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On surfaces with many motile cilia, beats of the individual cilia
coordinate to form metachronal waves. We present a theoret-
ical framework that connects the dynamics of an individual
cilium to the collective dynamics of a ciliary carpet via system-
atic coarse graining. We uncover the criteria that control the
selection of frequency and wave vector of stable metachronal
waves of the cilia and examine how they depend on the geo-
metric and dynamical characteristics of a single cilium, as well
as the geometric properties of the array. We perform agent-
based numerical simulations of arrays of cilia with hydrodynamic
interactions and find quantitative agreement with the predic-
tions of the analytical framework. Our work sheds light on the
question of how the collective properties of beating cilia can
be determined using information about the individual units and,
as such, exemplifies a bottom-up study of a rich active matter
system.

metachronal wave | cilia | hydrodynamic interactions

Motile cilia are hair-like organelles that beat with a whip-like
stroke that breaks time-reversal symmetry to create fluid

flow or propel swimming microorganisms under low Reynolds
number conditions (1–3). The beat is actuated by many dynein
motors, which generate forces between microtubules that cause
the cilium to bend in a robust cyclic manner with moderate
fluctuations (4, 5). On surfaces with many cilia, the actuat-
ing organelles can coordinate with each other and collectively
beat in the form of metachronal waves, where neighboring
cilia beat sequentially (i.e., with a phase lag) rather than syn-
chronously (6). The flows created from this coordinated beating
are important for breaking symmetry in embryonic development
(7, 8), creation of complex and dynamic flow patterns for the
cerebrospinal fluid in the brain (9, 10), and providing access
to nutrients (11). In microorganisms such as Paramecium and
Volvox, the metachronal beating of cilia provides propulsion
strategies in viscous environments (12, 13). It has been shown
that depending on the parameters, beating ciliary carpets can
exhibit globally ordered and turbulent flow patterns (14), which
can be stable even with a moderate amount of quenched dis-
order (15), and that metachronal coordination optimizes the
efficiency of fluid pumping (16, 17). Natural cilia have inspired
various designs of artificial cilia (18–22), which may be used
for pumping fluid (23, 24) and mixing (25), or fabrication of
microswimmers (26).

Hydrodynamic interactions have been shown to play a key
role in coordinated beating of cilia (27, 28) and mediating cell
polarity control (29). To achieve synchronization between two
cilia via hydrodynamic interactions, it is necessary to break
the permutation symmetry between them [e.g., by exploiting
the dependence of the drag coefficient on the distance from
a surface (30), flexibility of the anchoring of the cilia (31),
nonuniform beat patterns (32, 33), or any combination of
these effects (34)]. In addition to the hydrodynamic interac-
tions, the basal coupling between cilia can also facilitate the
coordination (35–37).

How can we predict the collective behavior of arrays of many
cilia coordinated by hydrodynamic interactions, and in partic-
ular, the properties of the emerging metachronal waves, from
the single-cilium characteristics? Extensive numerical simula-
tions using explicitly resolved beating filaments (16, 17, 27,
38–40) and simplified spherical rotors (13, 14, 41, 42) have
demonstrated that metachronal coordination emerges from
hydrodynamic interactions. However, insight into this com-
plex many-body dynamical system at the level that has been
achieved in studies of two cilia is still lacking. Here, we pro-
pose a theoretical framework for understanding the physical
conditions for coordination of many independently beating
cilia, which are arranged on a substrate in the form of a
two-dimensional (2D) array immersed in a three-dimensional
(3D) fluid. We uncover the physical conditions for the emer-
gence of stable metachronal waves and predict the properties
of the wave in terms of single-cilium geometric and dynamic
characteristics.

Results
We use a simplified model of a cilium as a force monopole mov-
ing along a circular trajectory of radius a above a substrate, rep-
resented by a sphere of radius b driven by a force f (φ), as shown
in Fig. 1A. To theoretically study metachronal coordination, we
consider such model cilia on a lattice of spacing ` in the x–y
plane as shown in Fig. 1B. We examine the role of the geometric
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Fig. 1. (A) A simplified description of a single cilium as represented by a
force monopole with a cyclic trajectory above a rigid substrate. Various geo-
metric measures and orientation vectors are defined. (B) An array of cilia on
a square lattice in the x–y plane with the lattice constant `.

parameters in determining the collective mode of coordination.
We parametrize the orientation of the cilia by the angle θ that the
plane of the circular trajectory makes with the ex direction and
the tilt angle χ it makes with the ez direction. More concretely,
we define the vector c = (cos θ, sin θ, 0) to characterize the 2D
orientation of the circular orbit and b = (− sin θ, cos θ, 0), which
is perpendicular to c, and the unit vector that is normal to circu-
lar trajectory is defined as n =− cosχb− sinχez (Fig. 1A). The
position of the sphere representing the force monopole along the
trajectory, which we parametrize by the polar angle φi for the ith
sphere, is

Ri = ri + hez + a cosφic + a sinφi(− sinχb + cosχez ), [1]

where ri = (xi , yi , 0) denotes the lattice coordinate (with spacing
`) and h denotes the distance from the center of the trajectory to
the substrate. There are also simulation studies adopting noncir-
cular trajectories of the cilia, and interested readers can refer to
refs. 13, 30, 42, and 43.

Dynamical Equations. Each cilium is driven independently by a
tangential force acting on the bead. The magnitude of the force,
f (φi), depends only on the location of the bead along its trajec-
tory, and the direction of the force is given by the tangent vector,
which is defined as

ti(φi) =
dRi/dφi

|dRi/dφi |
. [2]

The friction coefficient of the bead, ζ(φi), can, in general,
depend on the location of the bead along the trajectory (e.g., due
to the proximity of a substrate). Balancing the forces for a single
cilium, we find that in the absence of other cilia, the velocity of
the bead is vi = φ̇ia ti = f (φi)/ζ(φi) ti . In an array of cilia, the
hydrodynamic interactions between the cilia influence the beat
cycle because a single cilium creates a flow that is felt by other

cilia, affecting the speed at which they move around their tra-
jectories. This leads to a system of coupled dynamical equations
governing the phase variables

dφi

dt
=

f (φi)

ζ(φi)a
+

1

a

∑
j

ti(φi) ·G(Ri , Rj ) · tj (φj )f (φj ). [3]

The Green’s function G(R, R′) (the Blake tensor) encodes the
hydrodynamic effect felt at point R due to a force monopole
located at R′ in an incompressible fluid near a substrate with a
no-slip boundary condition (44).

The intrinsic angular speed of each cilium given as

Ω(φ) = f (φ)/[ζ(φ)a] [4]

can generically have phase dependence, which provides a way to
connect the changing shape of a real beating cilium to our model.
In our model, the phase dependence arises from the force (or
stroke) pattern of the beating, which can be represented via its
harmonics as

f (φ) = f0

[
1 +

∑
n=1

An cosnφ+Bn sinnφ

]
, [5]

and the cyclic change in the friction, which we represent as

ζ(φ) = ζ0

[
1 +

∑
n=1

Cn cosnφ+Dn sinnφ

]
. [6]

The scale of the friction coefficient can be written as ζ0 = 4πηb,
where the length scale b represents the characteristic (hydrody-
namic) size of a cilium. Naturally, the harmonic amplitudes are
constrained to values that will correspond to strictly positive val-
ues for the force and the friction coefficient. To proceed with
the analysis of Eq. 3, we introduce a coordinate transformation
φ→ φ̄, defined via the following relation:

d φ̄

dφ
=

Ω0

Ω(φ)
, [7]

where Ω0 = f0/(ζ0a) is a constant angular speed describing the
dynamics of the new coordinate in the absence of hydrodynamic
interactions (32). The definition can be integrated to obtain the
relation between the coordinates as

φ(φ̄)' φ̄+
∑
n=1

1

n

[
(An −Cn)sinnφ̄− (Bn −Dn)cosnφ̄

]
[8]

to the lowest order in the harmonic amplitudes.
Using the translational invariance along the substrate, we can

express the Blake tensor in the 2D Fourier space q = (qx , qy , 0)≡
q q̂ (SI Appendix has the details of the derivation) and recast Eq.
3 in terms of the new coordinate. We then use a separation
of timescale between the mean phase and the phase differ-
ence to simplify the dynamics (SI Appendix has some details of
the calculations, and Movies S1–S12 show how a metachronal
wave emerges in our simulation). By changing the notation from
φi(t) to φ(r, t) and averaging over the fast variables, the gov-
erning dynamical equation can be written as (SI Appendix has
some details of the calculations, and Movies S1–S12 show how a
metachronal wave emerges in our simulation)

∂t φ̄(r, t) = Ω0 +
Ω0hb

16π

∑
r′

∫
d2q e iq·(r−r′)

×
[
M(q) cos

(
φ̄(r)− φ̄(r′)

)
+S(q) sin

(
φ̄(r)− φ̄(r′)

)]
, [9]
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where the q-dependent kernels are defined as

M= g0(qh) + g1(qh)(A2− 2C2) + g2(qh)(B2− 2D2), [10]
S = g1(qh)(2B2−D2)− g2(qh)(2A2−C2) [11]

in terms of the following functions:

g0(p) = 2p−1[e−2p(a/h)− e−2p ][3− cos2 χ(p̂ · c)2]

+ 4(1− p)e−2p [1− cos2 χ(p̂ · b)2]

− 4(1 + p)e−2p cos2 χ, [12]

g1(p) = p−1[e−2p(a/h)− e−2p ][(p̂ · b)2− sin2 χ(p̂ · c)2]

+ 2(1− p)e−2p [(p̂ · c)2− sin2 χ(p̂ · b)2]

+ 2(1 + p)e−2p cos2 χ, [13]

g2(p) = 2{p−1[e−2p(a/h)− e−2p ]− 2(1− p)e−2p}
× sinχ(p̂ · b)(p̂ · c). [14]

Importantly, we find that only the second harmonics in the
beat pattern and the friction cycle play a key role in deter-
mining the collective behavior of the cilia at long timescales.
This is essentially understood by considering interaction of
two cilia moving on the same plane as follows (Materials and
Methods). Cilium #1 is accelerated due to the flow induced
by the other (#2), with a speed that is proportional to the
driving force f (φ2). Including geometrical factors due to the
circular shape of the trajectories, the velocity shift of #1 is
proportional to sinφ1 sinφ2 f (φ2) (SI Appendix, Fig. S1). Sub-
tracting the velocity of #2, we find that the phase difference
∆φ=φ1−φ2 changes as d

dt
∆φ∝ sinφ1 sinφ2[f (φ2)− f (φ1)].

Assuming that the two cilia are almost synchronized (∆φ�
1), we can put φ1 = Ωt + 1

2
∆φ and φ2 = Ωt − 1

2
∆φ into the

above equation and linearize it with respect to ∆φ, which
yields d

dt
∆φ∝− sin2(Ωt)f ′(Ωt)∆φ. Averaging over one cycle,

we obtain d
dt

∆φ∝−I∆φ with I = 1
2π

∫ 2π

0
dφ sin2 φ f ′(φ), which

means that the two cilia synchronize if I > 0. Since the factor
sin2 φ contains only second harmonics, the force f (φ) has to con-
tain the same harmonics to make I nonvanishing. In short, the
geometrical factors originating from the two trajectories are cou-
pled with the second harmonics in the beating pattern to produce
synchronizing effects.

The compact form of Eq. 9 allows us to systematically inves-
tigate the conditions under which the array of cilia can admit
stable metachronal wave solutions and what determines the
direction of propagation and the wavelength of the wave. As we
shall see below, M(q) will determine the characteristics of the
metachronal waves, and S(q) will determine their stability.

Dispersion Relation. Let us now consider a situation where the
cilia beat in coordination and generate a metachronal wave
of frequency ω and wave vector k. We describe the travel-
ing wave as φ̄(r, t) =ωt − k · r + δφ̄k(r, t), where δφ̄k represents
perturbations around the harmonic traveling wave ansatz. Eval-
uating Eq. 9 at the zeroth order and making use of the identity∑

r′ e
iq·(r−r′) =

∑
G

4π2

`2
δ2(q + G) where G represents the recip-

rocal lattice vectors, we find the dispersion relation of the
metachronal waves as

ω(k) = Ω0

[
1 +

π

4

hb

`2

∑
G

M(k + G)

]
. [15]

We recall, for example, that for a square lattice, we have G =
2π
`

(mex +ney) for m,n ∈Z.
The dispersion relation is plotted in Fig. 2 for various choices

of cilia orientation. Note that the resulting frequencies for all

modes are somewhat larger than the single-cilium frequency
Ω0, due to a renormalization of the frequency by hydrodynam-
ics interactions. For example, ω(0)/Ω0 = 1 + π

4
hb
`2

∑
GM(G)≈

1.43 for the parameter set corresponding to Fig. 2A, namely
θ= 0, χ= 0, h = `, a = 0.2`, b = 0.05`, A2 = 0.5, B2 = 0.5, C2 =
0, and D2 = 0. This ratio is consistent with observations in
ref. 10, where the measured beat frequency of a single cilium
was found to be 15 Hz, and the beat frequency increases for
increasing number of synchronized cilia and plateaus at about
22 Hz for > 20 cilia, giving a measured value of ω(0)/Ω0≈
1.47. In our dispersion relation, we find higher frequencies at
longer wavelengths (synchronized beating corresponds to k =
0). When neighboring cilia have small phase differences, the
flow created from the beats of the nearest cilia is in a direc-
tion that helps to move an individual cilium faster around its
trajectory.

Stability Criterion. Satisfying the dispersion relation provides a
necessary condition for frequencies and wave vectors to repre-
sent metachronal waves. However, it does not guarantee that the
wave is a stable solution to Eq. 9. To check the stability of a
solution, we can expand Eq. 9 in terms of δφ̄k and probe the first-
order governing equation for the perturbation. In Fourier space,
we find the time evolution of a perturbation with wave vector q
in a background of uniform wave with wave vector k to satisfy the
following equation:

∂tδφ̄k(q) =− [Γ(q, k)−Γ(0, k)]δφ̄k(q), [16]

where

Γ(q, k) =
πbΩ0

8`2

∑
G

[S(q + k−G) +S(q− k−G)]. [17]

The sign of Γ(q, k)−Γ(0, k) determines whether the background
wave solution with wave vector k is stable with respect to a per-
turbation with wave vector q. If Γ(q, k)−Γ(0, k)> 0 for all values
of q, then the background metachronal wave with wave vector k
is linearly stable.

In Fig. 2, the wave vectors corresponding to linearly sta-
ble solutions of Eq. 9 are shown as (blue) dots. The explicit
expression for S allows us to make predictions about the nec-
essary criteria for the stability of the waves. For example,
when χ= 0, stability requires the condition 2B2−D2> 0 to
be satisfied. In this case, one can generally observe that the
stable modes propagate along the direction of the ciliary beat-
ing with wave lengths (denoted by λ) that are in the range
of 2`.λ. 4`. One can observe that for directions that do
not coincide with the lattice axes, the domains of permissi-
ble wave vectors shrink in size and tend toward larger wave
vectors (Fig. 2 A–C). Increasing the angle χ, which amounts
to tilting the ciliary beating orbit away from the z axis, fur-
ther accentuates this feature while allowing for the direction
of propagation to deviate from the direction of beating, lead-
ing to the formation of dexioplectic or laeoplectic metachronism
(Fig. 2 D and E).

To examine the role of the underlying lattice structure, we
consider a triangular lattice, which is characterized by reciprocal
lattice vectors G = 2π

`
[(mex + (−m/

√
3 + 2n/

√
3ey)], (m,n ∈

Z). The dispersion relation does not differ appreciably from
that of a square lattice, as Fig. 2F shows for the case of θ= 0
and χ= 0. However, while for a square lattice the stable wave
region is centered around kx =±π/` and ky = 0, for a triangu-
lar lattice it is centered around kx =±π/` and ky = 0 or kx =

±(2−
√

3)π/` and ky =π/`, which means that there will be a
phase shift between the neighboring cilia along the ex direction,
hence giving rise to dexioplectic or laeoplectic waves (6). This
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Fig. 2. Dispersion relation of the metachronal waves. The (nondimensionalized) frequency ω(k)/Ω0 defined in Eq. 15 is plotted as a function of the wave
vector (kx`, ky`) in the first Brillouin zone. A–E correspond to a ciliary array on a square lattice with the following trajectory orientation and tilt angles:
(A) χ= 0, θ= 0; (B) χ= 0, θ=π/6; (C) χ= 0, θ=π/4; (D) χ=π/36, θ=π/4; and (E) χ=π/6, θ=π/4. (F) A triangular lattice with χ= 0, θ= 0. Other
parameters for A–F are a = 0.2`, b = 0.05`, h = `, A2 = 0.5, B2 = 0.5, C2 = 0, and D2 = 0. Blue shaded regions denote the stable wave zones as determined by
the linear stability analysis from Eq. 16. (Insets) Zoomed-out versions of dispersion relations, showing the higher frequencies obtained at longer wavelengths.

behavior can be understood by analyzing the dynamics of two
cilia with the appropriate geometric arrangement (Materials and
Methods and SI Appendix, Fig. S1). We thus find that tuning the
orientation of the cilia trajectories and controlling the position-
ing of the cilia in the array provide the possibility to generate
metachronal waves with desired wavelengths and directions of
propagation.

We note that in our current formulation, the stability crite-
rion is degenerate with respect to the direction of propagation
(i.e., ±k are both either stable or unstable at the same time).
The symmetry can be broken by considering near-field effects in
the hydrodynamic interaction between cilia; this will be discussed
in future work. Note also that while the stability analysis is per-
formed in terms of φ̄, the one-to-one correspondence in Eq. 8
guarantees that it will also describe the stability of the modes in
terms of the original φ coordinate.

Agent-Based Simulation. To support the validity of the above
analytical description, which is analyzed within the framework
of linear stability analysis, we perform numerical simulations
based on the governing dynamical equations of the cilia (Eq.
3). The examples of the time evolution are presented in Fig.
3 for an 11× 11 cilia array, which is simulated with periodic
boundary conditions. The cilia are positioned on a square lat-
tice (Fig. 3 A–E) with different tilting angles θ and χ, as well

as a triangular lattice with θ= 0 and χ= 0 (Fig. 3F). The cilia
are initiated with the same phase φ= 0 at the start of the
simulation at t = 0, except φ5,5 =π/2, which is taken for break-
ing the initial symmetry. The time interval for each simulation
step is dt/t0 = 10−3, with t0 = η`2/f0 defining a characteristic
time.

As can be seen in Fig. 3 and Movies S1–S12 (SI Appendix has
some details of the calculations, and Movies S1–S12 show how
a metachronal wave emerges in our simulation), in all cases the
cilia coordinate with each other and form a metachronal wave
after a transient period. For example, in the case of the cilia on
a square lattice with the tilting angles of the trajectory as θ= 0
and χ= 0 (as shown in Fig. 3A), the cilia beat in the form of
the metachronal wave with the wave vector kx 'π/` and ky ' 0.
In another case, corresponding to θ=π/4 and χ= 0, the cilia
beat in the form of the metachronal wave with the wave vector
kx 'π/(2`) and ky 'π/(2`). These simulation results agree very
well with the prediction of the linear stability analysis; the values
of the measured stable waves lie for all cases within the range
predicted by the theoretical calculations as presented in Fig. 2.

These simulations do not use the separation of timescales
that was used in the theoretical analysis. The emergence of
metachronal waves is over 103 beat cycles, which is long
enough to verify that averaging over fast variables is a valid
approximation.
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Fig. 3. Simulation snapshots showing how the phases that represent the cilia beating cycle evolve with time in an 11× 11 array, where the cilia rotate
along the trajectory defined by the angles (A) χ= 0, θ= 0; (B) χ= 0, θ=π/6; (C) χ= 0, θ=π/4; (D) χ=π/36, θ=π/4; and (E) χ=π/6, θ=π/4 (Fig. 1).
(F) A triangular lattice with χ= 0, θ= 0. Other parameters for A–F are a = 0.2`, b = 0.05`, h = `, A2 = 0.5, B2 = 0.5, C2 = 0, and D2 = 0. The characteristic
timescale is t0 = η`2/f0. The measured wavelengths and direction of propagation are shown in the last column; in every case, the resulting wave vector lies
within the range of the stable wave modes from the corresponding panels of Fig. 2.

Discussion
We have constructed a theoretical framework to study
metachronal waves in ciliary arrays, where each cilium is driven

independently with the same beat pattern and interacts with the
others via hydrodynamic interactions for arbitrary geometric
configurations. We calculate the dispersion relation of the

Meng et al.
Conditions for metachronal coordination in arrays of model cilia

PNAS | 5 of 7
https://doi.org/10.1073/pnas.2102828118

https://doi.org/10.1073/pnas.2102828118


system, relating the propagation frequency and the wave
vector of the metachronal wave, and observe a relatively small
frequency range, with higher frequencies at longer wavelengths.
We have found that stable waves correspond to finite domains
of wave vector, which are selected with relatively well-defined
orientation of propagation that is determined by the geometric
characteristics of the ciliary beating pattern and the lattice
structure. Our results allow us to predict the role of the different
harmonics in the moment decomposition of the beat pattern and
the friction, which in turn, can be used to make predictions about
control of metachronal waves using external cues, as has been
demonstrated in the case of phototaxis of Chlamydomonas (45).

Although quantitative studies of the beating patterns of cilia
in vivo are still lacking, a precise 3D tracking of the motion of
a single cilium was recently performed using murine tracheal
cilia attached onto a glass surface (46). In a 100 µM adenosine
triphosphate (ATP) solution, the demembranated and reacti-
vated cilium had the beating frequency 4.9± 1.4 Hz with the
amplitude 3.6± 1.4µm. They are of the same order as those pre-
viously reported for an isolated ciliated cortex (47). The height
of the cilium tip exhibited two peaks in a beating cycle, one in the
recovery stroke and the other in the effective stroke. The authors
of ref. 46 calculate the force profile from the time course of the
tip position, which shows clear asymmetry with the peak mag-
nitudes 0.57± 0.30 pN in the effective stroke and 0.41± 0.20
pN in the recovery stroke. The force and the resultant hydrody-
namic flux show sawtooth-like patterns, which apparently contain
higher-order harmonics (figure 3 of ref. 46). These results jus-
tify the use of a beating pattern containing second harmonics in
our model. The amplitude B2 of the second harmonics is esti-
mated by the ratio between the peak magnitudes (1 +B2)/(1−
B2) = 0.57/0.41, which gives B2∼ 0.16. Note that this should
be considered as the upper bound for B2 as the phase shift
and other harmonics are not taken into account. The waveform
also depends on viscosity and ATP concentration (46). We hope
that the present work triggers quantitative experimental stud-
ies on the relation between the beating pattern and collective
properties of metachronal waves.

Materials and Methods
Synchronization of Two Cilia. Consider two cilia rotating in yz plane; the cen-
ter of one cilium trajectory is located at R1 = (0, 0, h) with phase φ1, and the
other one is located at R2 = (` cos Θ, ` sin Θ, h) with phase φ2. The dynamic
equation of cilia 1 is

φ̇1 =
f(φ1)

ζ(φ1)a
+

1

a
t1 ·G(R1; R2) · t2f(φ2) [18]

or alternatively,

φ̇1 =
f(φ1)

ζ0a
+ H12

f(φ2)

ζ0a
, [19]

with H12 = t1 ·G(R1; R2) · t2ζ0. After the coordinate transformation intro-
duced in the text, φ→ φ̄, the dynamic equation of cilia 1 can be
rewritten as

˙̄φ1 = Ω0

[
1 + H̄12(φ̄1, φ̄2)

f̄(φ̄2)

f̄(φ̄1)

]
, [20]

where H̄12(φ̄1, φ̄2) = H12(φ1,φ2) and f̄(φ̄1,2) = f(φ1,2). f(φ) =

f0[1 + A2 cos 2φ+ B2 sin 2φ] is taken. Then, we can obtain

˙̄∆ = Ω0

[
H̄12(φ̄1, φ̄2)

f̄(φ̄2)

f̄(φ̄1)
− H̄21(φ̄2, φ̄1)

f̄(φ̄1)

f̄(φ̄2)

]

= Ω0H̄12(φ̄1, φ̄2)

[
f̄(φ̄2)

f̄(φ̄1)
−

f̄(φ̄1)

f̄(φ̄2)

]
, [21]

where ∆̄ = φ̄1− φ̄2.
In the case of h≥ `� a, the Blake tensor for the cilia on a lattice

coordinated as r can be approximated as

Gαβ '
1

16π2η

∫
d2q

1

|q|
eiq·(r′−r)

(
2δαβ −

qαqβ

|q|2

)
, (α, β= x, y), [22]

Gαz ' 0, [23]

Gzα' 0, [24]

Gzz '
1

16π2η

∫
d2q

1

|q|
eiq·(r′−r), [25]

where we ignore the difference between the projected positions Rp and
the lattice locations r, as well as fast decaying terms such as exp(−|q|h).
By taking the Green’s function in Eq. 22, H̄12(φ̄1, φ̄2) can be approximated
as H̄12(φ̄1, φ̄2) = Gyy sin φ̄1 sin φ̄2 + Gzz cos φ̄1 cos φ̄2. By taking

∑̄
= φ̄1 + φ̄2

and averaging over the fast variable
∑̄

in terms of 〈. . .〉= 1
4π

∫ 4π
0 . . ., then

the dynamic equation can be written as

˙̄∆' (Gyy −Gzz)B2 sin ∆̄ =
sin2 Θ

`
B2 sin ∆̄. [26]

Here, we introduce an effective potential, which is

U =−
∫ ∆̄

0
d∆̄
′ sin

2 Θ

`
B2 sin ∆̄

′

=
sin2 Θ

`
B2 cos(∆̄− 1)'

sin2 Θ

`
B2(cos ∆− 1), [27]

where the local minimum locates at ∆ =π as the stable phase shift between
the cilia. By assuming the cilia beat with a wave vector k, then the phase dif-
ference is ∆ = k · r = kx` cos Θ + ky` sin Θ, so the wave vector should follow
kx` cos Θ + ky` sin Θ =π.

Data Availability. All study data are included in the article and/or supporting
information.
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