from apoptosis and is mainly mediated by Receptor-
Interacting Protein 1 (RIP1), RIP3, and MLKL [5, 6]. Existing
evidence suggests that the key mediator of the necroptotic
pathway can promote the metastasis and progression of
cancer [5]. Some studies revealed that necroptosis is tightly
associated with antitumor immunity [6]. Necrotic cancer cells
attract and activate dendritic cells (DCs) that can migrate to
lymph nodes and cross naive CD4+/CD8+ T cells in search of
cancer antigens [7]. Meanwhile, naive T cells can differentiate
into effector cytotoxic T cells and infiltrate tumors from
lymph nodes and kill cancer cells. In addition, RIPK3 can
also induce the expression of cytokines that activate natural
killer T cells, thereby killing cancer cells [7]. Hence,
necroptosis is expected to become a new target for cancer
therapy. In recent years, gene expression signatures based on
necroptosis-associated genes (NAGs) have been reported to
predict the prognosis of several types of cancer, including
colon cancer, clear cell renal carcinoma, breast cancer, and
lung cancer [8–11]. However, a necroptosis-associated model
in GC is lacking. In this study, we built a novel prognostic risk
model based on NAGs to predict overall survival (OS) in GC
patients and guide individualized treatment.

MATERIALS AND METHODS

Data Collection
We downloaded RNA-seq data as well as clinicopathological and
mutation data of GC, from the TCGA database (https://portal.gdc.
cancer.gov/), which included 375 GC tissues and 32 adjacent normal
tissues. The TCGA cohort was used for model development, and the
GSE84437 dataset that contained 433 GC samples was obtained as an
external validation cohort. Patients with complete follow-up and
clinical information were included in this study. The basic
characteristics of the patients in the TCGA and GEO datasets are
shown in Table 1. Additionally, we obtained 159 necroptosis-
associated genes from previous literature (Supplementary Table
S1) [12].

Development and Validation of a Prognostic
Signature Based on NAGs
To identify prognosis-related NAGs in GC, we performed
univariate Cox regression analysis to screen for prognostically
relevant NAGs. The Least Absolute Shrinkage and Selection
Operator (LASSO) was employed to avoid overfitting and get
rid of those tightly correlated genes. Subsequently, candidate
NAGs were employed to construct a prognostic signature. The
risk score for each patient is calculated as follows:

Risk score � regression coef f icient(genei)

× expression value(genei)

We stratified patients into high-risk groups and low-risk groups
according to the median risk score, and the difference in OS, cancer-
specific survival (CSS), and progression-free survival (PFS) between
the high-risk and low-risk groups was assessed using the Kaplan-
Meier (K-M) curves. Additionally, the risk score of each sample was
reordered, and a risk curve and a survival status-related scatterplot
were shown as a result. The area under the receiver operating
characteristic (ROC) curve (AUC) was calculated to assess the
accuracy of the model. Patterns of gene expression in the defined
patient groups were examined via principal component analysis
(PCA) with the “scatterplot3d” package in R.

TABLE 1 | Clinicopathologic characteristics of GC patients in TCGA and GEO
cohorts.

Characteristics TCGA Cohort GSE84437 Cohort

(n = 350) (n = 431)

N (%) N (%)

Age (M±SD, years) 65.25 ± 10.33 60.02 ± 11.56
Gender
Female 124 (35.4) 137 (31.8)
Male 226 (64.6) 294 (68.2)

Grade
1 & 2 134 (38.3) —

3 207 (59.1) —

Gx 9 (2.6) —

T stage
T1 16 (4.6) 11 (2.6)
T2 74 (21.1) 38 (8.8)
T3 161 (46.0) 92 (21.3)
T4 95 (27.1) 290 (67.3)
Tx 4 (1.1) —

N stage
N0 103 (29.4) 80 (18.6)
N1-3 236 (67.4) 351 (81.4)
Nx 11 (3.1) —

M stage
M0 312 (89.1) —

M1 23 (6.6) —

Mx 15 (4.3) —

Stage
I 46 (13.1) —

II 110 (31.4) —

III 145 (41.4) —

IV 35 (10.0) —

Unknown 14 (4.0) —
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The external cohort GSE84437 was employed to verify the
necroptosis-related prognostic model. Stratifying patients into low-
and high-risk groups were done using the same cut-off value of the
training set. Then, Kaplan Meier, ROC, and PCA were performed.

Identification of Independent Prognostic
Factors and Construction of the Nomogram
We analyze the association of risk scores with clinicopathological
traits, including age, gender, grade, and pathologic stage. Then,
univariate and multivariate Cox regression analysis was performed
to identify important predictive clinical variables for the
development of genome-clinicopathologic nomogram to predict
individual survival probability for GC patients. The nomogram
was constructed by using R package “rms” and the accuracy of
the nomogram was assessed via ROC and calibration curves.

Moreover, we also investigated whether the risk score could affect
the OS of patients in distinct clinical subgroups by log-rank test.

Tumor Immune Microenvironment Analysis
The infiltrating score of immune cells in the TIME was calculated
by Single-sample Gene Set Enrichment Analysis (ssGSEA),
including 16 types of infiltrating immune cells. Moreover, the
“estimate” package was used to evaluate the infiltration of
immune cells and stromal cells in tumor tissues and to infer
the tumor purity.

Analysis of Therapeutic Responses and
Drug Sensitivity
The tumor immune dysfunction and exclusion (TIDE) score was
calculated to predict inhibitory responses to PD-1 and

FIGURE 1 | Generation of the prognostic model in the training cohort. (A) Univariate Cox regression analysis of 10 NAGs correlated with OS in GC patients. (B)
LASSO regression analysis of 6 NAGs. (C)Cross-validation in the LASSO regression. (D–F)Kaplan-Meier curve indicates that the OS, CSS, and PFS of high-risk patients
are significantly lower than those of low-risk patients. (G) The ROC curve and AUC of the model. The higher values of AUC correspond to higher predictive power. (H)
PCA distinguishes two subgroups. (I) The distribution of risk scores and survival status among the two risk subgroups. NAGs: necroptosis-associated genes, GC,
gastric cancer; PFS, progression-free survival; OS, overall survival; CSS, cancer-specific survival; AUC, area under the curve; ROC, receiver operating characteristic.
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CTLA4 immune checkpoint in GC patients [13]. The
immunophenoscore (IPS) is calculated based on the expression
of various important immune molecules, including immune
regulators, MHC molecules, suppressor cells, and effector cells,
and can well reflect the response rate to immune checkpoint
inhibitors (ICI) [17]. Moreover, the “pRRophetic” R package was
employed to calculate the predicted half-maximal inhibitory
concentration (IC50) of commonly applied chemotherapy
drugs for obtaining the drug sensitivities of GC patients.

Correlations of Risk Score With Mutation
Status and Microsatellite Instability in GC
There is growing evidence that patients with high TMB have an
acceptable response to immunotherapy and are associated with a
good prognosis. We evaluated the tumor somatic mutations
presented in high- and low-risk patients separately using the
“maftools” R package. We further performed TMB variance

analysis and correlation analysis for different risk groups.
Kaplan-Meier analysis was performed to compare survival
differences between low and high TMB. Subsequently, risk
score and TMB were combined to perform a survival analysis
to determine if there are differences in patients between different
groups. We performed a combined survival analysis of risk score
and TMB to explore whether the prognostic value of risk score
was influenced by TMB status. Moreover, the correlation between
the risk score and MSI was explored.

Functional Enrichment Analysis
To explore the signaling pathways that necroptosis-related
signatures may be involved in regulation, differentially
expressed genes (DEGs) between two risk subgroups were
retrieved (adjusted p < 0.001 and |log2FC| ≥ 2). Subsequently,
Gene Ontology (GO) and functional annotation of Kyoto
Encyclopedia of Genes and Genomes (KEGG) were performed
using “clusterProfiler” R package.

FIGURE 2 | Validation of necroptosis-related signature in GSE84437 cohort. (A) Kaplan-Meier curves of the OS rate in the two risk groups. (B) The ROC curve and
AUC of the model. The higher values of AUC correspond to higher predictive power. (C) PCA demonstrated overt separation of both subgroups. (D) The distribution of
risk score and the coherence of survival time and survival status among two risk subgroups. OS, overall survival; ROC, receiver operating characteristic; AUC, area under
the curve.

Pathology & Oncology Research September 2022 | Volume 28 | Article 16106414

Zhu et al. A Prognostic Signature in GC



Statistical Analysis
All statistical analyses were completed by R software 4.1.0.
The Spearman correlation analyses were applied to determine
the correlation. Kaplan-Meier method was used for survival

analysis of different risk subgroups using a two-sided log-rank
test. The Wilcoxon signed-rank test was employed to compare
difference of the two groups. p < 0.05 was the threshold of
significance.

FIGURE 3 | Prognostic value of the necroptosis-related risk model. (A) The correlation between tumor grade and risk score. (B) The correlation between TNM
stage and risk score. (C) A prognostic nomogram consists of two clinicopathological variates and a risk score. (D) ROC curve with 3- and 5-year AUCs to assess the
predictive ability of the nomogram. (E) The 3- and 5-year calibration plot to test the performance of the newly established nomogram. AUC, area under the curve; ROC,
receiver operating characteristic.
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RESULTS

Generation and Validation of the Prognostic
Model
In univariate Cox regression analysis, a total of 10 NAGs were
evidently associated with OS (Figure 1A). To minimize
overfitting, cross-validation was performed in the LASSO
regression (Figures 1B,C). Finally, six NAGs were employed
to construct the prognostic signature. Risk score = GLUD2*
0.0562 + MAPK10*0.1662 + CHMP4C*(-0.0033) +
IFNA4*0.7025 + IFNA14* 0.2007 + IFNB1*0.0054. Patients
were categorized into low- and high-risk subgroups and the
Kaplan-Meier plot revealed that the OS, CSS, and PFS of low-
risk patients was higher than those of high-risk patients (Figures
1D–F). ROC curves presented the AUCs were 0.704 (3 years) and
0.724 (5 years), which manifested that the prognostic signature
had a satisfactory predictive efficiency (Figure 1G). Besides, the
PCA demonstrated that the risk score could distinguish the two
risk subgroups (Figure 1H). The scatter plot risk and score
distribution plot suggested that the high-risk subgroup had
higher risk scores and worse survival times than that of the
low-risk subgroup (Figure 1I).

The predictive ability of the signature was well reproduced in
an external validation set (GSE84437). The K-M curve revealed
that patients in low-risk group had significantly favorable
prognoses (p < 0.05, Figure 2A). The AUC value of ROC
curve revealed that the risk score could predict the OS rate of
GC patients to some extent (Figure 2B). PCA indicated that the
patient distribution of the two risk groups was in two directions
(Figure 2C). The risk curve and survival status-related scatterplot
also demonstrated the same tendency of prognosis in two risk
groups as the K-M curve (Figure 2D).

Prognostic Value of the
Necroptosis-Related Risk Model
We investigated the association between risk score and
clinicopathological parameters in the TCGA training cohort. The
prognostic signature observed statistically obvious higher values in
G3 than in G1-2 (p = 0.001; Figure 3A). Similarly, a higher risk score
was observed in stage III-IV than in stage I-II (p = 0.02; Figure 3B).
To further explore the prognostic role of this signature, we

performed Cox regression analyses in the TCGA cohort to select
independent prognostic indicators. The results suggested that the
risk score (HR: 8.137, 95% CI: 3.577–18.511, p < 0.001), age (HR:
1.035, 95%CI: 1.017–1.053, p < 0.001) and stage (HR: 1.661, 95%CI:
1.328–2.076, p < 0.001) were independent prognostic factors for OS
(Table 2). Then, a nomogram based on three identified prognostic
variables was built in the TCGA cohort to predict 3- and 5-year OS
rates, respectively (Figure 3C). The ROC curves were subsequently
depicted in Figure 3D, with 3-, and 5-year AUCs of 0.72 and 0.71,
respectively. Furthermore, favorable consistency between prediction
based on nomogram and actual observed outcomes of 3- and 5-year
OS rates were illustrated in the calibration plots, respectively
(Figure 3E). Additionally, we evaluated the OS of patients in two
risk groups among distinct clinical subgroups, including age, gender,
tumor grade, and TNMstage. As is shown in Supplementary Figure
S1, patients with high risk hadworse survival probabilities than those
of patients with low risk in all distinct clinical subgroups.

Tumor Microenvironment Characteristics in
the High- and Low-Risk Groups
Based on the ssGSEA algorithm, most immune infiltration cells
had higher scores in the high-risk group, including CD8+ T cells,
B cells, DCs, immature DCs (iDCs), neutrophils, plasmacytoid
dendritic cells (pDCs), T helper cells, mast cells, tumor-
infiltrating lymphocytes (TIL), T follicular helper cells (Tfh),
and regulatory T (Treg) cells (Figure 4A). Moreover, the score
of type-Ⅱ interferon (IFN) response was higher in the high-risk
group, but scores of MHC-class Ⅰ were higher in the low-risk
group (Figure 4B). The ESTIMATE algorithm was employed to
score the TIME. The violin plot shows the ratio of TIME scores
(stromal, immune, and ESTIMATE scores) between two risk
groups. The TIME score of the high-risk subgroup was higher
than that of the low-risk subgroup (Figure 4C).

Necroptosis-Related Risk Model Predicts
Therapeutic Benefits
The TIDE algorithm was employed to identify GC patients who
can benefit from immunotherapy. The results demonstrated that
TIDE scores were significantly lower in the low-risk subgroup
than in the high-risk subgroup, suggesting a better response to

TABLE 2 | Results of univariate and multivariate Cox regression analyses by combining risk level with other clinical variables in the TCGA training cohort.

Group Variables HR 95% CI p-value

Univariate Age 1.024 1.006–1.042 0.008
Cox regression analysis Gender (Male/Female) 1.304 0.902–1.885 0.158

Grade (G3/G1-2) 1.337 0.955–1.872 0.091
TNM stage (III-IV/I-II) 1.475 1.196–1.819 <0.001
TMB 0.987 0.973–1.002 0.090
Risk score 6.228 2.822–13.745 <0.001

Multivariate Cox regression analysis Age 1.035 1.017–1.053 <0.001
Gender (Male/Female) 1.221 0.842–1.771 0.292
Grade (G3/G1-2) 1.193 0.842–1.691 0.321
TNM stage (III-IV/I-II) 1.661 1.328–2.076 <0.001
TMB 0.989 0.974–1.003 0.133
Risk score 8.137 3.577–18.511 <0.001
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ICI immunotherapy (Figure 4D). Furthermore, the
immunogenicity of two risk groups was analyzed by IPS
analysis. The ips_ctla4_pos_pd1_neg, ips_ctla4_neg_pd1_pos,
and ips_ctla4_pos_pd1_pos scores were higher in the low-risk
group (Figures 4E–G), suggesting that low-risk patients have a
better response for immunotherapy. These results suggest that the
signature can predict the response of GC patients to
immunotherapy.

To explore whether risk scores predict chemotherapy response in
GC patients, we compared IC50 levels in two groups of

chemotherapy drugs or inhibitors. The results are shown in
Figure 5, that Dasatinib, Pazopanib, Axitinib, and Rapamycin
may be potential to treat high-risk patients, while Gefitinib and
Metforminmay suitable for patients in the low-risk group (Figure 5).

Correlations of Risk Score With TMB and
MSI in GC
There is growing evidence that patients with high TMB have an
acceptable response to immunotherapy and are associated with a

FIGURE 4 | TME characteristics and ICI immunotherapy. (A,B) The correlation between risk score and immune cells (A) and immune function (B)was analyzed by
ssGSEA. (C) The TIME scores between different risk subgroups. (D) TIDE score between different risk subgroups. (E–G) Immunogenicity between different risk
subgroups. ICIs, immune checkpoint inhibitors; TIME, tumor immune microenvironment (TIME); Tumor Immune Dysfunction and Exclusion (TIDE).
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good prognosis. A lower somatic frequency (85.29%) was
frequently observed in the high-risk subgroup compared to the
low-risk subgroup (95.93%) (Figures 6A,B). TMB score was
obviously lower in high-risk group (p < 0.001; Figure 6C) and
risk score was negatively correlated with the TMB score
(R = −0.43, p < 0.001; Figure 6D). As a TMB survival curve,
we found that high TMB patients have a better prognosis (p =
0.03; Figure 6E). A combined analysis of risk score and TMB
found that the GC patients with high TMB in high-risk group had
significantly shorter OS relative to low-risk patients (p = 0.001;
Figure 6F). And the results in patients with low TMB were
consistent, but not statistically different (p = 0.196; Figure 6G). In
addition, multivariate Cox regression analysis indicated that the
risk score was independent of TMB in predicting OS (Table 2).
Additionally, the MSI status in the two groups was also analyzed.
As shown in Figure 6H, the proportion of MSI-H and MSI-L in
the low-risk subgroup was higher than that in the high-risk
subgroup. Risk scores were significantly different among the
different microsatellite status groups (Figure 6I).

Functional Enrichment Analysis
KEGG pathway analyses and GO annotation were performed based
on 1671 differentially expressed genes (FDR <0.001 and |logFC| > 2)
between two risk subgroups. The most enriched terms in GO are
extracellular matrix organization, receptor ligand activity, and
collagen-containing extracellular matrix (Figure 7A); while those
in KEGG with higher enrichment include PI3K-Akt signaling
pathway, neuroactive ligand-receptor interaction, calcium
signaling pathway, and focal adhesion (Figure 7B).

DISCUSSION

GC is an aggressive and heterogeneous malignancy that is a major
health problem worldwide [2, 14]. The traditional prognostic
evaluation system based on TNM staging can no longer meet the
requirements of precision medicine. At present, reliable
prognostic biomarkers for GC are lacking. In recent years,
based on bioinformatics analysis, identifying biomarkers
through database mining can predict the prognosis of GC
[15–17]. Necroptosis is a novel model of cell death, which is
caused by the binding of multiple death receptors to specific
ligands by triggering specific pathogens recognition receptors
such as TLR3, TLR4, and the Z-DNA sensor DAI, and induced by
type I and type II interferons involving the RNA-responsive
protein kinase PKR [18]. Necroptosis plays a double role in
tumor regulation. On one hand, necroptosis can eliminate
tumor cells and prevent tumor progression, and drug-induced
necroptosis can directly inhibit tumor proliferation and
metastasis [6]. In addition, necroptosis can trigger robust
adaptive immune responses. On the other hand, necroptosis
provides a favorable environment for tumor proliferation and
metastasis [6]. Nowadays, necroptosis-related signatures have
been built in several types of cancer [8, 19, 20]. Our study
mainly investigated whether NAGs are correlated with the
prognosis of GC and whether they could predict patient
responses to immunotherapy.

In the present study, we first constructed a prognostic
signature with the 6 NAGs and stratified GC patients into
different subgroups. We observed shorter survival in high-risk

FIGURE 5 | Correlation analysis between risk score and therapeutic drugs. (A) Dasatinib. (B) Pazopanib. (C) Axitinib. (D) Rapamycin. (E) Gefitinib. (F)Metformin.
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patients compared with low-risk patients in both training and
validation sets. ROC curve demonstrated that the risk score-based
curve showed satisfactory prediction efficiency for training and
testing cohorts. The signature contained six NAGs: MAPK10,
GLUD2, CHMP4C, IFNA4, IFNA14, and IFNB1. MAPK10, a
member of the MAPK family, plays a key role in cancer initiation
and progression by acting as an integration point for multiple
biochemical signals [21, 22]. There is increasing evidence that it
acts as a microRNA target to play a tumor-promoting or tumor-
suppressing role [23–25]. Gao et al. [26] revealed that miR-335-
5p suppressed GC progression by targeting MAPK10. In
addition, we found that IFNA4 and IFNB1 were reported in
cyclic GMP-AMP synthase-stimulator of interferon (cGAS-

STING) related prognostic signatures in GC [27]. GLUD2,
CHMP4C, and IFNA14 have not been reported in GC.

Subsequently, multivariate Cox regression analysis indicated
that the risk score was an independent prognostic indicator in
GC. The prognostic role of the signature in GC was confirmed by
stratified analysis. We further developed a quantitative
nomogram that could evaluate the prognosis of GC patients.
The clinical nomogram achieved high calibration for short-term
or long-term survival prediction. Correlation analysis indicated
that the risk score is positively linked to tumor grade and TNM
stage. These findings indicate that the signature may be effective
in determining prognosis, thereby facilitating the implementation
and evaluation of the model in future clinical practice.

FIGURE 6 |Correlations of risk score with TMB andMSI in GC. (A,B) The somatic frequency of GC patients in two risk subgroups. (C) The difference in TMB scores
between different risk groups. (D) The relationship between risk score and TMB. (E) Kaplan-Meier survival curves between low and high TMB subgroups. (F) Kaplan-
Meier survival curves of GC patients with high TMB in different risk score subgroups. (G) Kaplan-Meier survival curves of GC patients with low TMB in different risk score
subgroups. (H) The proportion of different microsatellite statuses in different risk subgroups. (I) Risk scores between different microsatellite status subgroups.
TMB, tumor mutational burden; MSI, microsatellite instability.
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Recently, tumor-associated immune cells have attracted much
attention. Necroptosis is an alternative mode of PCD to overcome
apoptosis resistance and may trigger and amplify antitumor
immunity in cancer therapy [6]. Therefore, the regulation of
tumor necroptosis in the TME cell infiltration could be an
important new target for GC. From the immune cell and stromal
cell fractions, we can predict that immune cells may play a dominant
role in the effect of TIME. We study the immune status of different
groups by ssGSEA, which reveals most of the immune infiltration
cells had higher scores in the high-risk group. CD8+T cell infiltration
generally correlated with favorable prognosis in most solid tumors
[28]. Studies that examined an association between CD8+T and
prognosis in GC are inconsistent, most studies showed a positive
correlation between CD8+T and prognosis [29–31]. On the
contrary, a previous study revealed that the infiltration of CD8+

T cells was correlated with a poorer OS and PFS in GC [32], which is
consistent with our results. These findings indicate the controversial
prognostic effect and heterogeneous characteristics of CD8+T cells
in GC.

In recent years, immunotherapy has become a new promising
approach for treating GC, especially ICIs, which have become an
effective treatment [33–35]. We explored the immunotherapy
benefit in GC by TIDE algorithm [13]. Patients with higher TIDE
scores had a worse response to immunotherapy due to immune
escape. Our results showed lower TIDE scores in the low-risk
subgroup, suggesting that patients are more likely to benefit from
ICI therapy. Furthermore, IPS analysis indicated that low-risk
patients exhibited higher immunogenicity, implying a better
response to ICI therapy. TMB was confirmed as an important
determinant of ICIs efficacy and prognosis in cancer patients
[36]. Our findings show a significant negative correlation between
risk score and TMB and patients with the low risk had higher
TMB and favorable OS. Moreover, the risk score was independent
of TMB in predicting OS. Additionally, we observed an inverse
correlation between risk scores and MSI status in GC patients.

Taken together, the necroptosis-related signature was correlated
with TMB and MSI status and has the potential to be used to
predict response to immunotherapy and targeted therapy.

Nevertheless, there are still several issues to be addressed. First,
clinical tissues should be used for detecting the expression level of
model genes, and more functional in vitro or vivo in assays are
further needed to validate their roles in the future. Second,
whether the induction of necroptosis can improve the effect of
immunotherapy in GC patients need urgently to be studied
through clinical trials. Third, since there was a lack of a
suitable externally validated cohort, the effectiveness, and
reliability of the nomogram were not assessed.

CONCLUSION

The developed necroptosis-related signature may serve as a
predictor of prognosis and immunotherapy for GC in the future.
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